
Stronger Security for Reusable Garbled Circuits,
General Definitions and Attacks

Shweta Agrawal(B)

IIT Madras, Chennai, India
shweta@iitm.ac.in

Abstract. We construct a functional encryption scheme for circuits
which simultaneously achieves and improves upon the security of the
current best known, and incomparable, constructions from standard
assumptions: reusable garbled circuits by Goldwasser, Kalai, Popa,
Vaikuntanathan and Zeldovich (STOC 2013) [GKP+13] and predi-
cate encryption for circuits by Gorbunov, Vaikuntanathan and Wee
(CRYPTO 2015) [GVW15]. Our scheme is secure based on the learn-
ing with errors (LWE) assumption. Our construction implies:

1. A new construction for reusable garbled circuits that achieves
stronger security than the only known prior construction [GKP+13].

2. A new construction for bounded collusion functional encryption with
substantial efficiency benefits: our public parameters and ciphertext
size incur an additive growth of O(Q2), where Q is the number of
permissible queries (We note that due to a lower bound [AGVW13],
the ciphertext size must necessarily grow with Q). Additionally, the
ciphertext of our scheme is succinct, in that it does not depend
on the size of the circuit. By contrast, the prior best construction
[GKP+13,GVW12] incurred a multiplicative blowup of O(Q4) in
both the public parameters and ciphertext size. However, our scheme
is secure in a weaker game than [GVW12].

Additionally, we show that existing LWE based predicate encryption
schemes [AFV11,GVW15] are completely insecure against a general func-
tional encryption adversary (i.e. in the “strong attribute hiding” game).
We demonstrate three different attacks, the strongest of which is applica-
ble even to the inner product predicate encryption scheme [AFV11]. Our
attacks are practical and allow the attacker to completely recover x from
its encryption Enc(x) within a polynomial number of queries. This illus-
trates that the barrier between predicate and functional encryption is not
just a limitation of proof techniques. We believe these attacks shed signif-
icant light on the barriers to achieving full fledged functional encryption
from LWE, even for simple functionalities such as inner product zero
testing [KSW08,AFV11].

Along the way, we develop a new proof technique that permits the sim-
ulator to program public parameters based on keys that will be requested
in the future. This technique may be of independent interest.

c© International Association for Cryptologic Research 2017
J. Katz and H. Shacham (Eds.): CRYPTO 2017, Part I, LNCS 10401, pp. 3–35, 2017.
DOI: 10.1007/978-3-319-63688-7 1

4 S. Agrawal

1 Introduction

The last decade has witnessed important progress in the field of computing
on encrypted data. Several sophisticated generalizations of encryption, such as
Identity Based Encryption [BF01,Coc01,GPV08], Attribute Based Encryption
[GPSW06,BSW07,GGH+13c,GVW13], Predicate Encryption [KSW08,AFV11,
GVW15], Fully Homomorphic Encryption [Gen09,BV11,GSW13,BV14], Prop-
erty Preserving Encryption [PR12] have burst onto the scene, significantly
advancing the capabilities of modern cryptography.

These generalizations aim to provide the capability of computing “blind-
folded” – namely, given an encryption of some data a, an untrusted party should
be able to perform computations on Enc(a) so that the resultant ciphertext
may be decrypted meaningfully. The notion of fully homomorphic encryption
permits arbitrary computation on encrypted data, but restricts decryption to be
all-or-nothing, namely, the holder of the secret key may decrypt the resultant
ciphertext to learn the result of the computation, but the same key also decrypts
the original ciphertext revealing a. For applications that require restricted access
to results of the computation, the notion of functional encryption (FE) is more
suitable. In functional encryption, a secret key is associated with a function,
typically represented as a circuit C, denoted by SKC and a ciphertext with
some input a from the domain of C, denoted by CTa. Given SKC and CTa,
the user may run the decryption procedure to learn the value C(a). Security of
the system guarantees that nothing beyond C(a) can be learned from CTa and
SKC . Functional encryption was formalized by Boneh et al. [BSW11] to unify and
extend the notions of Identity Based Encryption, Attribute Based Encryption
and Predicate Encryption, which had already appeared in the literature.

There has been considerable progress in the last several years towards con-
structing FE for advanced functionalities [BF01,Coc01,BW06,BW07,GPV08,
CHKP10,ABB10,GPSW06,BSW07,KSW08,LOS+10,AFV11,Wat12,GVW13,
GGH+13c,GGH+13b,GVW15]. For the most powerful notion of “full-fledged”
functional encryption, that allows the evaluation of arbitrary efficiently-
computable functions and is secure against general adversaries, the only known
constructions rely on multilinear maps [GGHZ14] or indistinguishability obfus-
cation (iO) [GGH+13b]. However, all known candidate multi-linear map con-
structions [GGH13a,CLT13,GGH15] as well as some candidates of iO have been
recently broken [CHL+15,CGH+15,HJ15,CJL,CFL+16,MSZ16].

From standard assumptions, the best known constructions do support general
functionalities, but achieve restricted notions of security. Currently, the state-of-
the-art comprises two incomparable constructions:

– The reusable garbled circuits construction of Goldwasser et al. [GTKP+13],
which supports all polynomial sized Boolean circuits but restricts the attacker
to only obtain a single secret key, for any circuit C of her choice. This construc-
tion can be compiled with the bounded collusion FE construction of [GVW12]
to obtain a scheme which supports q queries, for any a-priori bounded q, and
with a ciphertext size that grows by a multiplicative factor of O(q4). Note

Stronger Security for Reusable Garbled Circuits 5

that the ciphertext size here does not depend on the size of the circuit C, and
is thus succinct.

– The recent predicate encryption (PE) for circuits construction of Gorbunov
et al. [GVW15], which also supports all polynomial sized Boolean circuits but
restricts the attacker to only acquire keys for circuits Ci such that Ci(a) = 0,
when a is the vector of challenge attributes. He may not request any keys Cj

such that Cj(a) = 1. We will refer to the former as 0-keys and the latter as
1-keys. This restricted game of security is often referred to as weak attribute
hiding in the literature.

Both constructions natively achieve the restricted selective notion of security,
which forces the attacker to output the challenge in the very first step of the
game, before seeing the public parameters.

Note that both constructions provide the functionality demanded by func-
tional encryption, but fall short in security. Covering the distance from the
restricted security definitions acheived by these constructions to full fledged func-
tional encryption is a much sought-after goal, and one that must contend with
several thorny technical issues. The former construction relies on the use of gar-
bled circuits for decryption, which restricts the number of supported keys to
1, or, using the additional machinery of [GVW12], to some a-priori bounded q.
The use of garbled circuits is central to this construction, and surmounting the
bounded key limitation appears to require entirely new techniques. On the other
hand, the second construction does support an unbounded number of queries,
but restricts them to belong to the 0-set. It is unclear how to support even a sin-
gle 1-query in this case, due to various technical hurdles that arise from the proof
techniques (more on this below). Whether these techniques may be extended to
support the full-fledged security game of functional encryption is an important
open question, and the one we study in this work.

1.1 Our Contributions

In this work, we provide a new construction for functional encryption which
simultaneously achieves and improves upon the security of the current best
known, and incomparable, constructions from standard assumptions [GKP+13,
GVW15]. Our scheme is secure based on the learning with errors (LWE) assump-
tion. Our construction implies:

1. A new construction for reusable garbled circuits that achieves stronger secu-
rity than the only prior construction by Goldwasser et al. (STOC 2013)
[GKP+13]. In our construction, the attacker may additionally request an
unbounded number of 0 keys in addition to the single arbitrary key allowed
by the standard definition of reusable garbled circuits. Additionally, our con-
struction achieves semi-adaptive security as against selective [GKP+13].

2. A new construction for bounded collusion functional encryption where the
adversary is restricted to making an a-priori fixed number of queries. The
ciphertext of our scheme is succinct, in that it does not depend on the size

6 S. Agrawal

of the circuit. Our public parameters and ciphertext size incur an additive
growth of O(Q2), where Q is the number of permissible queries. By con-
trast, the prior best construction [GKP+13,GVW12] incurred a multiplica-
tive blowup of O(Q4) in both the public parameters and ciphertext size.
However, our construction is secure in a weaker game than best known
[GKP+13,GVW12].

Additionally, we show that existing LWE based predicate encryption schemes
[AFV11,GVW15] are completely insecure against a general functional encryp-
tion adversary (i.e. in the “strong attribute hiding” game). We demonstrate three
different attacks, the strongest of which is applicable even to the inner product
predicate encryption scheme [AFV11]. Our attacks are practical and allow the
attacker to completely recover a from its encryption Enc(a) within a polynomial
number of queries. This illustrates that the barrier between predicate and func-
tional encryption is not just a limitation of proof techniques. We believe these
attacks shed significant light on the barriers to achieving full fledged functional
encryption for circuits from standard assumptions.

Along the way, we develop a new proof technique that permits the simulator
to program public parameters based on keys that will be requested in the future.
This technique may be of independent interest.

1.2 Our Techniques

Our work builds upon the constructions of Goldwasser et al. [GTKP+13] and
Gorbunov et al. [GVW15]. Both these systems begin with the idea that the pub-
lic attributes in an attribute based encryption scheme (ABE) may be hidden, and
yet remain amenable to computation, if they are encrypted using fully homomor-
phic encryption. Recall that in an attribute based encryption scheme [GPSW06],
a ciphertext is associated with a public attribute vector a and plaintext bit μ,
and it hides μ, but not a.

To hide a, one may encrypt it using FHE to obtain â, and treat this encryp-
tion as the public attribute in an ABE system. Since an ABE scheme for cir-
cuits [GVW13,BGG+14] allows for a key SKC to evaluate an arbitrary circuit
C on the attribute, the decryptor may now homomorphically compute on â
using the FHE evaluation circuit. Then, given a key corresponding to the circuit
FHE.Eval(C, ·), the decryptor may run the ABE decryption procedure to learn
the FHE encryption of C(a), namely ̂C(a).

