
Anonymous Attestation with Subverted TPMs

Jan Camenisch1(B), Manu Drijvers1,2, and Anja Lehmann1

1 IBM Research – Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
{jca,mdr,anj}@zurich.ibm.com

2 Department of Computer Science, ETH Zurich, 8092 Zürich, Switzerland

Abstract. Various sources have revealed that cryptographic standards
and components have been subverted to undermine the security of users,
reigniting research on means to achieve security in presence of such sub-
verted components. In this paper we consider direct anonymous attesta-
tion (DAA) in this respect. This standardized protocol allows a computer
with the help of an embedded TPM chip to remotely attest that it is in
a healthy state. Guaranteeing that different attestations by the same
computer cannot be linked was an explicit and important design goal of
the standard in order to protect the privacy of the user of the computer.
Surprisingly, none of the standardized or otherwise proposed DAA pro-
tocols achieves privacy when the TPM is subverted, but they all rely
on the honesty of the TPM. As the TPM is a piece of hardware, it is
hardly possible to tell whether or not a given TPM follows the specified
protocol. In this paper we study this setting and provide a new protocol
that achieves privacy also in presence of subverted TPMs.

1 Introduction

Direct anonymous attestation (DAA) is a cryptographic protocol for a platform
consisting of a host and a TPM chip (Trusted Platform Module). The TPM
serves as a trust anchor of the platform and anonymously attests either to the
host’s current state or some other message chosen by the host. Thus, DAA can
be used to convince a communication partner that the platform has not been
compromised, i.e., modified by malware. The main design goal of DAA is that
such attestations are anonymous, i.e., while a verifier can check that the signature
stems from a legitimate platform, it does not learn the identity of the platform,
or even recognize that multiple attestations stem from the same platform.

DAA was introduced by Brickell, Camenisch, and Chen [15] for the Trusted
Computing Group and was standardized in the TPM 1.2 specification in
2004 [59]. Their paper inspired a large body of work on DAA schemes
[9,16–18,23,25,36–38,40], including more efficient schemes using bilinear pair-
ings as well as different security definitions and proofs. One result of these works
is the recent TPM 2.0 specification [50,60] that includes support for multiple
pairing-based DAA schemes, two of which are standardized by ISO [49]. Over
500 million TPMs have been sold, making DAA probably the most complex

This work has been supported by the ERC under Grant PERCY #321310.

c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part III, LNCS 10403, pp. 427–461, 2017.
DOI: 10.1007/978-3-319-63697-9 15



428 J. Camenisch et al.

cryptographic scheme that is widely implemented. Recently, the protocol has
gotten renewed attention for authentication: An extension of DAA called EPID
is used in Intel SGX [41], the most recent development in the area of trusted com-
puting. Further, the FIDO alliance, an industry consortium designing standards
for strong user authentication, is in the process of standardizing a specification
using DAA to attest that authentication keys are securely stored [21].

The first version of the TPM specification and attestation protocol had
received strong criticism from privacy groups and data protection authorities
as it imposed linkability and full identification of all attestations. As a conse-
quence, guaranteeing the privacy of the platform, i.e., ensuring that an attesta-
tion does not carry any identifier, became an important design criteria for such
hardware-based attestation. Indeed, various privacy groups and data protection
authorities had been consulted in the design process of DAA.

Trusting Hardware for Privacy? Surprisingly, despite the strong concerns of
having to trust a piece of hardware when TPMs and hardware-based attestation
were introduced, the problem of privacy-preserving attestation in the presence of
fraudulent hardware has not been fully solved yet. The issue is that the original
DAA protocol as well as all other DAA protocols crucially rely on the honesty
of the entire platform, i.e., host and TPM, for guaranteeing privacy. Clearly,
assuming that the host is honest is unavoidable for privacy, as it communicates
directly with the outside world and can output any identifying information it
wants. However, further requiring that the TPM behaves fully honest and aims to
preserve the host’s privacy is an unnecessarily strong assumption and contradicts
the initial design goal of not having to trust the TPM.

Even worse, it is impossible to verify this strong assumption as the TPM is
a chip that comes with pre-installed software, to which the user only has black-
box access. While black-box access might allow one to partly verify the TPM’s
functional correctness, it is impossible to validate its privacy guarantees. A com-
promised TPM manufacturer can ship TPMs that provide seemingly correct out-
puts, but that are formed in a way that allows dedicated entities (knowing some
trapdoor) to trace the user, for instance by encoding an identifier in a nonce that
is hashed as part of the attestation signature. It could further encode its secret
key in attestations, allowing a fraudulent manufacturer to frame an honest host
by signing a statement on behalf of the platform. We stress that such attacks are
possible on all current DAA schemes, meaning that, by compromising a TPM
manufacturer, all TPMs it produces can be used as mass surveillance devices.
The revelations of subverted cryptographic standards [5,56] and tampered hard-
ware [46] indicate that such attack scenarios are very realistic.

In contrast to the TPM, the host software can be verified by the user, e.g.,
being compiled from open source, and will likely run on hardware that is not
under the control of the TPM manufacturer. Thus, while the honesty of the host
is vital for the platform’s privacy and there are means to verify or enforce such
honesty, requiring the TPM to be honest is neither necessary nor verifiable.



Anonymous Attestation with Subverted TPMs 429

1.1 Our Contribution

In this paper we address this problem of anonymous attestation without having
to trust a piece of hardware, a problem which has been open for more than a
decade. We further exhibit a new DAA protocol that provides privacy even if
the TPM is subverted. More precisely, our contributions are twofold: we first
show how to model subverted parties within the Universal Composability (UC)
model and then propose a protocol that is secure against subverted TPMs.

Modeling Subversion Attacks in UC. We modify the UC-functionality of DAA
recently proposed by Camenisch, Drijvers, and Lehmann [25] to model the pre-
served privacy guarantees in the case where the TPM is corrupt and the host
remains honest. Modeling corruption in the sense of subverted parties is not
straightforward: if the TPM was simply controlled by the adversary, then, using
the standard UC corruption model, only very limited privacy can be achieved.
The TPM has to see and approve every message it signs but, when corrupted,
all these messages are given to the adversary as well. In fact, the adversary will
learn which particular TPM is asked to sign which message. That is, the adver-
sary can later recognize a certain TPM attestation via its message, even if the
signatures are anonymous.

Modeling corruption of TPMs like this gives the adversary much more power
than in reality: even if a TPM is subverted and runs malicious algorithms, it
is still embedded into a host who controls all communication with the outside
world. Thus, the adversary cannot communicate directly with the TPM, but only
via the (honest) host. To model such subversions more accurately, we introduce
isolated corruptions in UC. When a TPM is corrupted like this, we allow the
ideal-world adversary (simulator) to specify a piece of code that the isolated, yet
subverted TPM will run. Other than that, the adversary has no control over the
isolated corrupted party, i.e., it cannot directly interact with the isolated TPM
and cannot see its state. Thus, the adversary will also not automatically learn
anymore which TPM signed which message.

A New DAA Protocol with Optimal Privacy. We further discuss why the existing
DAA protocols do not offer privacy when the TPM is corrupt and propose a
new DAA protocol which we prove to achieve our strong security definition.
In contrast to most existing schemes, we construct our protocol from generic
building blocks which yields a more modular design. A core building block are
split signatures which allow two entities – in our case the TPM and host –
each holding a secret key share to jointly generate signatures. Using such split
keys and signatures is a crucial difference compared with all existing schemes,
where only the TPM contributed to the attestation key which inherently limits
the possible privacy guarantees. We also redesign the overall protocol such that
the main part of the attestation, namely proving knowledge of a membership
credential on the attestation key, can be done by the host instead of the TPM.

By shifting more responsibility and computations to the host, we do not
only increase privacy, but also achieve stronger notions of non-frameability and



430 J. Camenisch et al.

unforgeability than all previous DAA schemes. Interestingly, this design change
also improves the efficiency of the TPM, which is usually the bottleneck in a
DAA scheme. In fact, we propose a pairing-based instantiation of our generic
protocol which, compared to prior DAA schemes, has the most efficient TPM
signing operation. This comes for the price of higher computational costs for the
host and verifier. However, we estimate signing and verification times of under
40 ms, which is sufficiently fast for most practical applications.

1.2 Related Work

The idea of combining a piece of tamper-resistant hardware with a user-
controlled device was first suggested by Chaum [33] and applied to the context
of e-cash by Chaum and Pedersen [34], which got later refined by Cramer and
Pedersen [42] and Brands [14]. A user-controlled wallet is required to work with
a piece of hardware, the observer, to be able to withdraw and spend e-cash.
The wallet ensures the user’s privacy while the observer prevents a user from
double-spending his e-cash. Later, Brands in 2000 [13] considered the more gen-
eral case of user-bound credentials where the user’s secret key is protected by a
smart card. Brands proposes to let the user’s host add randomness to the smart
card contribution as a protection against subliminal channels. All these works
use a blind signature scheme to issue credentials to the observers and hence such
credentials can only be used a single time.

Young and Yung further study the protection against subverted crypto-
graphic algorithms with their work on kleptography [62,63] in the late 1990s.
Recently, caused by the revelations of subverted cryptographic standards [5,56]
and tampered hardware [46] as a form of mass-surveillance, this problem has
again gained substantial attention.

Subversion-Resilient Cryptography. Bellare et al. [7] provided a formalization of
algorithm-substitution attacks and considered the challenge of securely encrypt-
ing a message with an encryption algorithm that might be compromised. Here,
the corruption is limited to attacks where the subverted party’s behavior is indis-
tinguishable from that of a correct implementation, which models the goal of the
adversary to remain undetected. This notion of algorithm-substitution attacks
was later applied to signature schemes, with the goal of preserving unforgeability
in the presence of a subverted signing algorithm [4].

However, these works on subversion-resilient cryptography crucially rely on
honestly generated keys and aim to prevent key or information leakage when the
algorithms using these keys get compromised.

Recently, Russell et al. [57,58] extended this line of work by studying how
security can be preserved when all algorithms, including the key generation can
be subverted. The authors also propose immunization strategies for a number of
primitives such as one-way permutations and signature schemes. The approach
of replacing a correct implementation with an indistinguishable yet corrupt one
is similar to the approach in our work, and like Russell et al. we allow the



Anonymous Attestation with Subverted TPMs 431

subversion of all algorithms, and aim for security (or rather privacy) when the
TPM behaves maliciously already when generating the keys.

The DAA protocol studied in this work is more challenging to protect against
subversion attacks though, as the signatures produced by the TPM must not only
be unforgeable and free of a subliminal channel which could leak the signing
key, but also be anonymous and unlinkable, i.e., signatures must not leak any
information about the signer even when the key is generated by the adversary.
Clearly, allowing the TPM to run subverted keys requires another trusted entity
on the user’s side in order to hope for any privacy-protecting operations. The
DAA setting naturally satisfies this requirement as it considers a platform to
consist of two individual entities: the TPM and the host, where all of TPM’s
communication with the outside world is run via the host.

Reverse Firewalls. This two-party setting is similar to the concept of reverse fire-
walls recently introduced by Mironov and Stephens-Davidowitz [53]. A reverse
firewall sits in between a user’s machine and the outside world and guarantees
security of a joint cryptographic operation even if the user’s machine has been
compromised. Moreover, the firewall-enhanced scheme should maintain the orig-
inal functionality and security, meaning the part run on the user’s computer
must be fully functional and secure on its own without the firewall. Thus, the
presence of a reverse firewall can enhance security if the machine is corrupt but
is not the source of security itself. This concept has been proven very powerful
and manages to circumvent the negative results of resilience against subversion-
attacks [39,43].

The DAA setting we consider in this paper is not as symmetric as a reverse
firewall though. While both parties contribute to the unforgeability of attesta-
tions, the privacy properties are only achievable if the host is honest. In fact,
there is no privacy towards the host, as the host is fully aware of the identity
of the embedded TPM. The requirement of privacy-protecting and unlinkable
attestation only applies to the final output produced by the host.

Divertible Protocols and Local Adversaries. A long series of related work explores
divertible and mediated protocols [3,11,20,54], where a special party called the
mediator controls the communication and removes hidden information in mes-
sages by rerandomizing them. The host in our protocol resembles the mediator,
as it adds randomness to every contribution to the signature from the TPM.
However, in our case the host is a normal protocol participant, whereas the
mediator’s sole purpose is to control the communication.

Alwen et al. [2] and Canetti and Vald [32] consider local adversaries to model
isolated corruptions in the context of multi-party protocols. These works thor-
oughly formalize the setting of multi-party computations where several parties
can be corrupted, but are controlled by different and non-colluding adversaries.
In contrast, the focus of this work is to limit the communication channel that
the adversary has to the corrupted party itself. We leverage the flexibility of the
UC model to define such isolated corruptions.



432 J. Camenisch et al.

Generic MPC. Multi-party computation (MPC) was introduced by Yao [61]
and allows a set of parties to securely compute any function on private inputs.
Although MPC between the host and TPM could solve our problem, a negative
result by Katz and Ostrovsky [52] shows that this would require at least five
rounds of communication, whereas our tailored solution is much more efficient.
Further, none of the existing MPC models considers the type of subverted cor-
ruptions that is crucial to our work, i.e., one first would have to extend the
existing models and schemes to capture such isolated TPM corruption. This
holds in particular for the works that model tamper-proof hardware [48,51], as
therein the hardware is assumed to be “perfect” and unsubvertable.

TPM2.0 Interfaces and Subliminal Channels. Camenisch et al. [22] recently stud-
ied the DAA-related interfaces that are provided by hardware modules following
the current TPM2.0 specification, and propose a revision to obtain better secu-
rity and privacy guarantees from such hardware. The current APIs do not allow
to prove the unforgeability of the TPM’s parts in the DAA protocols, and pro-
vide a static Diffie-Hellman oracle. Fixes to these problems have been proposed,
but they create new issues: they enable a fraudulent TPM to encode informa-
tion into an attestation signature, which could be used to break anonymity or to
leak the secret key. This creates a subliminal channel already on the hardware
level, which would annihilate any privacy guarantees against malicious TPMs
that are achieved on the protocol level. Camenisch et al. address this problem
and present a revised set of interfaces that allow for provable security and do
not introduce a subliminal channel. Further, two new DAA protocols are pre-
sented that can be build from these revised APIs and guarantee privacy even
when the hardware is subverted, which is termed strong privacy and builds upon
our isolated corruption model. In contrast to our work, the protocols in [22] do
not provide privacy against malicious TPMs in the standard corruption model,
and the privacy guarantees in the isolated model are slightly weaker than in
our optimal privacy definition. We give a brief comparison of strong and opti-
mal privacy in Sect. 2.3 and refer to [22] for a detailed discussion. The protocols
proposed in [22] are realizable with only minor modifications to the TPM speci-
fication, though, whereas our protocol with optimal privacy would require more
significant changes.

2 A Security Model for DAA with Optimal Privacy

This section presents our security definition for anonymous attestation with opti-
mal privacy. First, we informally describe how DAA works and what the desired
security and (optimal) privacy properties are. Then we present our formal defi-
nition in Sect. 2.1, and describe how it improves upon existing work in Sect. 2.2.
Finally, in Sect. 2.3, we elaborate on the inherent limitations the UC framework
imposes on privacy in the presence of fully corrupted parties and introduce the
concept of isolated corruptions, which allow one to overcome this limitations yet
capture the power of subverted TPMs.



Anonymous Attestation with Subverted TPMs 433

High-Level Functional and Security Properties. In a DAA scheme, we have four
kinds of entities: a number of TPMs, a number of hosts, an issuer, and a number
of verifiers. A TPM and a host together form a platform which performs the join
protocol with the issuer who decides if the platform is allowed to become a mem-
ber. Once being a member, the TPM and host together can sign messages with
respect to basenames bsn, where the basename steers the platform’s anonymity.
If a platform signs with a fresh basename, the signature must be anonymous and
unlinkable to any previous signatures. That is, any verifier can check that the
signature stems from a legitimate platform via a deterministic verify algorithm,
but the signature does not leak any information about the identity of the signer.
However, signatures the platform makes with the same basename can be linked
to each other via a (deterministic) link algorithm.

For security, one requires unforgeability: when the issuer is honest, the
adversary can only sign in the name of corrupt platforms. More precisely, if n
platforms are corrupt, the adversary can forge at most n unlinkable signatures
for one basename. By corrupt platform we mean that both the host and TPM
are corrupt, and thus a platform is called honest if at least one of the TPM or
host is honest. This is in fact stronger than the unforgeability notion covered in
all previous definitions which only rely on the honesty of the TPM.

Non-frameability captures the property that no adversary can create sig-
natures on a message m w.r.t. basename bsn that links to a signature created by
a platform with an honest host, when this platform never signed m w.r.t. bsn.

Finally, we require anonymity for attestations. An adversary that is
given two signatures, w.r.t. two different basenames cannot determine whether
both signatures stem from the same platform. All previous works considered
anonymity only for fully honest platforms, i.e., consisting of an honest TPM and
honest host, whereas our goal is to guarantee anonymity even if the TPM is cor-
rupt. Note that anonymity can only hold if the host is honest, though, as it has
full control over its output and can, e.g., always choose to append its identity
to a signature. Thus, the best one can hope for is preserved anonymity when
the TPM is corrupt but the host is honest, which is the setting that this work
addresses.

Universal Composability. Our security definition has the form of an ideal func-
tionality Fpdaa in the Universal Composability (UC) framework [31]. Informally,
a protocol Π securely realizes an ideal functionality F if the real world is as
secure as the ideal world. As F performs the task at hand in an ideal fashion,
i.e., F is secure by construction, there are no meaningful attacks on the ideal
world, so there are no meaningful attacks on the real world. More precisely, Π
securely realizes F if for every adversary A, there exists a simulator S such that
no environment E can distinguish the real world (with Π and A) from the ideal
world (with F and S).



434 J. Camenisch et al.

2.1 Ideal Functionality Fpdaa

We now formally define our ideal DAA-with-optimal-privacy functionality Fpdaa,
which is based on F l

daa by Camenisch et al. [25]. The crucial difference between
the two functionalities is the resilience against corrupt TPMs: F l

daa guarantees
anonymity, non-frameability and unforgeability only when both the TPM and
the host are honest. Our modified version Fpdaa guarantees all properties as
long as the host is honest, i.e., even when the TPM is corrupt. We explain
these differences in detail in Sect. 2.2. We start by describing the interfaces and
guaranteed security properties in an informal manner, and present the detailed
definition of Fpdaa in Fig. 1.

Setup. The SETUP interface on input sid = (I, sid′) initiates a new session for
the issuer I and expects the adversary to provide algorithms (ukgen, sig, ver, link,
identify) that will be used inside the functionality. ukgen creates a new key gsk
and a tracing trapdoor τ that allows Fpdaa to trace signatures generated with
gsk . sig, ver, and link are used by Fpdaa to create, verify, and link signatures,
respectively. Finally, identify allows to verify whether a signature belongs to
a certain tracing trapdoor. This allows Fpdaa to perform multiple consistency
checks and enforce the desired non-frameability and unforgeability properties.

Note that the ver and link algorithms assist the functionality only for sig-
natures that are not generated by Fpdaa itself. For signatures generated by the
functionality, Fpdaa will enforce correct verification and linkage using its internal
records. While ukgen and sig are probabilistic algorithms, the other ones are
required to be deterministic. The link algorithm also has to be symmetric, i.e.,
for all inputs it must hold that link(σ,m, σ′,m′, bsn) ↔ link(σ′,m′, σ,m, bsn).

Join. A host Hj can request to join with a TPM Mi using the JOIN interface.
If both the TPM and the issuer approve the join request, the functionality stores
an internal membership record for Mi,Hj in Members indicating that from now
on that platform is allowed to create attestations.

If the host is corrupt, the adversary must provide Fpdaa with a tracing trap-
door τ . This value is stored along in the membership record and allows the
functionality to check via the identify function whether signatures were cre-
ated by this platform. Fpdaa uses these checks to ensure non-frameability and
unforgeability whenever it creates or verifies signatures. To ensure that the
adversary cannot provide bad trapdoors that would break the completeness or
non-frameability properties, Fpdaa checks the legitimacy of τ via the “macro”
function CheckTtdCorrupt. This function checks that for all previously generated
or verified signatures for which Fpdaa has already seen another matching tracing
trapdoor τ ′ �= τ , the new trapdoor τ is not identified as a matching key as well.
The detailed definition is given in the full version of this paper [24].

Sign. After joining, a host Hj can request a signature on a message m with
respect to basename bsn using the SIGN interface. The signature will only be



Anonymous Attestation with Subverted TPMs 435

1. Issuer Setup. On input (SETUP, sid) from issuer I.
– Verify that sid = (I, sid′).
– Output (SETUP, sid) to A and wait for input (ALG, sid , sig, ver, link, identify, ukgen) from A.
– Check that ver, link and identify are deterministic.
– Store (sid , sig, ver, link, identify, ukgen) and output (SETUPDONE, sid) to I.

Join

2. Join Request. On input (JOIN, sid , jsid , Mi) from host Hj .
– Create a join session record 〈jsid , Mi, Hj , status〉 with status ← request .
– Output (JOIN, sid , jsid , Hj) to Mi.

3. M Join Proceed. On input (JOIN, sid , jsid) from TPM Mi.
– Update the session record 〈jsid , Mi, Hj , status〉 with status = request to delivered .
– Output (JOINPROCEED, sid , jsid , Mi, Hj) to A, wait for input (JOINPROCEED, sid , jsid) from A.
– Abort if I or Mi is honest and a record 〈Mi, ∗, ∗〉 ∈ Members already exists.
– Output (JOINPROCEED, sid , jsid , Mi) to I.

4. I Join Proceed. On input (JOINPROCEED, sid , jsid) from I.
– Update the session record 〈jsid , Mi, Hj , status〉 with status = delivered to complete.
– Output (JOINCOMPLETE, sid , jsid) to A and wait for input (JOINCOMPLETE, sid , jsid , τ) from A.
– If Hj is honest, set τ ← ⊥. (strong non-frameability)
– Else, verify that the provided tracing trapdoor τ is eligible by checking CheckTtdCorrupt(τ) = 1.
– Insert 〈Mi, Hj , τ〉 into Members and output (JOINED, sid , jsid) to Hj .

Sign

5. Sign Request. On input (SIGN, sid , ssid , Mi, m, bsn) from Hj .
– If Hj is honest and no entry 〈Mi, Hj , ∗〉 exists in Members, abort.
– Create a sign session record 〈ssid , Mi, Hj , m, bsn, status〉 with status ← request .
– Output (SIGNPROCEED, sid , ssid , m, bsn) to Mi.

6. Sign Proceed. On input (SIGNPROCEED, sid , ssid) from Mi.
– Look up record 〈ssid , Mi, Hj , m, bsn, status〉 with status = request and update it to status ← complete.
– If I is honest, check that 〈Mi, Hj , ∗〉 exists in Members.
– Generate the signature for a fresh or established key: (strong privacy)
• Retrieve (gsk , τ) from 〈Mi, Hj , bsn, gsk , τ〉 ∈ DomainKeys. If no such entry exists, set (gsk , τ) ←

ukgen(), check CheckTtdHonest(τ) = 1, and store 〈Mi, Hj , bsn, gsk , τ〉 in DomainKeys.
• Compute signature σ ← sig(gsk , m, bsn), check ver(σ, m, bsn) = 1.
• Check identify(σ, m, bsn, τ) = 1 and that there is no (M′, H′) �= (Mi, Hj) with tracing trapdoor τ ′

registered in Members or DomainKeys with identify(σ, m, bsn, τ ′) = 1.
– Store 〈σ, m, bsn, Mi, Hj〉 in Signed and output (SIGNATURE, sid , ssid , σ) to Hj .