This is not yet enough, as the goal is for the decryptor to learn C(a) in the
clear. To achieve this, FHE decryption must be performed on ̂C(a) in a manner
that does not permit decryption of any ciphertext other than ̂C(a). The scheme
of Goldwasser et al. [GTKP+13] resolves this difficulty by employing a single use
garbled circuit for the FHE decryption function and using ABE to provide labels
corresponding to input ̂C(a). This constrains FHE decryption, but restricts the
resultant FE scheme to only be secure against a single key request. The scheme
of Gorbunov et al. [GVW15] resolves this difficulty by making use of two nicely
matching asymmetries:

Stronger Security for Reusable Garbled Circuits 7

1. The asymmetry in computation. To compute C(a) using the above method,
the bulk of the computation is to be performed on FHE ciphertext, namely
FHE.Eval(C, â), where â can be public. The remainder of the computation,
namely running the FHE decryption circuit on ̂C(a), is a relatively lightweight
circuit.

2. The asymmetry in attribute hiding in the ABE scheme of [BGG+14]. There is
an inherent asymmetry in the homomorphic multiplication procedure of the
ABE scheme [BGG+14], so that computing a product of two ciphertexts wth
attributes a1 and a2 respectively, only necessitates revealing one attribute
(say a1) while the other (a2) can remain hidden (for addition, both a1 and
a2 may remain hidden). This property is leveraged by [GVW15] to construct
partially hiding predicate (or attribute) encryption (PHPE), which allows
computation of an inner product of a public attribute vector corresponding
to FHE.Eval(C, â) and a private attribute vector, corresponding to the FHE
secret key. Since inner product loosely approximates FHE decryption, this
allows the decryptor to obtain a plaintext value corresponding to C(a) as
desired.

While the predicate encryption scheme [GVW15] can handle an unbounded
number of 0-queries from the adversary, it runs into at least three difficulties
when faced with a 1-query:

1. The proof of security in the PHPE scheme uses a trapdoor puncturing tech-
nique [ABB10] in the simulation, so that the simulator has a trapdoor to
sample keys for 0-queries but this trapdoor vanishes for 1-queries, disabling
the simulator.

2. Given a PHPE ciphertext CTâ with public attributes â, key homomorphism
[BGG+14,GVW15] enables the evaluation of a circuit C on the PHPE cipher-
text resulting in a PHPE ciphertext CTC(â) with attributes C(â). By con-
struction, this resultant ciphertext is an LWE sample with an error term
which is fixed and public linear combination of the error terms used to con-
struct CTâ. This error is learned by the adversary upon decryption, which
creates leakage that cannot be simulated. Indeed, this leakage, when suffi-
cient, can completely break LWE security and allow the adversary to learn a
in the clear (see Sect. 3 for details).

3. Recall that the FHE decryption operation is a lightweight operation con-
ducted using PHPE with the FHE secret key as the private attribute vector.
While FHE decryption is lightweight, it is still not lightweight enough to
be performed in its entirety while maintaining the privacy of the FHE secret.
FHE decryption is an inner product followed by a threshold function, of which
only the inner product can be performed securely by PHPE. The authors
overcome this hurdle by making use of the “lazy OR” trick, which roughly
allows the decryptor to learn not the threshold inner product, but the pure
inner product, which leaks sensitive information about the noise used while
encrypting a. Again, this leakage cannot be simulated, and when sufficiently
high, can lead to complete recovery of the FHE secret key.

8 S. Agrawal

Attacks. Interestingly, all of the above difficulties in proving security translate
to polynomial time attacks that lead to complete message recovery in a game
where 1-keys are permitted. Our first and strongest attack is related to the first
difficulty, and is effective even against the inner product predicate encryption
scheme of Agrawal et al. [AFV11]. Recall that the inner product zero test func-
tionality of [AFV11] permits the decryptor to test whether the inner product of a
vector x ∈ Z

�
p in the ciphertext and vector v ∈ Z

�
p in the key is zero or non-zero.

We demonstrate that by requesting keys for linearly dependent functions, the
attacker can construct a short basis for a matrix F (say) which is related to the
LWE matrices used in the challenge ciphertext. By manipulating the challenge
ciphertext, the attacker may recover an LWE sample of the form FTs+noise. This
LWE sample unresistingly reveals all its secrets given a trapdoor for F, which
in turn allow the attacker to recover the entire message x from the challenge
ciphertext.

We believe this attack sheds significant light on the barriers to obtaining full
fledged functional encryption even for a simple functionality such as inner prod-
uct zero testing [KSW08,AFV11]. Note that full security has been achieved for
a functionality that computes the inner product of two vectors x,v ∈ Z

�
p given

CT(x) and SK(v), but it appears quite challenging to extend these techniques
for the case of inner product zero testing. Intuitively, this is because the inner
product zero test functionality is non-linear: 0 keys reveal almost nothing about
x while 1 keys reveal much more. This is in contrast to the inner product com-
putation functionality, in which all function queries, whether type 0 or type 1,
reveal proportionate information about x. Constructing functional encryption
with full fledged security even for the simple functionality of [KSW08,AFV11]
from lattice based assumptions appears to require fundamental new techniques.

Our second attack is against the Partially Hiding Predicate Encryption sys-
tem for circuits [GVW15] and stems from the second difficulty above. This attack
exploits the fact that the decryptor, given a 1-key, learns a public linear function
of the error terms used in encryption. By requesting sufficient 1-keys, the attacker
can solve this linear system to recover the errors used in encryption, which lead
to recovery of the predicate a even when functionality reveals much less.

Our third attack is against the Predicate Encryption (PE) system for circuits
[GVW15]. As discussed in the third difficulty above, the PE decryption key,
which wishes to provide the decryptor with a threshold inner product value,
instead can only provide the exact inner product value, leaving the decryptor to
compute the threshold herself. This leads to an attacker learning linear equations
in the errors used to construct the FHE encryption â, which, when sufficiently
many, let her recover the FHE secret, which in turn lets her recover a.

We emphasize that our attacks are entirely practical and also apply to
the weaker indistinguishability based security game of functional encryption
[BSW11] but do not work in the “weak attribute hiding” security game consid-
ered by [AFV11,GVW15]. This suggests that using predicate encryption systems
in scenarios where even a small number of arbitrary users collude is insecure in
practice.

Stronger Security for Reusable Garbled Circuits 9

“Very-Selective” (1,poly)-Functional Encryption. We provide a construction
that overcomes the above vulnerabilities for the case of a single arbitrary key,
whether 1 or 0, and continues to support an unbounded number of 0-keys. By
restricting the attacker to any single query, this yields an alternate construction
for reusable garbled circuits [GTKP+13]. We summarize the main ideas here.
For clarity of exposition, we omit many details; we refer the reader to Sects. 4,
5 and 6 for the formal construction and proof.

Our starting point is the predicate encryption scheme of [GVW15], which
we will hereby refer to as (0,poly)-FE, as it supports zero 1-queries and any
polynomial number of 0-queries. The construction for (0,poly)-FE makes use of
two components as described above, namely, (0,poly)-partially hiding predicate
encryption (PHPE) and fully homomorphic encryption (FHE). Our construction
for (1,poly)-FE follows the same high level template as [GVW15], and as our
first step, we require (1,poly)-PHPE. Note that the (0,poly)-PHPE scheme does
allow the key generator to release an unbounded number of both 0 and 1 queries,
but as mentioned above, the proof of security breaks down if the adversary
requests a 1-key. This is because the secret key corresponding to a circuit C is a
low norm matrix K satisfying an equation of the following form:

[

A | AC

]

K = P mod q

where the matrices A,P are fixed and public, and the matrix AC is computed
by executing a homomorphic evaluation procedure [BGG+14,GVW15] corre-
sponding to the circuit C on some public matrices. In the real system, the key
generator has a trapdoor for A, which allows it to sample K using known tech-
niques [CHKP10,ABB10]. In the simulation, the matrix AC has a special form,
namely AC = [ARC −C(a) ·G] for some low norm matrix RC and fixed public
matrix G. The simulator has a trapdoor for G which enables it to sample the
required K also using known techniques but only when C(a) �= 0 [ABB10]. When
C(a) = 0, G vanishes along with its trapdoor, and the simulator has no method
by which to sample K1.

To overcome this, we note that if the circuit C is known before the public key
is generated, the simulator can instead sample K first and set P to satisfy the
above equation. This is a standard trick in LWE based systems [GPV08,Pei13],
and yields the same distribution of the pair (K,P) as in the real world. This
allows us to take a step forward2, but the adversary’s view remains distinguish-
able from the real world, because decryption leaks correlated noise which is

1 The careful reader may observe that the simulator is disabled when C(a) = 0,
not when C(a) = 1, though we have claimed that [AFV11,GVW15] can support 0-
queries and not 1 queries. This is because, traditional functional encryption literature
defines decryption to be permitted when the function value is 1, and defines the
function value to be 1 when C(a) = 0. We follow this flip to be consistent with prior
work.

2 This is presently a weak security game which we term as very-selective where the
circuit C as well as the challenge message is announced before the parameters are
generated. This restriction will be removed subsequently.

10 S. Agrawal

un-simulatable, as discussed in difficulty #2 above. To overcome this, we must
choose the noise in the challenge ciphertext with care so that the noise yielded by
the decryption equation is statistically close to fresh and independently chosen
noise. Put together, these tricks enable us to build a (1,poly)-PHPE.

However, (1,poly)-PHPE does not immediately yield (1,poly)-FE due to dif-
ficulty #3 above, namely, leakage on FHE noise. To handle this, we modify the
circuit for which the PHPE key is provided so that the FHE ciphertext ̂C(a)
is flooded with large noise before the inner product with the FHE secret key is
computed. Now, though the attacker learns the exact noise in the evaluated FHE
ciphertext ̂C(a) as before, this noise is independent of the noise used to generate
â and no longer leaks any sensitive information. Note that care is required in
executing the noise flooding step, since correctness demands that the FHE mod-
ulus be of polynomial size and the noise to be added may be super-polynomial.
To ensure this, we flood the FHE ciphertext before the FHE “modulus reduc-
tion” step. Now, we have at our disposal a (1,poly)-FE scheme, albeit one that
is secure according to a very restricted definition of security, which requires the
attacker to commit to both the challenge messages and the single arbitrary func-
tion in the first step of the game. This “very selective” definition can be upgraded
to semi-adaptive, as described next.