Verify & Link

7. Verify. On input (VERIFY, sid , m, bsn, σ, RL) from some party V.
– Retrieve all tuples (τi, Mi, Hj) from 〈Mi, Hj , τi〉 ∈ Members and 〈Mi, Hj , ∗, ∗, τi〉 ∈ DomainKeys where

identify(σ, m, bsn, τi) = 1. Set f ← 0 if at least one of the following conditions hold:
• More than one τi was found.
• I is honest and no pair (τi, Mi, Hj) was found.
• Mi or Hj is honest but no entry 〈∗, m, bsn, Mi, Hj〉 ∈ Signed exists. (strong unforgeability)
• There is a τ ′ ∈ RL where identify(σ, m, bsn, τ ′) = 1 and no pair (τi, Mi, Hj) for an honest Hj was

found.
– If f �= 0, set f ← ver(σ, m, bsn).
– Add 〈σ, m, bsn, RL, f〉 to VerResults and output (VERIFIED, sid , f) to V.

8. Link. On input (LINK, sid , σ, m, σ′, m′, bsn) from a party V.
– Output ⊥ to V if at least one signature (σ, m, bsn) or (σ′, m′, bsn) is not valid (verified via the verify

interface with RL = ∅).
– For each τi in Members and DomainKeys compute bi ← identify(σ, m, bsn, τi) and b′

i ←
identify(σ′, m′, bsn, τi) and do the following:

• Set f ← 0 if bi �= b′
i for some i.

• Set f ← 1 if bi = b′
i = 1 for some i.

– If f is not defined yet, set f ← link(σ, m, σ′, m′, bsn).
– Output (LINK, sid , f) to V.

Fig. 1. Our ideal functionality Fpdaa for DAA with optimal privacy.



436 J. Camenisch et al.

created when the TPM Mi explicitly agrees to signing m w.r.t. bsn and a join
record for Mi,Hj in Members exists (if the issuer is honest).

When a platform wants to sign message m w.r.t. a fresh basename bsn, Fpdaa

generates a new key gsk (and tracing trapdoor τ) via ukgen and then signs
m with that key. The functionality also stores the fresh key (gsk , τ) together
with bsn in DomainKeys, and reuses the same key when the platform wishes to
sign repeatedly under the same basename. Using fresh keys for every signature
naturally enforces the desired privacy guarantees: the signature algorithm does
not receive any identifying information as input, and thus the created signatures
are guaranteed to be anonymous (or pseudonymous in case bsn is reused).

Our functionality enforces this privacy property whenever the host is honest.
Note, however, that Fpdaa does not behave differently when the host is corrupt,
as in this case its output does not matter due to way corruptions are handled
in UC. That is, Fpdaa always outputs anonymous signatures to the host, but if
the host is corrupt, the signature is given to the adversary, who can choose to
discard it and output anything else instead.

To guarantee non-frameability and completeness, our functionality further
checks that every freshly generated key, tracing trapdoor and signature does not
falsely match with any existing signature or key. More precisely, Fpdaa first uses
the CheckTtdHonest macro to verify whether the new key does not match to any
existing signature. (The detailed definition of CheckTtdHonest is given in the
full version of this paper [24].) Likewise, before outputting σ, the functionality
checks that no one else already has a key which would match this newly generated
signature.

Finally, for ensuring unforgeability, the signed message, basename, and plat-
form are stored in Signed which will be used when verifying signatures.

Verify. Signatures can be verified by any party using the VERIFY interface.
Fpdaa uses its internal Signed, Members, and DomainKeys records to enforce
unforgeability and non-frameability. It uses the tracing trapdoors τ stored in
Members and DomainKeys to find out which platform created this signature. If
no match is found and the issuer is honest, the signature is a forgery and rejected
by Fpdaa. If the signature to be verified matches the tracing trapdoor of some
platform with an honest TPM or host, but the signing records do not show that
they signed this message w.r.t. the basename, Fpdaa again considers this to be
a forgery and rejects. If the records do not reveal any issues with the signature,
Fpdaa uses the ver algorithm to obtain the final result.

The verify interface also supports verifier-local revocation. The verifier can
input a revocation list RL containing tracing trapdoors, and signatures matching
any of those trapdoors are no longer accepted.

Link. Using the LINK interface, any party can check whether two signatures
(σ, σ′) on messages (m,m′) respectively, generated with the same basename bsn
originate from the same platform or not. Fpdaa again uses the tracing trapdoors
τ stored in Members and DomainKeys to check which platforms created the two



Anonymous Attestation with Subverted TPMs 437

signatures. If they are the same, Fpdaa outputs that they are linked. If it finds a
platform that signed one, but not the other, it outputs that they are unlinked,
which prevents framing of platforms with an honest host.

The full definition of Fpdaa is given in Fig. 1. Note that when Fpdaa runs one
of the algorithms sig, ver, identify, link, and ukgen, it does so without maintaining
state. This means all user keys have the same distribution, signatures are equally
distributed for the same input, and ver, identify, and link invocations only depend
on the current input, not on previous inputs.

2.2 Comparison with F l
daa

Our functionality Fpdaa is a strengthened version of F l
daa [25], as it requires fewer

trust assumptions on the TPM for anonymity, non-frameability and unforgeabil-
ity. It also includes a syntactical change which allows for more efficient construc-
tions, as we discuss at the end of this section.

Optimal Privacy. The most important difference is that F l
daa guarantees ano-

nymity only when both the TPM and the host are honest, whereas our modified
version Fpdaa guarantees anonymity as long as the host is honest, i.e., even when
the TPM is corrupt. As discussed, the honesty of the host is strictly necessary,
as privacy is impossible to guarantee otherwise.

In the ideal functionality F l
daa proposed by Camenisch et al. [25] the signa-

tures are created in the SIGNPROCEED step in two different ways, depending on
whether the TPM is honest or not. For the case of a corrupt TPM, the signature
is provided by the adversary, which reflects that the adversary can recognize and
link the signatures and F l

daa does not guarantee any privacy. If the TPM (and
the host) is honest, F l

daa creates anonymous signatures inside the functionality
using the signing algorithm sig and ukgen. As signatures are generated with fresh
keys for every new basename, the functionality enforces the desired unlinkability
and anonymity.

In our functionality Fpdaa, we also apply that approach of internally and
anonymously creating signatures to the case where the TPM is corrupt, instead
of relying on a signature input by the adversary. Thus, Fpdaa guarantees the
same strong privacy for both settings of a corrupt and honest TPM. In fact,
for the sake of simplicity we let Fpdaa even generate the signatures for corrupt
hosts within the functionality now (whereas F l

daa used adversarially provided
ones). However, as Fpdaa outputs that signature to the host Hi, who will be the
adversary if Hi is corrupt, the behaviour of Fpdaa with respect to privacy does
not matter in that case: the adversary can simply ignore the output. We present
a summary of the privacy properties guaranteed by F l

daa and Fpdaa in Table 1.
Another difference between both functionalities is that in Fpdaa we assume a

direct communication channel between the host and TPM, which is necessary to
achieve the desired privacy properties (see Sect. 2.3). Note that in the real-world,
such a direct channel is naturally enforced by the physical proximity of the host
and TPM forming the platform, i.e., if both are honest, an adversary can neither
alter nor read their internal communication, or even notice that communication



438 J. Camenisch et al.

Table 1. Overview of privacy guarantees by F l
daa [25], Fpdaa+ [22] and Fpdaa (this work).

Corruption setting F l
daa Fpdaa+ Fpdaa

Honest host, honest TPM + + +

Honest host, isolated corrupt TPM - (+) + Optimal privacy

Honest host, fully corrupt TPM - - (+) Conditional privacy

Corrupt host - - - Impossible

is happening. Consequently, our functionality gets a bit simpler compared to
F l

daa as we omit in JOIN and SIGN all dedicated interfaces and outputs that
informed the simulator about communication between Hj and Mi and waited
for a proceed input by the simulator to complete their communication.

Stronger Non-frameability and Unforgeability. While the focus of this work is
strengthening the privacy properties in the presence of a subverted TPM, we also
lift the trust assumption for non-frameability and unforgeability. Whereas F l

daa

and all other prior security models [15,17] guarantee non-frameability only if the
entire platform is honest, our modified definition Fpdaa enforces that property as
long as the host is honest. Our stronger version of non-frameability is enforced
by modifying the JOINPROCEED interface such that it allows the adversary
to provide a tracing trapdoor τ (which steers the non-frameability checks by
Fpdaa) only when the host is corrupt, as it set τ ← ⊥ whenever the host is
honest. This replaces the original condition of discarding the adversarial τ when
both, the host and TPM are honest. Note that similar to anonymity, requiring
an honest host is strictly necessary for non-frameability too, as we can never
control the signatures that a corrupt host outputs. In particular, a corrupt host
with an honest TPM could additionally run a corrupt TPM and “frame itself”
by outputting signatures from the corrupt TPM.

In terms of unforgeability, all previous definitions including F l
daa solely rely

on the honesty of the TPM (and issuer of course). In Fpdaa we provide a stronger
version and guarantee that attestations cannot be forged unless the entire plat-
form is corrupted, i.e., here we ensure unforgeability if at least one of two entities,
TPM or host, is honest. This change is reflected in our functionality Fpdaa as
follows: In the SIGNPROCEED interface we store the host identity as part of
the signature record 〈σ,m, bsn,Mi,Hj〉 ∈ Signed when signatures are created.
Further, the VERIFY interface now requires the existence of such record when-
ever the signature to be verified belongs to an honest host or honest TPM. In
F l

daa only 〈σ,m, bsn,Mi〉 was stored and required when the TPM was honest.
For unforgeability, relaxing the condition on the honesty of the TPM is not as
crucial as for privacy and non-frameability. Thus, if only the standard unforge-
ability notion is sufficient, one can easily derive a functionality with optimal
privacy but standard unforgeability by reverting the changes we just described.



Anonymous Attestation with Subverted TPMs 439

Dedicated Tracing Key. Our functionality also includes some syntactical changes.
F l

daa uses keys gsk for two purposes: to create signatures for honest platforms (via
sig), and to trace signatures (via identify) when enforcing non-frameability and
unforgeability. A key gsk can be provided by the adversary when a JOIN request
is completed for a corrupt host, or is generated internally via ukgen whenever an
anonymous signature is created. In Fpdaa we split this into two dedicated values:
gsk which is used to sign, and τ to trace signatures. Consequently, the identify
algorithm now takes τ instead of gsk as input. The adversary has to provide τ in
the JOIN interface, as its input is only used to ensure that a corrupt host cannot
impersonate or frame another honest platform. The internally created keys are
used for both, signing and tracing, and hence we modify ukgen to output a tuple
(gsk , τ) instead of gsk only.

The idea behind that change is to allow for more efficient schemes, as the
tracing key τ is usually a value that needs to be extracted by the simulator in the
security proof. In the scheme we propose, it is sufficient that τ is the public key
of the platform whereas gsk is its secret key. Using only a single gsk would have
required the join protocol to include an extractable encryption of the platform’s
secret key, which would not only be less efficient but also a questionable protocol
design. Clearly, our approach is more general than in F l

daa, one can simply set
τ = gsk to derive the same definition as F l

daa.

2.3 Modeling Subverted Parties in the UC Framework

As just discussed, our functionality Fpdaa guarantees that signatures created with
an honest host are unlinkable and do not leak any information about the signing
platform, even if the TPM is corrupt. However, the adversary still learns the
message and basename when the TPM is corrupt, due to the way UC models
corruptions. We discuss how this standard corruption model inherently limits the
achievable privacy level, and then present our approach of isolated corruptions
which allow one to overcome this limitation yet capture the power of subverted
TPMs. While we discuss the modeling of isolated corruptions in the context of
our DAA functionality, we consider the general concept to be of independent
interest as it is applicable to any other scenario where such subversion attacks
can occur.

Conditional Privacy Under Full TPM Corruption. According to the UC
corruption model, the adversary gains full control over a corrupted party, i.e., it
receives all inputs to that party and can choose its responses. For the case of a
corrupt TPM this means that the adversary sees the message m and basename
bsn whenever the honest host wants to create a signature. In fact, the adversary
will learn which particular TPM Mi is asked to sign m w.r.t. bsn. Thus, even
though the signature σ on m w.r.t. bsn is then created by Fpdaa and does not leak
any information about the identity of the signing platform, the adversary might
still be able to recognize the platform’s identity via the signed values. That is, if
a message m or basename bsn is unique, i.e., only a single (and corrupt) TPM



440 J. Camenisch et al.

has ever signed m w.r.t. bsn, then, when later seeing a signature on m w.r.t.
bsn, the adversary can derive which platform had created the signature.

A tempting idea for better privacy would be to change the functionality
such that the TPM does not receive the message and basename when asked
to approve an attestation via the SIGNPROCEED message. As a result, this
information will not be passed to the adversary if the TPM is corrupt. However,
that would completely undermine the purpose of the TPM that is supposed to
serve as a trust anchor: verifiers accept a DAA attestation because they know
a trusted TPM has approved them. Therefore, it is essential that the TPM sees
and acknowledges the messages it signs.

Thus, in the presence of a fully corrupt TPM, the amount of privacy that
can be achieved depends which messages and basenames are being signed – the
more unique they are, the less privacy Fpdaa guarantees.

Optimal Privacy Under Isolated TPM Corruption. The aforementioned
leakage of all messages and basenames that are signed by a corrupt TPM is
enforced by the UC corruption model. Modeling corruption of TPMs like this
gives the adversary much more power than in reality: even if a TPM is subverted
and runs malicious algorithms, it is still embedded into a host who controls all
communication with the outside world. Thus, the adversary cannot communicate
directly with the TPM, but only via the (honest) host.

To model such subversions more accurately and study the privacy achievable
in the presence of subverted TPMs, we define a relaxed level of corruption that
we call isolated corruption. When the adversary corrupts a TPM in this manner,
it can specify code for the TPM but cannot directly communicate with the TPM.

We formally define such isolated corruptions via the body-shell paradigm
used to model UC corruptions [31]. Recall that the body of a party defines its
behavior, whereas the shell models the communication with that party. Thus,
for our isolated corruptions, the adversary gets control over the body but not the
shell. Interestingly, this is exactly the inverse of honest-but-curious corruptions in
UC, where the adversary controls the shell and thus sees all inputs and outputs,
but cannot change the body, i.e., the parties behavior remains honest.

In our case, an adversary performing an isolated corruption can provide a
body, which models the tampered algorithms that an isolated corrupt TPM
may use. The shell remains honest though and handles inputs, and subroutine
outputs, and only forwards the ones that are allowed to the body. In the real
world, the shell would only allow communication with the host in which the
TPM is embedded. In the ideal world, the shell allows inputs to and outputs
from the functionality, and blocks anything else.

Figures 2 and 3 depict the different levels of corruption in the real world
and ideal world, respectively. In the ideal word, an isolated corruption of a
TPM replaces the dummy TPM that forwards inputs and outputs between the
environment and the ideal functionality with an isolated simulator comprising
of the adversarial body and honest shell.



Anonymous Attestation with Subverted TPMs 441

ΠM ΠH

E

ΠH

E

AA ΠH

E

A AM

Fig. 2. Modeling of corruption in the real world. Left: an honest TPM applies the
protocol ΠM, and communicates with the host running ΠH. Middle: a corrupt TPM
sends any input the adversary instructs it to, and forwards any messages received to
the adversary. Right: an isolated corrupt TPM is controlled by an isolated adversary
AM, who can communicate with the host, but not with any other entities.

dM dH

E

Fpdaa

dH

E

FpdaaSS

dH

E

FpdaaS

SM

Fig. 3. Modeling of corruption in the ideal world. Left: an honest TPM is a dummy
party dM that forwards inputs and outputs between the environment E and the func-
tionality Fpdaa. Middle: a corrupt TPM sends any input the adversary instructs it to,
and forwards any subroutine output to the adversary. Right: an isolated corrupt TPM
is controlled by an isolated simulator SM, who may send inputs and receive outputs
from Fpdaa, but not communicate with any other entities.

When designing a UC functionality, then all communication between a host
and the “embedded” party that can get corrupted in such isolated manner must
be modeled as direct channel (see e.g., the SIGN related interfaces in Fpdaa).
Otherwise the simulator/adversary will be aware of the communication between
both parties and can delay or block messages, which would contradict the con-
cept of an isolated corruption where the adversary has no direct channel to the
embedded party. Note that the perfect channel of course only holds if the host
entity is honest, if it is corrupt (in the standard sense), the adversary can see
and control all communication via the host anyway.

With such isolated adversaries we specify much stronger privacy. The adver-
sary no longer automatically learns which isolated corrupt TPM signed which
combination of messages and basenames, and the signatures created by Fpdaa

are guaranteed to be unlinkable. Of course the message m and basename bsn
must not leak information about the identity of the platform. In certain appli-
cations, the platform would sign data generated or partially controlled by other
functions contained in a TPM. This is out of scope of the attestation scheme,
but the higher level scheme using Fpdaa should ensure that this does not happen,
by, e.g., letting the host randomize or sanitize the message.



442 J. Camenisch et al.

Comparison with Strong Privacy (Fpdaa+). Recently, Camenisch et al. [22] pro-
posed a variant Fpdaa+ of our functionality that, when considering only isolated
TPM corruptions, provides an intermediate level of anonymity, termed strong
privacy (the + in Fpdaa+ refers to the addition of attributes and signature-based
revocation). In Fpdaa+ all signatures are generated internally by the functionally,
just as in optimal privacy. The difference is that in strong privacy these signa-
tures are revealed to the TPM which can then base its behavior on the signature
value. Thus, while the actual signature shown to the TPM is still guaranteed to
be anonymous, the TPM can influence the final distribution of the signatures
by blocking certain values. In the isolated corruption model, where the corrupt
TPM cannot communicate the learned signatures to the adversary, Fpdaa+ pro-
vides an interesting relaxation of optimal privacy which allows for significantly
simpler constructions as shown in [22].

3 Insufficiency of Existing DAA Schemes

Our functionality Fpdaa requires all signatures on a message m with a fresh base-
name bsn to have the same distribution, even when the TPM is corrupt. None
of the existing DAA schemes can be used to realize Fpdaa when the TPM is cor-
rupted (either fully or isolated). The reason is inherent to the common protocol
design that underlies all DAA schemes so far, i.e., there is no simple patch that
would allow upgrading the existing solutions to achieve optimal privacy.

In a nutshell, in all existing DAA schemes, the TPM chooses a secret key
gsk for which it blindly receives a membership credential of a trusted issuer.
To create a signature on message m with basename bsn, the platform creates a
signature proof of knowledge signing message m and proving knowledge of gsk
and the membership credential.

In the original RSA-based DAA scheme [15], and the more recent qSDH-based
schemes [18,19,23,40], the proof of knowledge of the membership credential is
created jointly by the TPM and host. After jointly computing the commitment
values of the proof, the host computes the hash over these values and sends
the hash c to the TPM. To prevent leaking information about its key, the TPM
must ensure that the challenge is a hash of fresh values. In all the aforementioned
schemes this is done by letting the TPM choose a fresh nonce n and computing
the final hash as c′ ← H(n, c). An adversarial TPM can embed information in n
instead of taking it uniformly at random, clearly altering the distribution of the
proof and thus violating the desired privacy guarantees.

At a first glance, deriving the hash for the proof in a more robust manner
might seem a viable solution to prevent such leakage. For instance, setting the
nonce as n ← nt ⊕ nh, with nt being the TPM’s and nh the host’s contribution,
and letting the TPM commit to nt before receiving nh. While this indeed removes
the leakage via the nonce, it still reveals the hash value c′ ← H(n, c) to the TPM
with the hash becoming part of the completed signature. Thus, the TPM can
base its behavior on the hash value and, e.g., only sign messages for hashes that
start with a 0-bit. When considering only isolated corruptions for the TPM,



Anonymous Attestation with Subverted TPMs 443

the impact of such leakage is limited though as argued by Camenisch et al. [22]
and formalized in their notion of strong privacy. In fact, Camenisch et al. show
that by using such jointly generated nonces, and also letting the host contribute
to the platform’s secret key, the existing DAA schemes can be modified to achieve
strong privacy in the isolated corruption model. However, it clearly does not
result in signatures that are equally distributed as required by our functionality,
and thus the approach is not sufficient to obtain optimal privacy.

The same argument applies to the LRSW-based DAA schemes [9,25,38],
where the proof of a membership credential is done solely by the TPM, and thus
can leak information via the Fiat-Shamir hash output again. The general problem
is that the signature proofs of knowledge are not randomizable. If the TPM
would create a randomizable proof of knowledge, e.g., a Groth-Sahai proof [47],
the host could randomize the proof to remove any hidden information, but this
would yield a highly inefficient signing protocol for the TPM.

4 Building Blocks

In this section we introduce the building blocks for our DAA scheme. In addition
to standard components such as additively homomorphic encryption and zero-
knowledge proofs, we introduce two non-standard types of signature schemes.
One signature scheme we require is for the issuer to blindly sign the public key
of the TPM and host. The second signature scheme is needed for the TPM and
host to jointly create signed attestations, which we term split signatures.

The approach of constructing a DAA scheme from modular building blocks
rather than basing it on a concrete instantiation was also used by Bernhard et
al. [9,10]. As they considered a simplified setting, called pre-DAA, where the host
and platform have a joint corruption state, and we aim for much stronger privacy,
their “linkable indistinguishable tag” is not sufficient for our construction. We
replace this with our split signatures.

As our protocol requires “compatible” building blocks, i.e., the different
schemes have to work in the same group, we assume the availability of pub-
lic system parameters spar ←$ SParGen(τ) generated for security parameter τ .
We give spar as dedicated input to the individual key generation algorithms
instead of the security parameter τ . For the sake of simplicity, we omit the sys-
tem parameters as dedicated input to all other algorithms and assume that they
are given as implicit input.

4.1 Proof Protocols

Let NIZK{(w) : s(w)}(ctxt) denote a generic non-interactive zero-knowledge
proof that is bound to a certain context ctxt and proves knowledge of a witness
w such that statement s(w) is true. Sometimes we need witnesses to be online-
extractable, which we denote by underlining them: NIZK{(w1, w2) : s(w1, w2)}
allows for online extraction of w1.



444 J. Camenisch et al.

All the NIZK we give have efficient concrete instantiations for the instan-
tiations we propose for our other building blocks. We will follow the notation
introduced by Camenisch and Stadler [29] and formally defined by Camenisch,
Kiayias, and Yung [26] for these protocols. For instance, PK{(a) : y = ga}
denotes a “zero-knowledge Proof of Knowledge of integer a such that y = ga

holds.” SPK{. . .}(m) denotes a signature proof of knowledge on m, that is a
non-interactive transformation of a proof with the Fiat-Shamir heuristic [45].

4.2 Homomorphic Encryption Schemes

We require an encryption scheme (EncKGen,Enc,Dec) that is semantically secure
and that has a cyclic group G = 〈g〉 of order q as message space. It consists of
a key generation algorithm (epk , esk) ←$ EncKGen(spar), where spar defines
the group G, an encryption algorithm C ←$ Enc(epk ,m), with m ∈ G, and a
decryption algorithm m ← Dec(esk , C).

We further require that the encryption scheme has an appropriate homo-
morphic property, namely that there is an efficient operation 
 on ciphertexts
such that, if C1 ∈ Enc(epk ,m1) and C2 ∈ Enc(epk ,m2), then C1 
 C2 ∈
Enc(epk ,m1 ·m2). We will also use exponents to denote the repeated application
of 
, e.g., C2 to denote C 
 C.

ElGamal Encryption. We use the ElGamal encryption scheme [44], which is
homomorphic and chosen plaintext secure. The semantic security is sufficient for
our construction, as the parties always prove to each other that they formed the
ciphertexts correctly. Let spar define a group G = 〈g〉 of order q such that the
DDH problem is hard w.r.t. τ , i.e., q is a τ -bit prime.

EncKGen(spar): Pick x ←$
Zq, compute y ← gx, and output esk ← x, epk ← y.