Upgrading Very-Selective to Semi-Adaptive. We provide a method for compil-
ing our function-selective secure PHPE construction to one that satisfies semi-
adaptive security, in which the attacker may see the public parameters before
revealing the challenge. Our transformation is generic – it applies to all con-
structions that satisfy certain structural properties. In more detail, we require
that: (1) the PHPE ciphertext CTa be decomposable into |a| components CTi,
where CTi depends only on a[i], and (2) CTi is a fixed and public linear function
of the message a[i] and randomness chosen for encryption.

Concretely, consider the ciphertext in the (0,poly)-PHPE of [GVW15]. For
i ∈ [�],

CTi = ui =
(

Ai + a[i] · G)T
s + noisei ∈ Z

m
q

Clearly condition (1) is satisfied – the ith component of a influences only ui.
Additionally, note that

ui =
〈

[AT

i , 1, 1]; [s, a[i] · GTs, noisei]
〉

mod q

Here, the first vector is a fixed public vector that is known to the key generator,
while the second vector is made up of components all of which are known to the
encryptor.

Given these two conditions, we construct a semi-adaptive PHPE for the cir-
cuit class C, denoted by SaPH, using two ingredients:

Stronger Security for Reusable Garbled Circuits 11

1. A single key fully secure3 functional encryption scheme, denoted by FuLin,
for the inner product functionality defined as:

F(V1,...,Vk)(a1, . . . ,ak) =
∑

i∈[k]

Vi · ai mod q

Such a scheme was recently constructed by Agrawal et al. [ALS16].
2. A (1,poly) selectively secure PHPE scheme for the circuit class C, which we

denote by VSelPH.

Intuitively, the idea is to nest the selective PHPE system for C within an
adaptive FE system for inner products, so that the latter is used to generate
ciphertexts of the former on the fly. In more detail, the public parameters
of SaPH are set as the public parameters of FuLin, the secret key corresponding
to C, namely SaPH.SK(C) is the tuple

(

VSelPH.MPK, FuLin.SK([AT
i , 1, 1]),

VSelPH.SK(C)
)

and the ciphertext is SaPH.CT = FuLin.CT
(

[s, a[i] · GTs,
noisei]

)

. Now, the ciphertext FuLin.CT
(

[s, a[i] · GTs, noisei]
)

and secret key
component FuLin.SK([AT

i , 1, 1]) may be decrypted to obtain the VSelPH
ciphertext, which may be decrypted using VSelPH.SK(C). Some care is required
in ascertaining that FuLin is only invoked for a single secret key, but this can
be ensured by taking multiple copies of the FuLin scheme, and using the same
randomness to generate multiple copies of the same key.

The advantage to the above strategy is that the public parameters of the
SaPH scheme are now set as the public parameters of the FuLin scheme, and the
public parameters of the VSelPH scheme are moved into the secret keys of SaPH
scheme. This enables the simulator of the SaPH scheme to provide the public
parameters using the (adaptive/full) simulator for the FuLin scheme, and delay
programming the PHPE public parameters until after the challenge is received, as
required by the VSelPH simulator. Thus, very-selective security may be upgraded
to semi-adaptive security for the circuit class C, by leveraging adaptive security
of the simpler inner product functionality. For more details, please see Sect. 5.

Generalising to Q Queries. To construct (Q,poly)-FE, we again begin by con-
structing (Q,poly)-PHPE, which in turn is constructed from (1,poly)-PHPE.
The (1,poly)-PHPE scheme has the following structure: it encodes the message
b within an LWE sample β0 = PTs + noise + b. Given other components of the
ciphertext, the decryptor is able to compute a ciphertext cEval and key generator
provides as the key a short matrix K, where

cEval = [A | AC]Ts + noise, [A | AC] K = P mod q

By computing KTcEval − β0 and rounding the result, the decryptor recovers b.

3 Please see Appendix 2.3 for the definition of full security.

12 S. Agrawal

To generalize the above to handle Q queries, a natural approach would be
to encode the message Q times, using Q distinct matrices P1, . . . ,PQ and have
the ith key Ki be a short matrix satisfying [A | ACi

] Ki = Pi mod q. Then,
the key generator can pick Pi for the ith key, and sample the corresponding
Ki as the secret key. However, this straightforward idea would require the key
generator to keep track of how many keys it has produced so far and would make
the key generator stateful, which is undesirable.

To get around this, we make use of a trick using cover free sets [GVW12]. The
idea is to enable the key generator to generate a fresh matrix P∗

i for the ith key in
a stateless manner, as follows. We publish a set of matrices {P1, . . . ,Pk} in the
public key, for some parameter k. The key generator chooses a random subset
Δi ⊂ [k] s.t. |Δi| = v for some suitably chosen v, and computes P∗

i =
∑

j∈Δi

Pj .

It then samples Ki so that

[A | ACi
] Ki = P∗

i mod q

If we choose (v, k) as functions of the security parameter κ and number of
queries Q in a way that the Q subsets Δ1, . . . ,ΔQ are cover free with high
probability, then this ensures that the matrices P∗

1, . . . ,P
∗
Q are independent and

uniformly distributed, which will enable the simulator to sample the requisite
keys. This idea can be converted to a secure scheme with only an additive blowup
of O(Q2) in the public key and ciphertext size. However, security is proven in a
game which is weaker than [GVW12] in which the attacker may not request the
1-keys adaptively, but must announce them all at once after seeing the public
parameters.

This gives us a (Q,poly)-PHPE but constructing (Q,poly)-FE requires some
more work. Instead of flooding the evaluated ciphertext with a single piece of
noise, we must now encode at least Q pieces of noise, to flood the ciphertext for Q
decryptions. Fortunately, this can be ensured by leveraging cover-free sets again,
so that the decryptor is forced to add a random cover-free subset sum of noise
terms to the ciphertext before decryption. This ensures that each decryption lets
the decryptor learn a fresh noise term which wipes out any troublesome noise
leakage. Details are in the full version [Agr16].

Additional Related Work. We note that in an independent and concurrent work,
Goyal et al. [GKW16] provide a generic method to compile selective security
to semi-adaptive security for functional encryption schemes. We note that this
result does not apply to our setting as-is, since our starting-point security defin-
ition is even more restricted than selective. See Sect. 2.1 for more details. In
another work, Brakerski and Vaikuntanathan [BV16] achieved semi-adaptive
security for “Attribute Based Encryption” using specialized techniques – these
also do not apply black box to our construction.

Organization of the Paper. The paper is organized as follows. Preliminaries are
provided in Sect. 2. In Sect. 3, we describe our three attacks using 1-keys against
existing predicate encryption systems. In Sect. 4 we provide our construction

Stronger Security for Reusable Garbled Circuits 13

for (1,poly) partially hiding predicate encryption. This is upgraded to achieve
semi-adaptive security in Sect. 5. In Sect. 6 we provide our (1,poly) FE scheme.
The generalization to (q,poly) FE is provided in the full version of the paper
[Agr16].

2 Preliminaries

In this section we provide the preliminaries required for our work. For definitions
of lattices and the LWE problem, we refer the reader to the full version of the
paper [Agr16].

2.1 Functional Encryption

In this section, we provide the definition of functional encryption.

Definition 2.1. A functional encryption scheme FE for an input universe X ,
a circuit universe C and a message space M, consists of four algorithms FE =
(FE.Setup,FE.Keygen, FE.Enc,FE.Dec) defined as follows.

– FE.Setup(1κ) is a p.p.t. algorithm takes as input the unary representation
of the security parameter and outputs the master public and secret keys
(PK,MSK).

– FE.Keygen(MSK, C) is a p.p.t. algorithm that takes as input the master secret
key MSK and a circuit C ∈ C and outputs a corresponding secret key SKC .

– FE.Enc
(

PK, (a, μ)
)

is a p.p.t. algorithm that takes as input the master public
key PK and an input message (a, μ) ∈ X × M and outputs a ciphertext CTa.

– FE.Dec(SKC ,CTa) is a deterministic algorithm that takes as input the secret
key SKC and a ciphertext CTa and outputs μ iff C(a) = 1, ⊥ otherwise.

Note that our definition is a slightly modified, albeit equivalent version of the
standard definition for FE [BSW11]. For compatibility with the definition of
predicate encryption [GVW15], we define our functionality to incorporate a mes-
sage bit μ which is revealed when C(a) = 1.

Correctness. Next, we define correctness of the system.

Definition 2.2 (Correctness). A functional encryption scheme FE is correct
if for all C ∈ Cκ and all a ∈ Xκ,

– If C(a) = 1

Pr
[(PK,MSK) ← FE.Setup(1κ);
FE.Dec

(

FE.Keygen(MSK, C),FE.Enc
(

PK, (a, μ)
)

)

�= μ

]

= negl(κ)

– If C(a) = 0

Pr
[(PK,MSK) ← FE.Setup(1κ);
FE.Dec

(

FE.Keygen(MSK, C),FE.Enc
(

PK, (a, μ)
)

)

�= ⊥
]

= negl(κ)

where the probability is taken over the coins of FE.Setup, FE.Keygen, and FE.Enc.

14 S. Agrawal

Security. Next, we define simulation based security for functional encryption.
Note that simulation based security is impossible for functional encryption
against an adversary that requests even a single key after seeing the challenge
ciphertext [BSW11], or an unbounded number of keys before seeing the chal-
lenge ciphertext [AGVW13]. However, against an adversary who only requests
an a-priori bounded number of keys before seeing the challenge ciphertext, sim-
ulation based security is possible but causes the ciphertext size to grow with the
number of requested keys [AGVW13].

For the application of reusable garbled circuits, it suffices to construct a func-
tional encryption scheme that supports a single key request made before seeing
the challenge ciphertext. We generalize this definition to subsume the notion
of predicate encryption, where an attacker can make an unbounded number of
function queries Ci so long as it holds that the function keys do not decrypt the
challenge ciphertext CT(a, μ) to recover μ. Thus, it holds that Ci(a) = 0 for all
requested Ci. We shall refer to such Ci as 0-keys, and any C such that C(a) = 1
as a 1-key. In our definition, the adversary can request a single arbitrary (i.e.
0 or 1) key followed by an unbounded polynomial number of 0-keys. We refer
to this security notion as (1,poly) simulation security. The notion we achieve is
semi-adaptive, in that the adversary must declare the challenge message after
receiving the public key.