Enc(epk ,m): To encrypt a message m ∈ G under epk = y, pick r ←$
Zq and

output the ciphertext (C1, C2) ← (yr, grm).
Dec(esk , C): On input the secret key esk = x and a ciphertext C = (C1, C2) ∈

G
2, output m′ ← C2 · C

−1/x
1 .

4.3 Signature Schemes for Encrypted Messages

We need a signature scheme that supports the signing of encrypted messages
and must allow for (efficient) proofs proving that an encrypted value is correctly
signed and proving knowledge of a signature that signs an encrypted value. Dual-
mode signatures [27] satisfy these properties, as therein signatures on plaintext as
well as on encrypted messages can be obtained. As we do not require signatures
on plaintexts, though, we can use a simplified version.

A signature scheme for encrypted messages consists of the algorithms
(SigKGen,EncSign,DecSign,Vf) and also uses an encryption scheme (EncKGen,
Enc,Dec) that is compatible with the message space of the signature scheme. In
particular, the algorithms working with encrypted messages or signatures also
get the keys (epk , esk) ←$ EncKGen(spar) of the encryption scheme as input.



Anonymous Attestation with Subverted TPMs 445

SigKGen(spar): On input the system parameters, this algorithm outputs a public
verification key spk and secret signing key ssk .

EncSign(ssk , epk , C): On input signing key ssk , a public encryption key epk , and
ciphertext C = Enc(epk ,m), outputs an “encrypted” signature σ of C.

DecSign(esk , spk , σ): On input an “encrypted” signature σ, secret decryption
key esk and public verification key spk , outputs a standard signature σ.

Vf(spk , σ,m): On input a public verification key spk , signature σ and message
m, outputs 1 if the signature is valid and 0 otherwise.

In terms of security, we require completeness and unforgeability as defined
in [27], but omit the oracle for signatures on plaintext messages in the unforge-
ability experiment. Clearly, any secure dual-mode signature is also unforgeable
according to our notion. The simplified security model is given in the full version
of this paper [24].

AGOT+ Signature Scheme. To instantiate the building block of signatures for
encrypted messages we will use the AGOT+ scheme of [27], which was shown
to be a secure instantiation of a dual-mode signature, hence is also secure in our
simplified setting. Again, as we do not require signatures on plaintext messages
we omit the standard signing algorithm. The AGOT+ scheme is based on the
structure-preserving signature scheme by Abe et al. [1], which is proven to be
unforgeable in the generic group model.

The AGOT+ scheme assumes the availability of system parameters (q,G1,
G2,GT , e, g1, g2, x), where G1,G2,GT are groups of prime order q generated by
g1, g2, and e(g1, g2) respectively, e is a non-degenerate bilinear map e : G1×G2 →
GT , and x is an additional random group element in G1.

SigKGen(spar): Draw v ←$
Zq, compute y ← gv

2 , and return spk = y, ssk = v.
EncSign(ssk , epk ,M): On input a proper encryption M = Enc(epk ,m) of a mes-

sage m ∈ G1 under epk , and secret key ssk = v, choose a random u ←$
Z

∗
q ,

and output the (partially) encrypted signature σ̄ = (r, S, T, w):

r ← gu
2 , S ← (Mv 
 Enc(epk , x))1/u, T ← (Sv 
 Enc(epk , g1))

1/u, w ← g
1/u
1 .

DecSign(esk , spk , σ): Parse σ = (r, S, T, w), compute s ← Dec(esk , S), t ←
Dec(esk , T ) and output σ = (r, s, t, w).

Vf(spk , σ,m): Parse σ = (r, s, t, w′) and spk = y and output 1 iff m, s, t ∈ G1,
r ∈ G2, e(s, r) = e(m, y) · e(x, g2), and e(t, r) = e(s, y) · e(g1, g2).

Note that for notational simplicity, we consider w part of the signature, i.e.,
σ = (r, s, t, w), altough signature verification will ignore w. As pointed out by
Abe et al., a signature σ = (r, s, t) can be randomized using the randomization
token w to obtain a signature σ′ = (r′, s′, t′) by picking a random u′ ←$

Z
∗
q and

computing r′ ← ru′
, s′ ← s1/u′

, t′ ← (tw(u′−1))1/u′2
.

For our construction, we also require the host to prove that it knows an
encrypted signature on an encrypted message. In Sect. 6 we describe how such a
proof can be done.



446 J. Camenisch et al.

4.4 Split Signatures

The second signature scheme we require must allow two different parties, each
holding a share of the secret key, to jointly create signatures. Our DAA protocol
performs the joined public key generation and the signing operation in a strict
sequential order. That is, the first party creates his part of the key, and the second
party receiving the ‘pre-public key’ generates a second key share and completes
the joined public key. Similarly, to sign a message the first signer creates a ‘pre-
signature’ and the second signer completes the signature. We model the new
signature scheme for that particular sequential setting rather than aiming for
a more generic building block in the spirit of threshold or multi-signatures, as
the existence of a strict two-party order allows for substantially more efficient
constructions.

We term this new building block split signatures partially following the nota-
tion by Bellare and Sandhu [8] who formalized different two-party settings for
RSA-based signatures where the signing key is split between a client and server.
Therein, the case “MSC” where the first signature contribution is produced by
an external server and then completed by the client comes closest to out setting.

Formally, we define a split signature scheme as a tuple of the algorithms
SSIG = (PreKeyGen,CompleteKeyGen,VerKey,PreSign,CompleteSign,Vf):

PreKeyGen(spar): On input the system parameters, this algorithm outputs the
pre-public key ppk and the first share of the secret signing key ssk1.

CompleteKeyGen(ppk): On input the pre-public key, this algorithm outputs a
public verification key spk and the second secret signing key ssk2.

VerKey(ppk , spk , ssk2): On input the pre-public key ppk , the full public key spk ,
and a secret key share ssk2, this algorithm outputs 1 iff the pre-public key
combined with secret key part ssk2 leads to full public key spk .

PreSign(ssk1,m): On input a secret signing key share ssk1, and message m, this
algorithm outputs a pre-signature σ′.

CompleteSign(ppk , ssk2,m, σ′): On input the pre-public key ppk , the second
signing key share ssk2, message m, and pre-signature σ′, this algorithm out-
puts the completed signature σ.

Vf(spk , σ,m): On input the public key spk , signature σ, and message m, this
algorithm outputs a bit b indicating whether the signature is valid or not.

We require a number of security properties from our split signatures. The first
one is unforgeability which must hold if at least one of the two signers is honest.
This is captured in two security experiments: type-1 unforgeability allows the
first signer to be corrupt, and type-2 unforgeability considers a corrupt second
signer. Our definitions are similar to the ones by Bellare and Sandhu, with the
difference that we do not assume a trusted dealer creating both secret key shares.
Instead, we let the adversary output the key share of the party he controls.
For type-2 unforgeability we must ensure, though, that the adversary indeed
integrates the honestly generated pre-key ppk when producing the completed
public key spk , which we verify via VerKey. Formally, unforgeability for split
signatures is defined as follows.



Anonymous Attestation with Subverted TPMs 447

Experiment ExpUnforgeability-1A (τ):
spar ←$ SParGen(1τ )
(ppk , state) ← A(spar)
(spk , ssk2) ← CompleteKeyGen(ppk)
L ← ∅
(m∗, σ∗) ← AOCompleteSign(ppk,ssk2,·,·)

(state, spk)

where OCompleteSign on input (mi, σ
′
i):

set L ← L ∪ mi

return σi ← CompleteSign(ppk , ssk2, mi, σ
′
i)

return 1 if Vf(spk , σ∗, m∗) = 1 and m∗ /∈ L

Experiment ExpUnforgeability-2A (τ):
spar ←$ SParGen(1τ )
(ppk , ssk1) ← PreKeyGen(spar)
L ← ∅
(m∗, σ∗, spk , ssk2) ← AOPreSign(ssk1,·)

(spar , ppk)

where OPreSign on input mi:
set L ← L ∪ mi

return σ′
i ← PreSign(ssk1, mi)

return 1 if Vf(spk , σ∗, m∗) = 1, and m∗ /∈ L
and VerKey(ppk , spk , ssk2) = 1

Fig. 4. Unforgeability-1 (1st signer is corrupt) and unforgeability-2 (2nd signer is cor-
rupt) experiments.

Definition 1 (Type-1/2 Unforgeability of SSIG). A split signature
scheme is type-1/2 unforgeable if for any efficient algorithm A the probability
that the experiments given in Fig. 4 return 1 is negligible (as a function of τ).

Further, we need a property that we call key-hiding, which ensures that sig-
natures do not leak any information about the public key for which they are
generated. This is needed in the DAA scheme to get unlinkability even in the
presence of a corrupt TPM that contributes to the signatures and knows part of
the secret key, yet should not be able to recognize “his” signatures afterwards.
Our key-hiding notion is somewhat similar in spirit to key-privacy for encryption
schemes as defined by Bellare et al. [6], which requires that a ciphertext should
not leak anything about the public key under which it is encrypted.

Formally, this is captured by giving the adversary a challenge signature for
a chosen message either under the real or a random public key. Clearly, the
property can only hold as long as the real public key spk is not known to the
adversary, as otherwise he can simply verify the challenge signature. As we want
the property to hold even when the first party is corrupt, the adversary can
choose the first part of the secret key and also contribute to the challenge signa-
ture. The adversary is also given oracle access to OCompleteSign again, but is not
allowed to query the message used in the challenge query, as he could win triv-
ially otherwise (by the requirement of signature-uniqueness defined below and
the determinism of CompleteSign). The formal experiment for our key-hiding
property is given below. The oracle OCompleteSign is defined analogously as in
type-1 unforgeability.

Definition 2 (Key-hiding property of SSIG). We say a split signature
scheme is key-hiding if for any efficient algorithm A the probability that the
experiment given in Fig. 5 returns 1 is negligible (as a function of τ).

Finally, we need correctness, i.e., honestly generated signatures verify cor-
rectly, and two uniqueness properties for our split signatures. The first is key-
uniqueness, which states that every signature is only valid under one public key.



448 J. Camenisch et al.

Experiment ExpKey-Hiding
A (τ):

spar ←$ SParGen(1τ )
(ppk , state) ←$ A(spar)
(spk , ssk2) ←$ CompleteKeyGen(ppk)
L ← ∅
(m, σ′, state ′) ←$ AOCompleteSign(ppk,ssk2,·,·)

(state)
b ←$ {0, 1}
if b = 0 (signature under spk):

σ ← CompleteSign(ppk , ssk2, m, σ′)
if b = 1 (signature under random key):

(ppk∗, ssk∗
1) ←$ PreKeyGen(spar)

(spk∗, ssk∗
2) ←$ CompleteKeyGen(ppk∗)

σ′ ←$ PreSign(ssk∗
1, m)

σ ← CompleteSign(ppk∗, ssk∗
2, m, σ′)

b′ ← AOCompleteSign(ppk,ssk2,·,·)
(state ′, σ)

return 1 if b = b′, m �∈ L, and Vf(spk , σ, m) = 1

Fig. 5. Key-hiding experiment for split signatures.

Second, we require signature-uniqueness, which guarantees that one can com-
pute only a single valid signature on a certain message under a certain public
key. These properties are formally defined in the full version of this paper [24].

Instantiation of split signatures (split-BLS). To instantiate split signatures, we
use a modified BLS signature [12]. Let H be a hash function {0, 1} → G

∗
1 and

the public system parameters be the description of a bilinear map, i.e., spar =
(G1,G2,GT , g1, g2, e, q).

PreKeyGen(spar): Take ssk1 ←$
Z

∗
q , set ppk ← gssk1

2 , and output (ppk , ssk1).
CompleteKeyGen(spar , ppk): Check ppk ∈ G2 and ppk �= 1G2 . Take ssk2 ←$

Z
∗
q

and compute spk ← ppk ssk2 . Output (spk , ssk2).
VerKey(spar , ppk , spk , ssk2): Output 1 iff ppk �= 1G2 and spk = ppk ssk2 .
PreSign(spar , ssk1,m): Output σ′ ← H(m)ssk1 .
CompleteSign(spar , ppk , ssk2,m, σ′): If e(σ′, g2) = e(H(m), ppk), output σ ←

σ′ssk2 , otherwise ⊥.
Vf(spar , spk , σ,m): Output 1 iff σ �= 1G1 and e(σ, g2) = e(H(m), spk).

The proof of the following theorem is given in the full version of this
paper [24].

Theorem 1. The split-BLS signature scheme is a secure split signature
scheme, satisfying correctness, unforgeability-1, unforgeability-2, key-hiding,
key-uniqueness, and signature-uniqueness, under the computational co-Diffie-
Hellman assumption and the DDH assumption in G1, in the random oracle
model.



Anonymous Attestation with Subverted TPMs 449

5 Construction

This section describes our DAA protocol achieving optimal privacy. On a very
high level, the protocol follows the core idea of existing DAA protocols: The
platform, consisting of the TPM and a host, first generates a secret key gsk that
gets blindly certified by a trusted issuer. Subsequently, the platform can use the
key gsk to sign attestations and basenames and then prove that it has a valid
credential on the signing key, certifying the trusted origin of the attestation.

This high-level procedure is the main similarity to existing schemes though,
as we significantly change the role of the host to satisfy our notion of optimal
privacy. First, we no longer rely on a single secret key gsk that is fully controlled
by the TPM. Instead, both the TPM and host generate secret shares, tsk and
hsk respectively, that lead to a joint public key gpk . For privacy reasons, we
cannot reveal this public key to the issuer in the join protocol, as any exposure
of the joint public key would allow to trace any subsequent signed attestations
of the platform. Thus, we let the issuer sign only an encryption of the public
key, using the signature scheme for encrypted messages. When creating this
membership credential cred the issuer is assured that the blindly signed key is
formed correctly and the credential is strictly bound to that unknown key.

After having completed the JOIN protocol, the host and TPM can together
sign a message m with respect to a basename bsn. Both parties use their indi-
vidual key shares and create a split signature on the message and basename
(denoted as tag), which shows that the platform intended to sign this message
and basename, and a split signature on only the basename (denoted as nym),
which is used as a pseudonym. Recall that attestations from one platform with
the same basename should be linkable. By the uniqueness of split signatures,
nym will be constant for one platform and basename and allow for such linka-
bility. Because split signatures are key-hiding, we can reveal tag and nym while
preserving the unlinkability of signatures with different basenames.

When signing, the host proves knowledge of a credential that signs gpk . Note
that the host can create the full proof of knowledge because the membership
credential signs a joint public key. In existing DAA schemes, the membership
credential signs a TPM secret, and therefore the TPM must always be involved to
prove knowledge of the credential, which prevents optimal privacy as we argued
in Sect. 3.

5.1 Our DAA Protocol with Optimal Privacy Πpdaa

We now present our generic DAA protocol with optimal privacy Πpdaa in detail.
Let SSIG = (PreKeyGen,CompleteKeyGen,VerKey,PreSign,CompleteSign,Vf)
denote a secure split signature scheme, as defined in Sect. 4.4, and let ESIG =
(SigKGen,EncSign,DecSign,Vf) denote a secure signature scheme for encrypted
messages, as defined in Sect. 4.3. In addition, we use a CPA secure encryption
scheme ENC = (EncKGen,Enc,Dec). We require all these algorithms to be com-
patible, meaning they work with the same system parameters.



450 J. Camenisch et al.

We further assume that functionalities (Fcrs,Fca,Fauth∗) are available to all
parties. The certificate authority functionality Fca allows the issuer to register
his public key, and we assume that parties call Fca to retrieve the public key
whenever needed. As the issuer key (ipk , πipk ) also contains a proof of well-
formedness, we also assume that each party retrieving the key will verify πipk .

The common reference string functionality Fcrs provides all parties with the
system parameters spar generated via SParGen(1τ ). All the algorithms of the
building blocks take spar as an input, which we omit – except for the key gen-
eration algorithms – for ease of presentation.

For the communication between the TPM and issuer (via the host) in the join
protocol, we use the semi-authenticated channel Fauth∗ introduced by Camenisch
et al. [25]. This functionality abstracts the different options on how to realize the
authenticated channel between the TPM and issuer that is established via an
unauthenticated host. We assume the host and TPM can communicate directly,
meaning that they have an authenticated and perfectly secure channel. This
models the physical proximity of the host and TPM forming the platform: if the
host is honest an adversary can neither alter nor read their internal communi-
cation, or even notice that communication is happening.

To make the protocol more readable, we omit the explicit calls to the sub-
functionalities with sub-session IDs and simply say e.g., issuer I registers its
public key with Fca. For definitions of the standard functionalities Fcrs and Fca

we refer to [30,31].

1. Issuer Setup. In the setup phase, the issuer I creates a key pair of the
signature scheme for encrypted messages and registers the public key with Fca.

(a) I upon input (SETUP, sid) generates his key pair:
– Check that sid = (I, sid ′) for some sid ′.
– Get (ipk , isk) ←$ ESIG.SigKGen(spar) and prove knowledge of the secret

key via πipk ← NIZK{(isk) : (ipk , isk) ∈ ESIG.SigKGen(spar)}(sid).
– Initiate LJOINED ← ∅.
– Register the public key (ipk , πipk ) at Fca, and store (isk ,LJOINED).
– Output (SETUPDONE, sid).

Join Protocol. The join protocol runs between the issuer I and a platform,
consisting of a TPM Mi and a host Hj . The platform authenticates to the
issuer and, if the issuer allows the platform to join, obtains a credential cred
that subsequently enables the platform to create signatures. The credential is
a signature on the encrypted joint public key gpk to which the host and TPM
each hold a secret key share. To show the issuer that a TPM has contributed
to the joint key, the TPM reveals an authenticated version of his (public) key
contribution to the issuer and the host proves that it correctly incorporated
that share in gpk . A unique sub-session identifier jsid distinguishes several join
sessions that might run in parallel.



Anonymous Attestation with Subverted TPMs 451

2. Join Request. The join request is initiated by the host.

(a) Host Hj , on input (JOIN, sid , jsid ,Mi) parses sid = (I, sid ′) and sends
(sid , jsid) to Mi. 1

(b) TPM Mi, upon receiving (sid , jsid) from a party Hj , outputs
(JOIN, sid , jsid).

3. M-Join Proceed. The join session proceeds when the TPM receives an
explicit input telling him to proceed with the join session jsid .

(a) TPM Mi, on input (JOIN, sid , jsid) creates a key share for the split signature
and sends it authenticated to the issuer (via the host):
– Run (tpk , tsk) ←$ SSIG.PreKeyGen(spar).
– Send tpk over Fauth∗ to I via Hj , and store the key (sid ,Hj , tsk).

(b) When Hj notices Mi sending tpk over Fauth∗ to the issuer, it generates its
key share for the split signature and appends an encryption of the jointly
produced gpk to the message sent towards the issuer.
– Complete the split signature key as (gpk , hsk) ←$ SSIG.
CompleteKeyGen(tpk).

– Create an ephemeral encryption key pair (epk , esk) ←$ EncKGen(spar).
– Encrypt gpk under epk as C ←$ Enc(epk , gpk).
– Prove that C is an encryption of a public key gpk that is correctly derived

from the TPM public key share tpk :

πJOIN,H ← NIZK{(gpk , hsk) : C ∈ Enc(epk , gpk)

∧ SSIG.VerKey(tpk , gpk , hsk) = 1}(sid , jsid).

– Append (Hj , epk , C, πJOIN,H) to the message Mi is sending to I over
Fauth∗ and store (sid , jsid ,Mi, esk , hsk , gpk).

(c) I, upon receiving tpk authenticated by Mi and (Hj , epk , C, πJOIN,H) in the
unauthenticated part, verifies that the request is legitimate:
– Verify πJOIN,H w.r.t. the authenticated tpk and check that Mi /∈ LJOINED.
– Store (sid , jsid ,Hj ,Mi, epk , C) and output (JOINPROCEED, sid ,

jsid ,Mi).

4. I-Join Proceed. The join session is completed when the issuer receives an
explicit input telling him to proceed with join session jsid .

(a) I upon input (JOINPROCEED, sid , jsid) signs the encrypted public key C
using the signature scheme for encrypted messages:
– Retrieve (sid , jsid ,Hj ,Mi, epk , C) and set LJOINED ← LJOINED ∪ Mi.
– Sign C as cred ′ ←$ ESIG.EncSign(isk , epk , C) and prove that it did so

correctly. (This proof is required to allow verification in the security proof:
ENC is only CPA-secure and thus we cannot decrypt cred ′.)

πJOIN,I ← NIZK{isk : cred ′ ∈ ESIG.EncSign(isk , epk , C)
∧ (ipk , isk) ∈ ESIG.SigKGen(spar)}(sid , jsid).

1 Recall that we use direct communication between a TPM and host, i.e., this message
is authenticated and unnoticed by the adversary.



452 J. Camenisch et al.

– Send (sid , jsid , cred ′, πJOIN,I) to Hj (via the network).
(b) Host Hj , upon receiving (sid , jsid , cred ′, πJOIN,I) decrypts and stores the

membership credential:
– Retrieve the session record (sid , jsid ,Mi, esk , hsk , gpk).
– Verify proof πJOIN,I w.r.t. ipk , cred ′, C and decrypt the credential as

cred ← ESIG.DecSign(esk , cred ′).
– Store the completed key record (sid , hsk , tpk , gpk , cred ,Mi) and output

(JOINED, sid , jsid).

Sign Protocol. The sign protocol runs between a TPM Mi and a host Hj .
After joining, together they can sign a message m w.r.t. a basename bsn using the
split signature. Sub-session identifier ssid distinguishes multiple sign sessions.

5. Sign Request. The signature request is initiated by the host.

(a) Hj upon input (SIGN, sid , ssid ,Mi,m, bsn) prepares the signature process:
– Check that it joined with Mi (i.e., a completed key record for Mi exists).
– Create signature record (sid , ssid ,Mi,m, bsn).
– Send (sid , ssid ,m, bsn) to Mi.

(b) Mi, upon receiving (sid , ssid ,m, bsn) from Hj , stores (sid , ssid ,Hj ,m, bsn)
and outputs (SIGNPROCEED, sid , ssid ,m, bsn).

6. Sign Proceed. The signature is completed when Mi gets permission to
proceed for ssid .

(a) Mi on input (SIGNPROCEED, sid , ssid) creates the first part of the split
signature on m w.r.t. bsn:
– Retrieve the signature request (sid , ssid ,Hj ,m, bsn) and key

(sid ,Hj , tsk).
– Set tag ′ ←$ SSIG.PreSign(tsk , (0,m, bsn)) and nym′ ←$ SSIG.PreSign(tsk ,

(1, bsn)).
– Send (sid , ssid , tag ′,nym′) to Hj .

(b) Hj upon receiving (sid , ssid , tag ′,nym′) from Mi completes the signature:
– Retrieve the signature request (sid , ssid ,Mi,m, bsn) and key (sid , hsk ,

tpk , gpk , cred ,Mi).
– Compute tag ← SSIG.CompleteSign(hsk , tpk , (0,m, bsn), tag ′).
– Compute nym ← SSIG.CompleteSign(hsk , tpk , (1, bsn),nym′).
– Prove that tag and nym are valid split signatures under public key gpk

and that it owns a valid issuer credential cred on gpk , without revealing
gpk or cred .

πSIGN ← NIZK{(gpk , cred) : ESIG.Vf(ipk , cred , gpk) = 1
∧ SSIG.Vf(gpk , tag , (0,m, bsn)) = 1 ∧ SSIG.Vf(gpk ,nym, (1, bsn)) = 1}

– Set σ ← (tag ,nym, πSIGN) and output (SIGNATURE, sid , ssid , σ).



Anonymous Attestation with Subverted TPMs 453

Verify and Link. Any party can use the following verify and link algorithms
to determine the validity of a signature and whether two signatures for the same
basename were created by the same platform.