Definition 2.3 ((1,poly)-SA-SIM Security). Let FE be a functional encryp-
tion scheme for a Boolean circuit family C. For every p.p.t. adversary Adv and
a stateful p.p.t. simulator Sim, consider the following two experiments:

ExprealFE,Adv(1
κ): ExpidealFE,Sim(1κ):

1: (PK,MSK) ← FE.Setup(1κ)
2: (a, μ, C∗, st) ← Adv(1κ,PK)
3: Let b = μ
4: CTa ← FE.Enc

(
PK,a, b

)

5: SKC∗ ← FE.Keygen(MSK, C∗)
6: α ←AdvFE.Keygen(MSK,·)(CTa, SKC∗ , st)
7: Output (a, μ, α)

1: PK ← Sim(1κ)
2: (a, μ, C∗, st) ← Adv(1κ,PK)
3: Let b = μ if C∗(a) = 1, ⊥ otherwise.
4: CTa ← Sim(1|a|, C∗, b)
5: SKC∗ ← Sim()
6: α ←AdvSim(CTa, SKC∗ , st)
7: Output (a, μ, α)

We say an adversary Adv is admissible if:

1. For a single query C∗, it may hold that C∗(a) = 1 or C∗(a) = 0.
2. For all other queries Ci �= C∗, it holds that Ci(a) = 0.

In the ideal experiment, the simulator Sim is traditionally given access to an
oracle U(a,μ)(·), which upon input C returns ⊥ if C(a) = 0 and μ if C(a) = 1.
However, we note that our simulator does not require access to an oracle because
an admissible adversary may only make a single 1 query C∗, which is provided
explicitly to the simulator. Every other query Ci made by the adversary is a 0
query, hence the simulator can compare each query Ci with C∗, and set Ci(a) = 0
when the equality does not hold.

Stronger Security for Reusable Garbled Circuits 15

The functional encryption scheme FE is then said to be (1,poly)-SA-SIM-
secure if there is an admissible stateful p.p.t. simulator Sim such that for every
admissible p.p.t. adversary Adv, the following two distributions are computation-
ally indistinguishable.

{

ExprealFE,Adv(1
κ)

}

κ∈N

c≈
{

ExpidealFE,Sim(1κ)
}

κ∈N

For the (Q,poly) version of the above game, we merely replace each occur-
rence of C∗ with a tuple C∗

1 , . . . , C∗
Q.

2.2 Partially Hiding Predicate Encryption

A Partially-Hiding Predicate Encryption scheme PHPE for a pair of input-
universes X ,Y, a predicate universe C, a message space M, consists of four
algorithms (PH.Setup,PH.Enc,PH.KeyGen,PH.Dec):

PH.Setup(1κ,X ,Y, C,M) → (PH.PK,PH.MSK). The setup algorithm gets as
input the security parameter κ and a description of (X ,Y, C,M) and outputs
the public parameter PH.PK, and the master key PH.MSK.

PH.Enc(PH.PK, (x,y), μ) → CTy. The encryption algorithm gets as input
PH.PK, an attribute pair (x,y) ∈ X × Y and a message μ ∈ M. It out-
puts a ciphertext CTy.

PH.KeyGen(PH.MSK, C) → SKC . The key generation algorithm gets as input
PH.MSK and a predicate C ∈ C. It outputs a secret key SKC .

PH.Dec((SKC , C), (CT,y)) → μ∨⊥. The decryption algorithm gets as input the
secret key SKC , a predicate C, and a ciphertext CTy and the public part y
of the attribute vector. It outputs a message μ ∈ M or ⊥.

Correctness. We require that for all (PH.PK,PH.MSK) ← PH.Setup(1κ,X ,Y,
C,M), for all (x,y, C) ∈ X × Y × C and for all μ ∈ M,

– For 1-queries, namely C(x,y) = 1,
[

PH.Dec
(

(SKC , C), (CTy,y)
)

= μ
]

≥ 1 − negl(κ)

– For 0-queries, namely C(x,y) = 0,
[

PH.Dec
(

(SKC , C), (CTy,y)
)

= ⊥
]

≥ 1 − negl(κ)

Semi Adaptive SIM Security. Below, we define the SA-SIM security exper-
iment for partially hiding predicate encryption (PHPE) that supports a single
1-query and an unbounded number of 0-queries. We denote such a scheme by
(1,poly)-PHPE scheme. We note that the scheme of Gorbunov et al. [GVW15]
is a (0,poly)-PHPE scheme.

16 S. Agrawal

Definition 2.4 ((1,poly)-SA-SIM Security). Let PHPE be a partially hiding
predicate encryption scheme for a circuit family C. For every stateful p.p.t. adver-
sary Adv and a stateful p.p.t. simulator Sim, consider the following two experi-
ments:

ExprealPHPE,Adv(1
κ): ExpidealPHPE,Sim(1κ):

1: (PH.PK,PH.MSK) ← PH.Setup(1κ)
2: (x,y, C∗) ← Adv(PH.PK)
3: SKC∗ ← PH.KeyGen

(
PH.MSK, C∗)

4: μ ← AdvPH.KeyGen(PH.MSK,·)(SKC∗)
5: Let b = μ.
6: CTy ← PH.Enc

(
PH.PK, (x,y), b

)

7: α ←AdvPH.KeyGen(PH.MSK,·)(CTy)
8: Output (x,y, μ, α)

1: PH.PK ← Sim(1κ)
2: (x,y, C∗) ← Adv(PH.PK)
3: SKC∗ ← Sim(y, 1|x|, C∗);
4: μ ← AdvSim(SKC∗)
5: Let b = μ if C∗(x,y) = 1, ⊥ otherwise.
6: CTy ← Sim (b)
7: α ←AdvSim(CTy)
8: Output (x,y, μ, α)

We say an adversary Adv is admissible if:

1. For the single query C∗, it may hold that C∗(x,y) = 1 or C∗(x,y) = 0.
2. For all queries C �= C∗, it holds that C(x,y) = 0.

In the ideal experiment, the simulator Sim is traditionally given access to
an oracle U(x,y,μ)(·), which upon input C returns ⊥ if C(x,y) = 0 and μ if
C(x,y) = 1. However, since in our case Sim is provided C∗ explicitly, and this
is the only possible 1-query, the simulator can check whether Ci = C∗ for any
query Ci, and if not, set Ci(x,y) = 0. Hence, to simplify notation, we omit the
oracle in the ideal experiment above.

The partially hiding predicate encryption scheme PHPE is said to be (1,poly)-
attribute hiding if there exists a p.p.t. simulator Sim such that for every admis-
sible p.p.t. adversary Adv, the following two distributions are computationally
indistinguishable:

{

ExprealPHPE,Adv(1
κ)

}

κ∈N

c≈
{

ExpidealPHPE,Sim(1κ)
}

κ∈N

Very Selective SIM Security. Next, we define a “very” selective variant of
the above game, in which the adversary must announce the challenge messages
as well as the challenge function C∗ in the very first step of the game.

Definition 2.5 ((1,poly) VSel-SIM Security). Let PHPE be a partially hiding
predicate encryption scheme for a circuit family C. For every p.p.t. adversary
Adv and a stateful p.p.t. simulator Sim, consider the following two experiments:

Stronger Security for Reusable Garbled Circuits 17

ExprealPHPE,Adv(1
κ): ExpidealPHPE,Sim(1κ):

1: (x,y, C∗) ← Adv(PH.PK)
2: (PH.PK,PH.MSK) ← PH.Setup(1κ)
3: SKC∗ ← PH.KeyGen

(
PH.MSK, C∗)

4: μ ← AdvPH.KeyGen(SKC∗)
5: Let b = μ.
6: CTy ← PH.Enc

(
PH.PK, (x,y), b

)

7: α ←AdvPH.KeyGen(PH.MSK,·)(CTy)
8: Output (x,y, μ, α)

1: (x,y, C∗) ← Adv(PH.PK)
2: PH.PK ← Sim(1κ,y, 1|x|, C∗)
3: SKC∗ ← Sim();
4: μ ← AdvSim(SKC∗)
5: Let b = μ if C∗(x,y) = 1, ⊥ otherwise.
6: CTy ← Sim (b)
7: α ←AdvSim(CTy)
8: Output (x,y, μ, α)

The admissibility of the adversary Adv, the notes about the simulator and the
required indistinguishability of distributions are as in Definition 2.4.

For the definition of (Q,poly)-PHPE, where an adversary may request Q
decrypting queries, we merely replace each occurence of C∗ with a tuple
C∗

1 , . . . , C∗
Q in both the games above.

2.3 Full Security for Single Key Linear FE

Definition 2.6 (FULL-SIM security). Let FE be a single key functional
encryption scheme for a circuit family C. For every p.p.t. adversary Adv and
a stateful p.p.t. simulator Sim, consider the following two experiments:

ExprealFE,A(1κ): ExpidealFE,Sim(1κ):

1: (PK,MSK) ← FE.Setup(1κ)
2: (a, st) ←A

FE.Keygen(MSK,·)
1 (PK)

3: CT ← FE.Enc(PK,a)
4: α ← A2(CT, st)
5: Output (a, α)

1: PK ← Sim(1κ)
2: (a, st) ← A

Sim(·)
1 (PK)

3: CT ← Sim
(

C,C(a)
)

4: α ← A2(CT, st)
5: Output (a, μ, α)

The functional encryption scheme FE is then said to be FULL-SIM-secure if
there is a stateful p.p.t. simulator Sim such that for every p.p.t. adversary A =
(A1, A2), the following two distributions are computationally indistinguishable.

{

ExprealFE,A(1κ)
}

κ∈N

c≈
{

ExpidealFE,Sim(1κ)
}

κ∈N

2.4 Algorithms Used by Our Constructions

The following algorithms will be used crucially in our construction and proof.

Trapdoor Generation. Below, we discuss two kinds of trapdoors that our
construction and proof will use.

18 S. Agrawal

Generating Random Lattices with Trapdoors. To begin, we provide an algorithm
for generating a random lattice with a trapdoor.