7. Verify. The verify algorithm allows one to check whether a signature σ on
message m w.r.t. basename bsn and private key revocation list RL is valid.

(a) V upon input (VERIFY, sid ,m, bsn, σ, RL) verifies the signature:
– Parse σ as (tag ,nym, πSIGN).
– Verify πSIGN with respect to m, bsn, tag , and nym.
– For every gpk i ∈ RL, check that SSIG.Vf(gpk i,nym, (1, bsn)) �= 1.
– If all tests pass, set f ← 1, otherwise f ← 0.
– Output (VERIFIED, sid , f).

8. Link. The link algorithm allows one to check whether two signatures σ
and σ′, on messages m and m′ respectively, that were generated for the same
basename bsn were created by the same platform.

(a) V upon input (LINK, sid , σ,m, σ′,m′, bsn) verifies the signatures and com-
pares the pseudonyms contained in σ, σ′:
– Check that both signatures σ and σ′ are valid with respect to (m, bsn) and

(m′, bsn) respectively, using the Verify algorithm with RL ← ∅. Output
⊥ if they are not both valid.

– Parse the signatures as (tag ,nym, πSIGN) and (tag ′,nym′, π′
SIGN).

– If nym = nym′, set f ← 1, otherwise f ← 0.
– Output (LINK, sid , f).

5.2 Security

We now prove that that our generic protocol is a secure DAA scheme with
optimal privacy under isolated TPM corruptions (and also achieves conditional
privacy under full TPM corruption) as defined in Sect. 2.

Theorem 2. Our protocol Πpdaa described in Sect. 5, securely realizes Fpdaa

defined in Sect. 2, in the (Fauth∗,Fca,Fcrs)-hybrid model, provided that

– SSIG is a secure split signature scheme (as defined in Sect. 4.4),
– ESIG is a secure signature scheme for encrypted messages,
– ENC is a CPA-secure encryption scheme, and
– NIZK is a zero-knowledge, simulation-sound and online-extractable (for the

underlined values) proof system.

To prove Theorem 2, we have to show that there exists a simulator S as
a function of A such that no environment can distinguish Πpdaa and A from
Fpdaa and S. We let the adversary perform both isolated corruptions and full
corruptions on TPMs, showing that this proof both gives optimal privacy with
respect to adversaries that only perform isolated corruptions on TPMs, and
conditional privacy otherwise. The full proof is given in the full version of this
paper [24], we present a proof sketch below.



454 J. Camenisch et al.

Proof Sketch

Setup. For the setup, the simulator has to provide the functionality the required
algorithms (sig, ver, link, identify, ukgen), where sig, ver, link, and ukgen simply
reflect the corresponding real-world algorithms. Thereby the signing algorithm
also includes the issuer’s secret key. When the issuer is corrupt, S can learn the
issuer secret key by extracting from the proof πipk . When the issuer is honest,
it is simulated by S in the real-world and thus S knows the secret key.

The algorithm identify(σ,m, bsn, τ) that is used by Fpdaa to internally
ensure consistency and non-frameability is defined as follows: parse σ as
(tag ,nym, πSIGN) and output SSIG.Vf(τ,nym, (1, bsn)). Recall that τ is a trac-
ing trapdoor that is either provided by the simulator (when the host is corrupt)
or generated internally by Fpdaa whenever a new gpk is generated.

Join. The join-related interfaces of Fpdaa notify S about any triggered join
request by a platform consisting of host Hj and TPM Mi such that S can
simulate the real-world protocol accordingly. If the host is corrupt, the simula-
tor also has to provide the functionality with the tracing trapdoor τ . For our
scheme the joint key gpk of the split signature serves that purpose. For privacy
reasons the key is never revealed, but the host proves knowledge and correctness
of the key in πJOIN,H. Thus, if the host is corrupt, the simulator extracts gpk
from this proof and gives it Fpdaa.

Sign. For platforms with an honest host, Fpdaa creates anonymous signatures
using the sig algorithm S defined in the setup phase. Thereby, Fpdaa enforces
unlinkability by generating and using fresh platform keys via ukgen whenever a
platform requests a signature for a new basename. For signature requests where a
platform repeatedly uses the same basename, Fpdaa re-uses the corresponding key
accordingly. We now briefly argue that no environment can notice this difference.
Recall that signatures consist of signatures tag and nym, and a proof πSIGN, with
the latter proving knowledge of the platform’s key gpk and credential cred , such
that tag and nym are valid under gpk which is in turn certified by cred . Thus,
for every new basename, the credential cred is now based on different keys gpk .
However, as we never reveal these values but only prove knowledge of them in
πSIGN, this change is indistinguishable to the environment.

The signature tag and pseudonym nym, that are split signatures on the mes-
sage and basename, are revealed in plain though. For repeated attestations under
the same basename, Fpdaa consistently re-uses the same key, whereas the use of a
fresh basename will now lead to the disclosure of split signatures under different
keys. The key-hiding property of split signatures guarantees that this change is
unnoticeable, even when the TPM is corrupt and controls part of the key. Note
that the key-hiding property requires that the adversary does not know the joint
public key gpk , which we satisfy as gpk is never revealed in our scheme; the host
only proves knowledge of the key in πJOIN,H and πSIGN.



Anonymous Attestation with Subverted TPMs 455

Verify. For the verification of DAA signatures Fpdaa uses the provided ver
algorithm but also performs additional checks that enforce the desired non-
frameability and unforgeability properties. We show that these additional checks
will fail with negligible probability only, and therefore do not noticeably change
the verification outcome.

First, Fpdaa uses the identify algorithm and the tracing trapdoors τi to check
that there is only a unique signer that matches to the signature that is to be
verified. Recall that we instantiated the identify algorithm with the verification
algorithm of the split signature scheme SSIG and τ = gpk are the (hidden) joint
platform keys. By the key-uniqueness property of SSIG the check will fail with
negligible probability only.

Second, Fpdaa rejects the signature when no matching tracing trapdoor was
found and the issuer is honest. For platforms with an honest hosts, theses trap-
doors are created internally by the functionality whenever a signature is gener-
ated, and Fpdaa immediately checks that the signature matches to the trapdoor
(via the identify algorithm). For platforms where the host is corrupt, our simula-
tor S ensures that a tracing trapdoor is stored in Fpdaa as soon as the platform
has joined (and received a credential). If a signature does not match any of the
existing tracing trapdoors, it must be under a gpk = τ that was neither cre-
ated by Fpdaa nor signed by the honest issuer in the real-world. The proof πSIGN

that is part of every signature σ proves knowledge of a valid issuer credential on
gpk . Thus, by the unforgeability of the signature scheme for encrypted messages
ESIG, such invalid signatures can occur only with negligible probability.

Third, if Fpdaa recognizes a signature on message m w.r.t. basename bsn that
matches the tracing trapdoor of a platform with an honest TPM or honest host,
but that platform has never signed m w.r.t. bsn, it rejects the signature. This
can be reduced to unforgeability-1 (if the host is honest) or unforgeability-2 (if
the TPM is honest) of the split signature scheme SSIG.

The fourth check that Fpdaa makes corresponds to the revocation check in
the real-world verify algorithm, i.e., it does not impose any additional check.

Link. Similar as for verification, Fpdaa is not relying solely on the provided link
algorithm but performs some extra checks when testing for the linkage between
two signatures σ and σ′. It again uses identify and the internally stored tracing
trapdoor to derive the final linking output. If there is one tracing trapdoor
matching one signature but not the other, it outputs that they are not linked. If
there is one tracing trapdoor matching both signatures, it enforces the output
that they are linked. Only if no matching tracing trapdoor is found, Fpdaa derives
the output via link algorithm.

We now show that the two checks and decisions imposed by Fpdaa are
consistent with the real-world linking algorithm. In the real world, signatures
σ = (tag ,nym, πSIGN) and σ′ = (tag ′,nym′, π′

SIGN) w.r.t basename bsn are linked
iff nym = nym′. Tracing trapdoors are instantiated by the split signature scheme
public keys gpk , and identify verifies nym under the key gpk . If one key matches
one signature but not the other, then by the fact that the verification algorithm
of the split signatures is deterministic, we must have nym �= nym′, showing that



456 J. Camenisch et al.

the real world algorithm also outputs unlinked. If one key matches both signa-
tures, we have nym = nym′ by the signature-uniqueness of split signatures, so
the real-world algorithm also outputs linked. ��

6 Concrete Instantiation and Efficiency

In this section we describe on a high level how to efficiently instantiate the generic
building blocks to instantiate our generic DAA scheme presented in Sect. 5. The
details are presented in the full version of this paper [24].

The split signature scheme is instantiated with the split-BLS signatures (as
described in Sect. 4.4), the signatures for encrypted messages with the AGOT+
signature scheme (as described in Sect. 4.3) and the encryption scheme with
ElGamal, both working in G2. All the zero-knowledge proofs are instantiated
with non-interactive Schnorr-type proofs about discrete logarithms, and wit-
nesses that have to be online extractable are encrypted using ElGamal for group
elements and Camenisch-Shoup encryption [28] for exponents. Note that the lat-
ter is only used by the issuer to prove that its key is correctly formed, i.e., every
participant will only work with Camenisch-Shoup ciphertexts once.

Security. When using the concrete instantiations as presented above we can
derive the following corollary from Theorem 2 and the required security assump-
tions of the deployed building blocks. We have opted for a highly efficient instan-
tiation of our scheme, which comes for the price of stronger assumptions such
as the generic group (for AGOT+ signatures) and random oracle model (for
split-BLS signatures and Fiat-Shamir NIZKs). We would like to stress that our
generic scheme based on abstract building blocks, presented in Sect. 5, does not
require either of the models, and one can use less efficient instantiations to avoid
these assumptions.

Corollary 1. Our protocol Πpdaa described in Sect. 5 and instantiated as
described above, securely realizes Fpdaa in the (Fauth∗,Fca,Fcrs)-hybrid model
under the following assumptions:

Instantiation Assumption

SSIG split-BLS co-DHP* [35] and DDH in G1, RO model

ESIG AGOT+ generic group model (security of AGOT)

ENC ElGamal DDH in G2

NIZK Fiat-Shamir, ElGamal,
Camenisch-Shoup

DDH in G2, DCR [55], RO model



Anonymous Attestation with Subverted TPMs 457

Efficiency. We now give an overview of the efficiency of our protocol when
instantiated as described above. Our analysis focuses on signing and verification,
which will be used the most and thus have the biggest impact on the performance
of the scheme. The detailed efficiency analysis is presented in the full version of
this paper [24].

When signing, the TPM only performs 2 exponentiations in G1, making
it the DAA scheme with the most efficient TPM signing operation to date,
according to the efficiency overview by Camenisch et al. [23]. The host performs
3 exponentiations in G1, 6 exponentiations in G2, and 10 pairings. Verification
requires 4 exponentiations in GT and 8 pairings.

We measured the speed of the Apache Milagro Cryptographic Library
(AMCL)2 and found that exponentiations in G1, G2, and GT require 0.6 ms,
1.0 ms, and 1.4 ms respectively. A pairing costs 1.6 ms. Using these numbers, we
estimate a signing time of 23.8 ms for the host, and a verification time of 18.4 ms,
showing that also for the host our protocol is efficient enough to be used in prac-
tice. Table 2 gives an overview of the efficiency of our concrete instantiation.

Table 2. Efficiency of our concrete DAA scheme.