Theorem 2.7 [Ajt99,GPV08,MP12]. Let q, n,m be positive integers with
q ≥ 2 and m ≥ 6n lg q. There is a probabilistic polynomial-time algorithm
TrapGen(q, n,m) that with overwhelming probability (in n) outputs a pair (A ∈
Z

n×m
q , T ∈ Z

m×m) such that A is statistically close to uniform in Z

n×m
q and T

is a basis for Λ⊥
q ((A)) satisfying

‖T‖GS ≤ O(
√

n log q) and ‖T‖ ≤ O(n log q).

The Primitive Matrix G and its Trapdoor. The matrix G ∈ Z

n×m
q is the “powers-

of two” matrix (see [MP12,Pei13] for the definition). The matrix G has a public
trapdoor TG such that ‖TG‖∞ = 2. Let G−1 : Z

n×m
q → Z

n×m
q denote a deter-

ministic algorithm which outputs a short preimage Ã so that G ·Ã = A mod q.

Three Ways of Generating a Distribution. Let F = [A|AR + γ · G]
where A ← Z

n×m
q , R ← {−1, 1}m×m, G is the primitive matrix defined above

and γ ∈ Zq is arbitrary (in particular, it can be 0). We are interested in the
distribution (F,K,P) ∈ Z

n×2m
q × Z

2m×m
q × Z

n×m
q satisfying F K = P mod q.

Given F, we provide three different ways of sampling (K,P) so that the same
resultant distribution is obtained.

1. The first method is to sample P ← Z

n×m
q randomly and use a trapdoor for the

left matrix of F, namely A to sample a low norm K. We let B � AR+ γ ·G
and p denote a column of P.
Algorithm SampleLeft(A,B,TA,p, σ) [CHKP10,ABB10]:

Inputs: a full rank matrix A in Z

n×m
q , a “short” basis TA of Λ⊥

q (A),
a matrix B in Z

n×m
q , a vector p ∈ Z

n
q , and a Gaussian parameter σ.

(2.1)

Output: The algorithm outputs a vector k ∈ Z

2m in coset Λp
q (F).

Its distribution is analyzed in the following theorem.

Theorem 2.8 ([ABB10, Theorem 17], [CHKP10, Lemma 3.2]). Let q >
2, m > n and σ > ‖TA‖GS · ω(

√

log(2m)). Then SampleLeft(A,B,TA,p, σ)
taking inputs as in (2.1), outputs a vector k ∈ Z

2m distributed statistically close
to DΛp

q (F),σ where F := (A ‖ B).

2. The second method is to again sample P ← Z

n×m
q and use a trapdoor for the

right matrix G (when γ �= 0) to sample K.
Algorithm SampleRight(A,G,R,TG,p, σ):

Inputs: matrices A in Z

n×k
q and R in Z

k×m, a full rank matrix G in
Z

n×m
q , a “short” basis TG of Λ⊥

q (G), a vector p ∈ Z

n
q , and a Gaussian

parameter σ.
(2.2)

Output: The algorithm outputs a vector k ∈ Z

2m in coset Λp
q (F).

Stronger Security for Reusable Garbled Circuits 19

Often the matrix R given to the algorithm as input will be a random matrix
in {1,−1}m×m. Let Sm be the m-sphere {x ∈ R

m+1 : ‖x‖ = 1}. We define
sR := ‖R‖ = supx∈Sm−1‖R · x‖.

Theorem 2.9 ([ABB10, Theorem 19]). Let q > 2,m > n and σ > ‖TG‖GS ·
sR · ω(

√
log m). Then SampleRight(A,G,R,TG,p, σ) taking inputs as in (2.2)

outputs a vector k ∈ Z

2m distributed statistically close to DΛp
q (F),σ where F :=

(A ‖ AR + γ · G).

3. The final method is to sample K ← (DZ2m,σ

)m and set P = F · K mod q.
We note that this method works even if γ = 0. As argued by [GPV08, Lemma
5.2], this produces the correct distribution.

Lemma 2.10. Assume the columns of F generate Z

n
q and let σ ≥ ω(

√
n log q).

Then, for k ← DZ2m,σ, the distribution of the vector p = F ·k mod q is statisti-
cally close to uniform over Z

n
q . Furthermore, fix p ∈ Z

n
q and let t be an arbitrary

solution s.t. F · t = p mod q. Then, the conditional distribution of k ← DZ2m,σ

given F · k = p mod q is t + DΛ⊥(F),σ,−t, which is precisely DΛp
q (F),σ.

Public Key and Ciphertext Evaluation Algorithms. Our construction
will make use of the public key and ciphertext evaluation algorithms from
[BGG+14,GVW15]. Since these algorithms can be used as black boxes for our
purposes, we only state their input/output behavior and properties. These algo-
rithms were constructed by Boneh et al. [BGG+14] in the context of attribute
based encryption, and extended by Gorbunov et al. [GVW15] to the setting of
partially hiding predicate encryption. In this setting, the attributes are divided
into a private component x and a public component y, and the functionality sup-
ports computation of a lightweight inner product composed with a heavy circuit
̂C. Formally, [GVW15] construct algorithms PHPE.EvalMPK and PHPE.EvalCT to
support the following circuit family:

̂C ◦ IP(x,y) = 〈x, ̂C(y)〉.

They make crucial use of the fact that PHPE.EvalCT does not need x for its
execution since the computation involving x is an inner product. To compute
the inner product, the multiplication may be carried out keeping x private and
letting ̂C(y) be public, and addition may be carried out keeping both attributes
private. Additionally, the circuit ̂C operates entirely on public attributes y.

In more detail, [GVW15, Sect. 3.2] demonstrate the existence of the following
efficient algorithms:

1. EvalMPK takes as input � + t matrices {Ai}, {Bj} ∈ Z

n×m
q and a circuit

̂C ◦ IP ∈ C and outputs a matrix A
̂C◦IP ∈ Z

n×m
q .

2. EvalCT takes as input � + t matrices {Ai, }{Bj} ∈ Z

n×m
q , � + t vectors

{ui}, {vj}, the public attribute y ∈ {0, 1}� and a circuit ̂C ◦ IP ∈ C, and
outputs a vector u

̂C◦IP ∈ Z

m
q .

20 S. Agrawal

3. EvalR takes as input � + t matrices {Ri}, {R′
j} ∈ Z

m×m
q , the matrix A, the

public attribute vector y ∈ {0, 1}� and a circuit ̂C ◦ IP ∈ C and outputs a
matrix R

̂C◦IP ∈ Z

m×m
q .

such that the following properties hold:

u
̂C◦IP =

(

A
̂C◦IP + ̂C ◦ IP(x,y) · G)T

s + eEval (2.3)

When

Ai = A · Ri − y[i] · G
Bi = A · R′

i − x[i] · G
Then A

̂C◦IP = AR
̂C◦IP − ̂C ◦ IP(x,y) · G (2.4)

Additionally, we may bound the norms as:

‖eEval‖∞ ≤ O(�n log q)O(d) · max
i∈[�]

{‖ui − (Ai + y[i] · G)Ts‖∞, . . .} (2.5)

‖R
̂C◦IP‖∞ ≤ O(�n log q)O(d) · max

i∈[�]
{‖R1‖∞, . . . , ‖R�‖∞, ‖R′

1‖∞, . . . , ‖R′
t‖∞}

(2.6)

2.5 Fully Homomorphic Encryption

A leveled symmetric key fully homomorphic scheme is a tuple of P.P.T algorithms
FHE.KeyGen, FHE.Enc, FHE.Eval and FHE.Dec:

FHE.KeyGen(1κ, 1d, 1k) : This is a probabilistic algorithm that takes as input the
security parameter, the depth bound for the circuit, the message length and
outputs the secret key FHE.SK.

FHE.Enc(FHE.SK, μ) : This is a probabilistic algorithm that takes as input the
secret key and message and produces the ciphertext FHE.CT.

FHE.Eval(C,FHE.CT): This is a deterministic algorithm that takes as input a
Boolean circuit C : {0, 1}k → {0, 1} of depth at most d and outputs another
ciphertext FHE.CT′.

FHE.Dec(FHE.SK,FHE.CT): This is a deterministic algorithm that takes as input
the secret key and a ciphertext and produces a bit.

Correctness. Let FHE.SK ← FHE.KeyGen(1κ, 1d, 1k) and C be a circuit of depth
d. Then we require that

Pr
[

FHE.Dec
(

FHE.SK, FHE.Eval(C,FHE.Enc(FHE.SK, μ))
)

= C(μ)
]

= 1

Security. Security is defined as the standard semantic security. Let A be an
efficient, stateful adversary and d, k = poly(κ). The semantic security game is
defined as follows.

Stronger Security for Reusable Garbled Circuits 21

1. FHE.SK ← FHE.Setup(1κ, 1d, 1k)
2. (μ0, μ1) ← A(1κ, 1d, 1k)
3. b ← {0, 1}
4. FHE.CT ← FHE.Enc(FHE.SK, μb)
5. b′ ← A(FHE.CT)

We require that the advantage of A in the above game be negligible, namely

|Pr(b′ = b) − 1/2| = negl(κ)

Instantiating FHE from Learning with Errors. We make use of the following
instantiation of FHE from LWE.

Theorem 2.11 [BV11,BGV12,GSW13,BV14,AP14]. There is an FHE scheme
based on the LWE assumption such that, as long as q ≥ O(κ2):

1. FHE.SK ∈ Z

t
q for some t ∈ poly(κ).

2. FHE.CT(μ) ∈ {0, 1}� where � = poly(κ, k, d, log q).
3. FHE.Eval outputs a ciphertext FHE.CT′ ∈ {0, 1}�.
4. There exists an algorithm FHE.Scale(q, p) which reduces the modulus of the

FHE ciphertext from q to p.
5. For any Boolean circuit of depth d, FHE.Eval(C, ·) is computed by a Boolean

circuit of depth poly(d, κ, log q).
6. FHE.Dec on input FHE.SK and FHE.CT′ outputs a bit b ∈ {0, 1}. If FHE.CT′

is an encryption of 1, then
∑

i∈[t]

FHE.SK[i] · FHE.CT′[i] ∈ [�p/2� − B, �p/2� + B]

for some fixed B = poly(κ). If FHE.CT′ is an encryption of 0, then
∑

i∈[t]

FHE.SK[i] · FHE.CT′[i] /∈ [�p/2� − B, �p/2� + B]

7. Security relies on LWEΘ(t),q,χ.

3 Insecurity of Predicate Encryption Schemes Against
General Adversaries

In this section, we demonstrate that known LWE based predicate encryption
constructions [AFV11,GVW15] are insecure against an adversary that requests
1-keys.

22 S. Agrawal

3.1 Attack #1 on [AFV11] Using 1-Keys.

Warmup Attack. To begin, we show a warmup attack that results from an adver-
sary requesting the same key multiple times. Since the key generation algorithm
is stateless, requesting many keys for the same function results in fresh, inde-
pendent keys, which may be combined to fully recover the message.

An observant reader may notice that our warmup attack may be easily pre-
vented by derandomizing key generation (using a PRF, say) so that multiple
requests of the same circuit result in the same key. However, as we show in
the full version [Agr16], the attack may be generalized to an adversary request-
ing non-identical functions against which derandomization does not work; the
warmup attack is only the simplest application of the technique.

We now describe the attack in detail. The construction of [AFV11] is
described here at a high level, for more details we refer the reader to the paper.

Say the attacker requests many keys for the vector v such that 〈x,v〉 = 0.
Let Av =

∑

viAi. Now by construction of keys in [AFV11], we have:

[A |Av]
[

e0

f0

]

= u (mod q) (3.1)

[A |Av]
[

e1

f1

]

= u (mod q) (3.2)

This implies [A |Av]
[

e0 − e1

f0 − f1

]

= 0 (mod q) (3.3)

Thus, we have a short vector in the lattice Λ⊥
q (A|Av). By making many queries

for the same v, the attacker may recover a full trapdoor basis for Λ⊥
q (A|Av).

Now, note that the ciphertext contains ATs+ noise as well as
(

Ai +x[i]G
)T
s+

noise. Since 〈x,v〉 = 0, we can follow the decryption procedure as:
∑

i

vi

(

Ai + x[i]G
)T
s + noise

=
(

Av + 〈x, v〉G)T
s + noise

= AT

vs + noise since 〈x, v〉 = 0

This in turn allows the attacker to recover

[A |Av]Ts + noise

for which he now has a trapdoor. Using the trapdoor, he can now recover the
noise terms to get exact linear equations in the LWE secret s, completely break-
ing LWE security. Note that by functionality, the attacker should only have been
able to learn a single bit of information, namely 〈x, v〉 = 0.

The reason this attack works given 1-keys, i.e. in the strong attribute hiding
setting, is that a particular linear relation needs to be satisfied to enable decryp-
tion, which, given a decrypting key, can be exploited to carry out the attack.
Specifically, in the above attack, the decryption procedure allows the attacker to

Stronger Security for Reusable Garbled Circuits 23

recover [A |Av]Ts+noise which would not be possible if the decryption condition
did not hold, i.e. given only 0-keys.

The generalization of the above attack, as well as the second and third attack
are provided in the full version of the paper [Agr16].

4 (1, poly) Very Selective PHPE

In this section, we show that the partially hiding predicate encryption system
PHPE of [GVW15] satisfies a stronger definition than described in [GVW15],
namely (1,poly)-VSel-SIM security (see Definition 2.5). We emphasize that in
addition to a single query of any kind, PHPE supports an unbounded number
of 0-queries, as in [GVW15].

4.1 Construction

The construction of our (1,poly)-PHPE scheme is the same as in [GVW15],
except the setting of certain parameters described in the full version [Agr16].
The main novelty is in the proof, which shows that in the restricted game of
Definition 2.5, the attacker can obtain a key for any circuit of his choice. As in
[GVW15], he can also obtain an unbounded number of 0 keys, resulting in a
(1,poly)-PHPE scheme.

For completeness, we describe the construction below.

PH.Setup(1κ, 1t, 1�, 1d) : Given as input the security parameter κ, the length of
the private and public attributes, t and � respectively, and the depth of the
circuit family d, do the following:
1. Choose random matrices

Ai ∈ Z

n×m
q for i ∈ [�], Bi ∈ Z

n×m
q for i ∈ [t], P ∈ Z

n×m
q

To simplify notation, we denote by {Ai} the set {Ai}i∈[�] and by {Bi}
the set {Bi}i∈[t].

2. Sample (A,T) ← TrapGen(1m, 1n, q).
3. Let G ∈ Z

n×m
q be the powers of two matrix with public trapdoor TG.

4. Output the public and master secret keys.

PH.PK =
({Ai}, {Bi},A,P

)

, PH.MSK = (PH.PK,T)

PH.KeyGen(PH.MSK, ̂C ◦ IPγ) : Given as input the circuit and the master secret
key, do the following:
1. Let A

̂C◦IP = EvalMPK

({Ai}, {Bi}, ̂C ◦ IP
)

.
2. Sample K such that

[A| A
̂C◦IP + γ · G] · K = P mod q

using K ← SampleLeft(A,A
̂C◦IP + γ · G,T,P, s). Here s is the standard

deviation of the Gaussian being sampled (see [Agr16] for the parameters).

24 S. Agrawal

3. Output SK
̂C◦IPγ

= K.

PH.Enc
(

PH.PK, (x,y), μ
)

: Given as input the master public key, the private
attributes x, public attributes y and message μ, do the following:
1. Sample s ← DZn,sB

and error terms e ← DZm,sB
and e′ ← DZm,sD

.
2. Let b = [0, . . . , 0, �q/2�μ]T ∈ Z

m
q . Set

β0 = ATs + e, β1 = PTs + e′ + b

3. For i ∈ [�], compute

ui = (Ai + yi · G)Ts + RT

ie

where Ri ← {−1, 1}m×m.
4. For i ∈ [t], compute

vi = (Bi + xi · G)Ts + (R′
i)

Te

where R′
i ← {−1, 1}m×m.

5. Output the ciphertext

CTy =
(

y,β0,β1, {ui}, {vj}
)

for i ∈ [�], j ∈ [t].

PH.Dec
(

SK
̂C◦IPγ

,CTy

)

: Given as input a secret key and a ciphertext, do the
following:
1. Compute

u
̂C◦IP = EvalCT

({Ai,ui}, {Bj ,vj}, ̂C ◦ IP,y
)

2. Compute

ν = β1 − KT

(

β0

u
̂C◦IP

)

3. Round each coordinate of ν and if
[

Round(ν[1]), . . . ,Round(ν[m−1])
]

= 0
then set μ = Round(ν[m]).

4. Output μ.

In the full version [Agr16], we show that the scheme is correct.

4.2 Proof of Security

Next, we argue that the above construction is secure against an adversary who
requests a single key of any kind and an unbounded number of 0-keys.

Theorem 4.1. The partially hiding predicate encryption scheme described in
Sect. 4.1 is secure according in the very-selective game defined in Definition 2.5.

Proof. We define a p.p.t. simulator Sim and argue that its output is computa-
tionally indistinguishable (under the LWE assumption) from the output of the
real world. Let b = μ if ̂C∗ ◦ IPγ(x,y) = 1, ⊥ otherwise.

Simulator. Sim(A
̂C∗◦IP,y, 1|x|, b):

Stronger Security for Reusable Garbled Circuits 25

1. It generates all public parameters as in the real PH.Setup except P. To
generate P, it computes A

̂C∗◦IP = EvalMPK

({Ai}, {Bi}, ̂C∗ ◦ IP
)

, samples
K∗ ← (DZ2m,s

)m and sets:

P = [A | A
̂C∗◦IP + γ · G] K∗ (4.1)

2. It generates all keys using the real PH.KeyGen except the key for ̂C∗ ◦ IPγ ,
which is set as K∗ sampled above.

3. Sim.Enc
(

̂C∗◦IPγ ,y, 1|x|, b
)

: It takes as input the challenge circuit ̂C∗◦IPγ , the
public attributes y, the size of the private attributes x, and the message b = μ
if ̂C∗ ◦ IPγ(x,y) = 1, ⊥ otherwise. It constructs the challenge ciphertext as
follows.

– It samples β0,ui,vi independently and uniformly from Z

m
q . If b = ⊥, it

samples β1 also randomly from Z

m
q .

– If b = μ, it computes β1 to satisfy the decryption equation corresponding
to ̂C∗ ◦ IPγ as follows.

• Let u
̂C∗◦IP = EvalCT

({Ai,ui}, {Bi,vi}, ̂C∗ ◦ IP,y
)

.
• Sample e′′ ← DZm,sD

• Set β1 = (K∗)T
(

β0

u
̂C∗◦IP

)

+e′′+b where b = [0 . . . , 0, �q/2�μ]T ∈ Z

m
q .

– It outputs the challenge ciphertext

CT∗ =
(

{ui}i∈[�], {vi}i∈[t],y,β0,β1

)

We argue that the output of the simulator is distributed indistinguishably
from the real world. Intuitively, there are only two differences between the real
world and simulated distribution. The first is that instead of choosing P first and
sampling K∗ to satisfy Eq. 4.1, we now choose K∗ first and set P accordingly.
This is a standard trick in LWE based systems (see the survey [Pei13], where
this is trick 1), its first use that we are aware of appears in [GPV08].

The second difference is in how the challenge ciphertext is generated. In our
challenge ciphertext the elements (β0,ui,vi) are sampled uniformly at random
while β1 which is computed using the elements (β0,ui,vi) and K∗ in order
to satisfy the decryption equation for a 1 key. We note that β1 is the only
ciphertext element that is generated differently from the challenge ciphertext
in the simulator of [GVW15]. In the [GVW15] simulator, β1 is also sampled at
random, whereas in our case, it is generated to satisfy the decryption equation
involving CT∗ and SK(̂C∗ ◦ IPγ) when ̂C∗ ◦ IPγ(x,y) = 1. Enforcing this relation
is necessary, as it is dictated by the correctness of the system4.

The formal proof is provided in the full version of the paper [Agr16].

4 Note that the step of “programming” β1 forces the simulator to use its knowledge
of y. On the other hand, the simulator in [GVW15] does not need to use y for
simulation, implying that even y is hidden when the attacker does not request 1-
keys. Since the real decryption procedure needs y in order to decrypt, this (in our
opinion) further illustrates the weakness of the weak attribute hiding definition.