M sign H sign Verify

Operations 2G1 3G1, 6G2, 10P 4GT , 8P

Est. time 23.8 ms 18.4 ms

References

1. Abe, M., Groth, J., Ohkubo, M., Tibouchi, M.: Unified, minimal and selec-
tively randomizable structure-preserving signatures. In: Lindell, Y. (ed.) TCC
2014. LNCS, vol. 8349, pp. 688–712. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-54242-8 29

2. Alwen, J., Katz, J., Maurer, U., Zikas, V.: Collusion-preserving computation. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 124–143.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 9

3. Alwen, J., Shelat, A., Visconti, I.: Collusion-free protocols in the mediated model.
In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 497–514. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85174-5 28

4. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
CCS 2015 (2015)

5. Ball, J., Borger, J., Greenwald, G.: Revealed: how US and UK spy agencies defeat
internet privacy and security. Guardian Weekly, September 2013

6. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). doi:10.1007/3-540-45682-1 33

2 See https://github.com/miracl/amcl. We used the C-version of the library, config-
ured to use the BN254 curve. The program benchtest pair.c has been used to
retrieve the timings, executed on an Intel i5-4300U CPU.

http://dx.doi.org/10.1007/978-3-642-54242-8_29
http://dx.doi.org/10.1007/978-3-642-54242-8_29
http://dx.doi.org/10.1007/978-3-642-32009-5_9
http://dx.doi.org/10.1007/978-3-540-85174-5_28
http://dx.doi.org/10.1007/3-540-45682-1_33
https://github.com/miracl/amcl


458 J. Camenisch et al.

7. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 1–19. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 1

8. Bellare, M., Sandhu, R.: The security of practical two-party RSA signature
schemes. Cryptology ePrint Archive, Report 2001/060 (2001)

9. Bernhard, D., Fuchsbauer, G., Ghadafi, E., Smart, N., Warinschi, B.: Anonymous
attestation with user-controlled linkability. Int. J. Inf. Secur. 12(3), 219–249 (2013)

10. Bernhard, D., Fuchsbauer, G., Ghadafi, E.: Efficient signatures of knowledge and
DAA in the standard model. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-
Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 518–533. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38980-1 33

11. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). doi:10.1007/BFb0054122

12. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Crypt.
17(4), 297–319 (2004)

13. Brands, S.: Rethinking Public Key Infrastructures and Digital Certificates: Build-
ing in Privacy. MIT Press, Cambridge (2000)

14. Brands, S.: Untraceable off-line cash in wallet with observers. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994).
doi:10.1007/3-540-48329-2 26

15. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: CCS 2004
(2004)

16. Brickell, E., Chen, L., Li, J.: A new direct anonymous attestation scheme from bilin-
ear maps. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS, vol.
4968, pp. 166–178. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68979-9 13

17. Brickell, E., Chen, L., Li, J.: Simplified security notions of direct anonymous attes-
tation and a concrete scheme from pairings. Int. J. Inf. Secur. 8(5), 315–330 (2009)

18. Brickell, E., Li, J.: A pairing-based DAA scheme further reducing TPM resources.
Cryptology ePrint Archive, Report 2010/067 (2010)

19. Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for hardware authen-
tication and attestation. Int. J. Inf. Priv. Secur. Integr. 1(1), 3–33 (2011)

20. Burmester, M.V.D., Desmedt, Y.: All languages in NP have divertible zero-
knowledge proofs and arguments under cryptographic assumptions. In: Damg̊ard,
I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 1–10. Springer, Heidelberg
(1991). doi:10.1007/3-540-46877-3 1

21. Camenisch, J., Drijvers, M., Edgington, A., Lehmann, A., Lindemann, R., Urian,
R.: FIDO ECDAA algorithm, implementation draft. https://fidoalliance.org/
specs/fido-uaf-v1.1-id-20170202/fido-ecdaa-algorithm-v1.1-id-20170202.html

22. Camenisch, J., Chen, L., Drijvers, M., Lehmann, A., Novick, D., Urian, R.: One
TPM to bind them all: fixing TPM 2.0 for provably secure anonymous attestation.
In: IEEE S&P 2017 (2017)

23. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation using the strong
Diffie Hellman assumption revisited. In: Franz, M., Papadimitratos, P. (eds.)
Trust 2016. LNCS, vol. 9824, pp. 1–20. Springer, Cham (2016). doi:10.1007/
978-3-319-45572-3 1

24. Camenisch, J., Drijvers, M., Lehmann, A.: Anonymous attestation with subverted
TPMs. Cryptology ePrint Archive, Report 2017/200 (2017)

http://dx.doi.org/10.1007/978-3-662-44371-2_1
http://dx.doi.org/10.1007/978-3-642-38980-1_33
http://dx.doi.org/10.1007/BFb0054122
http://dx.doi.org/10.1007/3-540-48329-2_26
http://dx.doi.org/10.1007/978-3-540-68979-9_13
http://dx.doi.org/10.1007/3-540-46877-3_1
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-ecdaa-algorithm-v1.1-id-20170202.html
https://fidoalliance.org/specs/fido-uaf-v1.1-id-20170202/fido-ecdaa-algorithm-v1.1-id-20170202.html
http://dx.doi.org/10.1007/978-3-319-45572-3_1
http://dx.doi.org/10.1007/978-3-319-45572-3_1


Anonymous Attestation with Subverted TPMs 459

25. Camenisch, J., Drijvers, M., Lehmann, A.: Universally composable direct anony-
mous attestation. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9615, pp. 234–264. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49387-8 10

26. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr
proofs. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-01001-9 25

27. Camenisch, J., Lehmann, A.: (Un)linkable pseudonyms for governmental data-
bases. In: CCS 2015 (2015)

28. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-45146-4 8

29. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). doi:10.1007/BFb0052252

30. Canetti, R.: Universally composable signature, certification, and authentication.
In: CSFW 2004 (2004)

31. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067 (2000)

32. Canetti, R., Vald, M.: Universally composable security with local adversaries. In:
Visconti, I., Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 281–301. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-32928-9 16

33. Chaum, D.: Achieving electronic privacy. Sci. Am. 267(2), 96–101 (1992)
34. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.

(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
doi:10.1007/3-540-48071-4 7

35. Chatterjee, S., Hankerson, D., Knapp, E., Menezes, A.: Comparing two pairing-
based aggregate signature schemes. Des. Codes Crypt. 55(2), 141–167 (2010)

36. Chen, L.: A DAA scheme requiring less TPM resources. In: Bao, F., Yung, M.,
Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 350–365. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-16342-5 26

37. Chen, L., Morrissey, P., Smart, N.P.: Pairings in trusted computing. In: Galbraith,
S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 1–17. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85538-5 1

38. Chen, L., Page, D., Smart, N.P.: On the design and implementation of an efficient
DAA scheme. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS
2010. LNCS, vol. 6035, pp. 223–237. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-12510-2 16

39. Chen, R., Mu, Y., Yang, G., Susilo, W., Guo, F., Zhang, M.: Cryptographic reverse
firewall via malleable smooth projective hash functions. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 844–876. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-53887-6 31

40. Chen, X., Feng, D.: Direct anonymous attestation for next generation TPM. J.
Comput. 3(12), 43–50 (2008)

41. Costan, V., Devadas, S.: Intel SGX explained. Cryptology ePrint Archive, Report
2016/086 (2016)

42. Cramer, R.J.F., Pedersen, T.P.: Improved privacy in wallets with observers. In:
Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 329–343. Springer,
Heidelberg (1994). doi:10.1007/3-540-48285-7 29

http://dx.doi.org/10.1007/978-3-662-49387-8_10
http://dx.doi.org/10.1007/978-3-662-49387-8_10
http://dx.doi.org/10.1007/978-3-642-01001-9_25
http://dx.doi.org/10.1007/978-3-540-45146-4_8
http://dx.doi.org/10.1007/BFb0052252
http://dx.doi.org/10.1007/978-3-642-32928-9_16
http://dx.doi.org/10.1007/3-540-48071-4_7
http://dx.doi.org/10.1007/978-3-642-16342-5_26
http://dx.doi.org/10.1007/978-3-540-85538-5_1
http://dx.doi.org/10.1007/978-3-642-12510-2_16
http://dx.doi.org/10.1007/978-3-642-12510-2_16
http://dx.doi.org/10.1007/978-3-662-53887-6_31
http://dx.doi.org/10.1007/3-540-48285-7_29


460 J. Camenisch et al.

43. Dodis, Y., Mironov, I., Stephens-Davidowitz, N.: Message transmission with reverse
firewalls—secure communication on corrupted machines. In: Robshaw, M., Katz, J.
(eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 341–372. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53018-4 13

44. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). doi:10.1007/3-540-39568-7 2

45. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263,
pp. 186–194. Springer, Heidelberg (1987). doi:10.1007/3-540-47721-7 12

46. Greenwald, G.: No Place to Hide: Edward Snowden, the NSA, and the U.S. Sur-
veillance State. Metropolitan Books, New York (2014)

47. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups.
In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-78967-3 24

48. Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable security in
the tamper-proof hardware model under minimal complexity. In: Hirt, M., Smith,
A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 367–399. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-53641-4 15

49. International Organization for Standardization: ISO/IEC 20008–2: Information
Technology - Security Techniques - Anonymous Digital Signatures - Part 2: Mech-
anisms Using a Group Public Key (2013)

50. International Organization for Standardization: ISO/IEC 11889: Information Tech-
nology - Trusted Platform Module Library (2015)

51. Katz, J.: Universally composable multi-party computation using tamper-proof
hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-72540-4 7

52. Katz, J., Ostrovsky, R.: Round-optimal secure two-party computation. In:
Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 335–354. Springer,
Heidelberg (2004). doi:10.1007/978-3-540-28628-8 21

53. Mironov, I., Stephens-Davidowitz, N.: Cryptographic reverse firewalls. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 657–686. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46803-6 22

54. Okamoto, T., Ohta, K.: Divertible zero knowledge interactive proofs and commu-
tative random self-reducibility. In: Quisquater, J.-J., Vandewalle, J. (eds.) EURO-
CRYPT 1989. LNCS, vol. 434, pp. 134–149. Springer, Heidelberg (1990). doi:10.
1007/3-540-46885-4 16

55. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X 16

56. Perlroth, N., Larson, J., Shane, S.: N.S.A. able to foil basic safeguards of privacy
on web. The New York Times, September 2013

57. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the
power of kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT
2016. LNCS, vol. 10032, pp. 34–64. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53890-6 2

58. Russell, A., Tang, Q., Yung, M., Zhou, H.: Destroying steganography via amal-
gamation: kleptographically CPA secure public key encryption. Cryptology ePrint
Archive, Report 2016/530 (2016)

59. Trusted Computing Group: TPM main specification version 1.2 (2004)

http://dx.doi.org/10.1007/978-3-662-53018-4_13
http://dx.doi.org/10.1007/3-540-39568-7_2
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/978-3-540-78967-3_24
http://dx.doi.org/10.1007/978-3-662-53641-4_15
http://dx.doi.org/10.1007/978-3-540-72540-4_7
http://dx.doi.org/10.1007/978-3-540-28628-8_21
http://dx.doi.org/10.1007/978-3-662-46803-6_22
http://dx.doi.org/10.1007/3-540-46885-4_16
http://dx.doi.org/10.1007/3-540-46885-4_16
http://dx.doi.org/10.1007/3-540-48910-X_16
http://dx.doi.org/10.1007/978-3-662-53890-6_2
http://dx.doi.org/10.1007/978-3-662-53890-6_2


Anonymous Attestation with Subverted TPMs 461

60. Trusted Computing Group: Trusted platform module library specification, family
“2.0” (2014)

61. Yao, A.C.C.: Protocols for secure computations (extended abstract). In: FOCS
1982 (1982)

62. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997). doi:10.1007/3-540-69053-0 6

63. Young, A., Yung, M.: The prevalence of kleptographic attacks on discrete-log based
cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 264–
276. Springer, Heidelberg (1997). doi:10.1007/BFb0052241

http://dx.doi.org/10.1007/3-540-69053-0_6
http://dx.doi.org/10.1007/BFb0052241

	Anonymous Attestation with Subverted TPMs
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 A Security Model for DAA with Optimal Privacy
	2.1 Ideal Functionality [pdaa]
	2.2 Comparison with [daa]l
	2.3 Modeling Subverted Parties in the UC Framework

	3 Insufficiency of Existing DAA Schemes
	4 Building Blocks
	4.1 Proof Protocols
	4.2 Homomorphic Encryption Schemes
	4.3 Signature Schemes for Encrypted Messages
	4.4 Split Signatures

	5 Construction
	5.1 Our DAA Protocol with Optimal Privacy [pdaa]
	5.2 Security

	6 Concrete Instantiation and Efficiency
	References