26 S. Agrawal

5 Upgrading Very Selective to Semi Adaptive Security
for PHPE

In this section, we show how to construct a (1,poly)-Partially Hiding Predicate
Encryption scheme for circuit class C satisfying semi adaptive security according
to Definition 2.4. Our construction, which we denote by SaPH, will make use of
two ingredients:

1. A single key5, FULL-SIM secure functional encryption scheme for the following
functionality:

F(V1,...,Vk)(a1, . . . ,ak) =
∑

i=1

Vi · ai mod q

where Vi ∈ Z

m×m
q and ai ∈ Z

m
q for i ∈ [k]. The parameters k, q,m are input

to the setup algorithm. Such a scheme was recently constructed by [ALS16]6.
We will denote this scheme by FuLin.

2. A (1,poly) very selectively secure PHPE scheme for the circuit class C, as
provided in Sect. 4. We will denote this scheme by VSelPH.

Our construction is described below.

SaPH.Setup(1κ, 1t, 1�, 1d): Given as input the circuit and the master secret key,
do the following:
1. For i ∈ [�], let (FuLin.PKi,FuLin.MSKi) ← FuLin.Setup

(

1κ, (Zm
q)3

)

.
2. For j ∈ [t], let (FuLin.PK′

j ,FuLin.MSK′
j) ← FuLin.Setup

(

1κ, (Zm
q)3

)

.
3. Let (FuLin.PK0,FuLin.MSK0) ← FuLin.Setup

(

1κ, (Zm
q)2

)

.
4. Let (FuLin.PK′

0,FuLin.MSK′
0) ← FuLin.Setup

(

1κ, (Zm
q)3

)

.
5. Let {PRG}s∈{0,1}κ be a family of PRGs with polynomial expansion. Sam-

ple a PRG seed, denoted by seed.
6. Output

PH.PK =
{
FuLin.PK0, FuLin.PK′

0, {FuLin.PKi}i∈[�], {FuLin.PK′
j}j∈[t]

}

PH.MSK =
{
seed, FuLin.MSK0, FuLin.MSK′

0, {FuLin.MSKi}i∈[�], {FuLin.MSK′
j}j∈[t]

}

SaPH.Enc
(

PH.PK, (x,y), μ
)

: Given as input the master public key, the private
attributes x, public attributes y and message μ, do the following:
1. Sample s ← DZn,sB

and error terms e ← DZm,sB
and e′ ← DZm,sD

.
2. Let b = [0, . . . , 0, �q/2�μ]T ∈ Z

m
q .

3. Sample Ri ← {−1, 1}m×m for i ∈ [�] and R′
j ← {−1, 1}m×m for j ∈ [t].

4. Set7

5 More precisely, we require that the adversary may request the same single function
any number of times, but multiple requests for the same function result in the same
key.

6 While the construction in [ALS16] has stateful KeyGen against a general adversary,
we only need the single key version which is clearly stateless.

7 Note that we are abusing notation slightly, since the message space of FuLin was set
as Z

m
q but s ∈ Z

n
q . However, since n < m, we can pad it with zeroes to make it

match. We do not explicitly state this for the sake of notational convenience.

Stronger Security for Reusable Garbled Circuits 27

β̂0 = FuLin.Enc
(

s, e
)

, ûi = FuLin.Enc
(

s, y[i] · GTs, RT

ie
)

,

β̂1 = FuLin.Enc
(

s, e′,b
)

, v̂j = FuLin.Enc
(

s, x[j] · GTs, R′T
je

)

5. Output the ciphertext

CTy =
(

y, β̂0, β̂1, {ûi}, {v̂j}
)

for i ∈ [�], j ∈ [t].

SaPH.KeyGen(PH.MSK, ̂C ◦ IPγ) : Given as input the circuit and the master
secret key, do the following:
1. Use PRG(seed) to generate sufficient randomness rand for the

VSelPH.Setup algorithm as well as {randi}, {rand′
j}, rand0, rand′

0 for the
FuLin.KeyGen algorithms.

2. Sample (VSelPH.MPK,VSelPH.MSK) ← VSelPH.Setup
(

1κ, 1t, 1�, 1d,

rand
)

.
Parse VSelPH.MPK =

({Ai}, {Bj}, A, P
)

.
3. Let8

FuLin.SKi ← FuLin.KeyGen
(

FuLin.MSKi, (AT

i , 1, 1), randi

) ∀i ∈ [�]

FuLin.SK′
j ← FuLin.KeyGen

(

FuLin.MSK′
j , (B

T

j , 1, 1), rand′
j

) ∀j ∈ [t]

FuLin.SK0 ← FuLin.KeyGen
(

FuLin.MSK0, (AT, 1), rand0

)

FuLin.SK′
0 ← FuLin.KeyGen

(

FuLin.MSK′
0, (P

T, 1, 1), rand′
0

)

4. Let VSelPH.SK(̂C ◦ IPγ) ← VSelPH.KeyGen
(

VSelPH.MSK, ̂C ◦ IPγ

)

.
5. Output

VSelPH.SK(Ĉ ◦ IPγ) =
((

VSelPH.MPK, VSelPH.SK(Ĉ ◦ IPγ)
)
,

({FuLin.SKi}, {FuLin.SK′
j}, FuLin.SK0, FuLin.SK′

0

))

SaPH.Dec
(

SK
̂C◦IPγ

,CTy

)

: Given as input a secret key and a ciphertext, do the
following:
1. Let

β0 = FuLin.Dec(FuLin.SK0, β̂0), ui = FuLin.Dec(FuLin.SKi, ûi),

β1 = FuLin.Dec(FuLin.SK′
0, β̂1), vj = FuLin.Dec(FuLin.SK′

j , v̂j)

Let VSelPH.CT =
(

β0, β1, {ui}, {vj}, y
)

.
2. Output μ ← VSelPH.Dec

(

VSelPH.MPK, VSelPH.CT,VSelPH.SK
)

.

Correctness. Correctness may be argued using the correctness of FuLin and
VSelPH.

8 Here, 1 is used to denote the m × m identity matrix.

28 S. Agrawal

By correctness of FuLin, the tuple (β0, β1, {ui}, {vj}) produced in the
first step of decryption is precisely the ciphertext of the VSelPH scheme. More
formally, we get:

ui = FuLin.Dec(FuLin.SKi, ûi) = (Ai + yi · G)Ts + RT

ie

vj = FuLin.Dec(FuLin.SK′
j , v̂j) = (Bi + xi · G)Ts + (R′

i)
Te

β0 = FuLin.Dec(FuLin.SK0, β̂0) = ATs + e

β1 = FuLin.Dec(FuLin.SK′
0, β̂1) = PTs + e′ + b

Let VSelPH.CT =
(

β0, β1, {ui}, {vj}, y
)

. Then, by correctness of VSelPH,
the following is correct

μ = VSelPH.Dec
(

VSelPH.MPK, VSelPH.CT,VSelPH.SK
)

In the full version of the paper [Agr16], we prove the following theorem.

Theorem 5.1. Assume that VSelPH satisfies VSel-SIM attribute hiding (Defin-
ition 2.5) and that FuLin satisfies FULL-SIM security (Appendix 2.3). Then the
scheme SaPH satisfies SA-SIM attribute hiding (Definition 2.4).

6 (1, poly)-Functional Encryption

In this section, we construct our (1,poly)-functional encryption scheme. The
ciphertext of the construction is succinct, providing a unification of the results
[GKP+13,GVW15]. Our construction of (1,poly)-functional encryption uses
(1,poly)-partially hiding predicate encryption and fully homomorphic encryp-
tion in a manner similar to [GVW15, Sect. 4].

6.1 Construction

We begin with an overview of the main ideas in the construction. Let us recall
the (0,poly)-FE scheme constructed by [GVW15]. The scheme makes use of two
ingredients, namely, a (0,poly)-PHPE scheme for circuits, and a fully homomor-
phic encryption scheme for circuits. The ciphertext of (0,poly)-FE corresponding
to an attribute a is a PHPE ciphertext corresponding to (â, t) where â is the
FHE encryption of a, and corresponds to the public attributes in PHPE, while
t is the FHE secret key and corresponds to the private attributes in PHPE.

The secret key corresponding to circuit C in the (0,poly)-FE scheme is a set
of PHPE secret keys { ̂C ◦ IPγ }γ∈[p/2
−B,	p/2
+B] where:

̂C ◦ IPγ(x,y) = 1 if 〈x, ̂C(y)〉 = γ

= 0 otherwise.

The decryptor executes the homomorphic ciphertext evaluation procedure
for circuit FHE.Eval(·, C) on the attributes â embedded in the PHPE cipher-
text as in [BGG+14] to obtain a ciphertext corresponding to public attributes

Stronger Security for Reusable Garbled Circuits 29

̂C(a), where ̂C(a) is an FHE encryption of C(a). Now, when C(a) = 1, then by
correctness of FHE, there exists a noise term γ ∈ [�p/2� − B, �p/2� + B] such
that

〈

t, ̂C(a)
〉

= γ. The decryptor tries keys corresponding to all possible γ

within the aforementioned range to ascertain whether ̂C ◦ IPγ(â, t) = 1. Note
that this step makes it crucial that the FHE decryption range be polynomial
in size. Fortunately, as noted by [GVW15], this can be ensured by the modu-
lus reduction technique in FHE schemes [BGV12,GSW13,BV14], which allows
a superpolynomial modulus to be scaled down to polynomial size.

The first idea in building (1,poly)-FE is to replace the use of (0,poly)-PHPE
in the above transformation by the (1,poly) PHPE constructed in Sect. 4. How-
ever, as discussed in Attack #3, Sect. 3, such a straightforward adaptation leads
to vulnerabilities. This is because decryption using a 1-key allows the decryptor
to learn the exact inner product of the FHE ciphertext ̂C(a) and the FHE secret
key t rather than the threshold inner product corresponding to FHE decryp-
tion. This lets her obtain leakage on the noise terms used to construct â, which
is problematic. We will denote the noise used in the construction of the FHE
ciphertext â by Noise(â).

Overcoming Leakage on FHE Noise. For a single 1-key, there is a natural way
out, via “noise flooding” or “noise smudging” [Gen09,GKPV10,AJLA+12]. To
prevent leakage on Noise(â), we may augment the FHE evaluation circuit with
a “flooding” operation, which, after computing FHE.Eval(â, C) adds to it an
encryption of 0 with large noise η to drown out the effects of Noise(â). This
idea is complicated by the fact that our construction of (1,poly)-FE must use
an FHE scheme whose final modulus is polynomial in size, whereas η must be
chosen to satisfy:

Noise(FHE.Eval(â, C)) + η
s≈ η (6.1)

so that it drowns the effects of Noise(â). The above constraint may necessitate
η, and hence the FHE modulus, to be superpolynomial in the security parameter.

Fortunately, we can work around this difficulty by performing FHE modulus
reduction after flooding. Then, η can be superpolynomial in the security para-
meter to obliterate the dependency of the revealed noise on the initial noise,
while letting the final FHE modulus still be polynomial. Another method is to
use the “sanitization” operation [DS16], which will result in better parameters
for this step – however, since it does not improve our overall parameters, we do
not discuss this.

Formally, we require a PHPE scheme for the circuit family CPHPE where
̂C ◦ IP ∈ CPHPE is defined as follows. Let the private attributes x = t where
t is the FHE secret, and public attributes y = (â,̂0), where ̂0 is an FHE encryp-
tion of the bit 0, with large noise η. Then, define:

30 S. Agrawal

̂C(̂0, â) = FHE.Scaleq,p

(

FHE.Eval(â, C) + ̂0
)

̂C ◦ IP
(

t,̂0, â
)

=
〈

t, ̂C(̂0, â)
〉

mod p

̂C ◦ IPγ

(

t,̂0, â
)

= 1 iff ̂C ◦ IP
(

t,̂0, â
)

= γ, 0 otherwise.

Above, FHE.Eval is the FHE ciphertext evaluation algorithm, and FHE.Scale
is the modulus reduction algorithm described in Sect. 2.5. Recall that
FHE.Scaleq,p takes as input an FHE ciphertext that lives modulo q and reduces
it to a ciphertext that lives modulo p. For the sake of brevity, we abuse notation
and do not explicitly include the inputs (q, p) in the inputs to ̂C ◦ IP.

Construction. We now proceed to describe the construction.

FE.Setup(1κ, 1k, 1d): The setup algorithm takes the security parameter κ, the
attribute length k and the function depth d and does the following:
1. Choose the FHE modulus q in which FHE.Eval(·, ·) will be computed and

the FHE modulus p ∈ poly(κ) in which decryption will be performed as
per Sect. 2.5.

2. Invoke the setup algorithm for the PHPE scheme for family CPHPE to get:

(PH.PK,PH.MSK) ← PH.Setup(1κ, 1t, 1�, 1d′
)

where length of private attributes t = |FHE.SK|, length of public
attributes � is the length of an FHE encryption of k+1 bits corresponding
to the attributes a and 0, i.e. � = (k + 1) · |FHE.CT| and d′ is the bound
on the augmented FHE evaluation circuit.

3. Output (PK = PH.PK, MSK = PH.MSK).
FE.Keygen(MSK, C) : The key generation algorithm takes as input the master

secret key MSK and a circuit C. It does the following:
1. Let R � [�p/2�−B, �p/2�+B]. Compute the circuit ̂C ◦ IPγ as described

above for γ ∈ R.
2. For γ ∈ R, compute

PH.SK
̂C◦IPγ

← PH.KeyGen(PH.MSK, ̂C ◦ IPγ)

3. Output the secret key as SKC = {PH.SK
̂C◦IPγ

}γ∈R.

FE.Enc(PK,a, μ): The encryption algorithm does the following:
1. Sample a fresh FHE secret key FHE.SK, and denote it by t.
2. Compute an FHE encryption of a to get â = FHE.Enc(t,a).
3. Sample η to satisfy Eq. 6.1 and compute an FHE encryption of 0 with

noise η as ̂0.
4. Set public attributes y = (â,̂0) and private attributes x = t.
5. Compute PH.CTâ,̂0 = PH.Enc

(

PH.PK, (x,y), μ
)

.
6. Output CTa =

(

â,̂0,PH.CTâ,̂0

)

.

FE.Dec(SKC ,CTa): Do the following:
1. Parse SKC as the set {PH.SK

̂C◦IPγ
}γ∈R.

2. For γ ∈ R, let τγ = PH.Dec
(

CTa,PH.SK
̂C◦IPγ

)

. If there exists some
value γ′ for which τγ′ �= ⊥, then output μ = τγ′ , else output ⊥.

Stronger Security for Reusable Garbled Circuits 31

Correctness. Correctness follows from correctness of PHPE and properties of
FHE (see Sect. 2.5). Please see the full version [Agr16] for details.

6.2 Proof of Security

Next, we argue that the above scheme satisfies semi-adaptive security.

Theorem 6.1. The (1,poly) functional encryption scheme described above is
secure according to Definition 2.3.

Proof. We construct a simulator FE.Sim as required by Definition 2.3 as follows.

Simulator FE.Sim(1κ). The simulator is described as follows.

1. It invokes PHPE.Sim(1κ) to obtain the public parameters and returns these.
2. The FE adversary outputs (a, μ, C∗) upon which, FE.Sim obtains (1|a|, μ, C∗).

It does the following:
(a) It samples an FHE secret key FHE.SK and sets â = FHE.Enc(FHE.SK,0)

and ̂0 = FHE.Enc(FHE.SK, 0).
(b) It samples γq to satisfy Eq. 6.1. Let γ denote its scaled down version

modulo p. It computes ̂C∗ ◦ IPγ as described above.
(c) It invokes PHPE.Sim

(

(â,̂0), 1|FHE.SK|, ̂C∗ ◦ IPγ , μ
)

to obtain
(

PH.CT, PH.SK(̂C∗ ◦ IPγ)
)

.
(d) For ρ ∈ R\γ, it constructs ̂C∗ ◦ IPρ and sends these queries to PHPE.Sim.

It receives PH.SK(̂C∗ ◦ IPρ).
(e) It outputs

(

PH.CT, {PH.SK(̂C∗ ◦ IPρ)}ρ∈R

)

.
3. When Adv makes any query C, FE.Sim transforms it into { ̂C ◦ IPρ}ρ∈R and

sends this to PHPE.Sim. It returns the set of received keys to Adv. Note that
these are 0-keys.

4. When Adv outputs α, output the same.

We argue that the simulator is correct in the full version of the paper [Agr16].

We note that the above construction is shown secure in a game which allows
a single arbitrary query and other 0 queries. Circuit privacy may be obtained
by using symmetric key encryption SKE to hide the key and augmenting the
function circuit with SKE decryption, exactly as in [GKP+13]. The details as
well as the generalization to the bounded collusion setting is provided in the full
version of the paper [Agr16].

References

[ABB10] Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the
standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 553–572. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13190-5 28

http://dx.doi.org/10.1007/978-3-642-13190-5_28
http://dx.doi.org/10.1007/978-3-642-13190-5_28

32 S. Agrawal

[AFV11] Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption
for inner product predicates from learning with errors. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25385-0 2

[Agr16] Agrawal, S.: Stronger security for reusable garbled circuits, general defi-
nitions and attacks. Eprint 2016/654 (2016)

[AGVW13] Agrawal, S., Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional
encryption: new perspectives and lower bounds. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 500–518. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40084-1 28

[AJLA+12] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computa-
tion and interaction via threshold FHE. In: Pointcheval, D., Johansson,
T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29011-4 29

[Ajt99] Ajtai, M.: Generating hard instances of the short basis problem. In: Wie-
dermann, J., Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol.
1644, pp. 1–9. Springer, Heidelberg (1999). doi:10.1007/3-540-48523-6 1

[ALS16] Agrawal, S., Libert, B., Stehle, D.: Fully secure functional encryption for
linear functions from standard assumptions. In: CRYPTO (2016)

[AP14] Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial
error. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 297–314. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44371-2 17

[BF01] Boneh, D., Franklin, M.: Identity-based encryption from the weil pair-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229.
Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8 13

[BGG+14] Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev,
G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic
encryption, arithmetic circuit ABE and compact garbled circuits.
In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 533–556. Springer, Heidelberg (2014). doi:10.1007/
978-3-642-55220-5 30

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomor-
phic encryption without bootstrapping. In: ITCS (2012)

[BSW07] Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based
encryption. In: IEEE Symposium on Security and Privacy (2007)

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and
challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-19571-6 16

[BV11] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryp-
tion from (standard) LWE. In: FOCS (2011)

[BV14] Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE.
In: ITCS (2014)

[BV16] Brakerski, Z., Vaikuntanathan, V.: Circuit-ABE from LWE: unbounded
attributes and semi-adaptive security. In: Robshaw, M., Katz, J. (eds.)
CRYPTO 2016. LNCS, vol. 9816, pp. 363–384. Springer, Heidelberg
(2016). doi:10.1007/978-3-662-53015-3 13

[BW06] Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption
(without random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol.
4117, pp. 290–307. Springer, Heidelberg (2006). doi:10.1007/11818175 17

http://dx.doi.org/10.1007/978-3-642-25385-0_2
http://dx.doi.org/10.1007/978-3-642-40084-1_28
http://dx.doi.org/10.1007/978-3-642-29011-4_29
http://dx.doi.org/10.1007/3-540-48523-6_1
http://dx.doi.org/10.1007/978-3-662-44371-2_17
http://dx.doi.org/10.1007/978-3-662-44371-2_17
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/978-3-642-55220-5_30
http://dx.doi.org/10.1007/978-3-642-55220-5_30
http://dx.doi.org/10.1007/978-3-642-19571-6_16
http://dx.doi.org/10.1007/978-3-662-53015-3_13
http://dx.doi.org/10.1007/11818175_17

Stronger Security for Reusable Garbled Circuits 33

[BW07] Boneh, D., Waters, B.: Conjunctive, subset, and range queries on
encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp.
535–554. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70936-7 29

[CFL+16] Cheon, J.H., Fouque, P.-A., Lee, C., Minaud, B., Ryu, H.: Cryptanalysis
of the new CLT multilinear map over the integers. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 509–536. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-49890-3 20

[CGH+15] Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E.,
Raykova, M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes:
new MMAP attacks and their limitations. In: CRYPTO (2015)

[CHKP10] Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how
to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13190-5 27

[CHL+15] Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the
multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg
(2015). doi:10.1007/978-3-662-46800-5 1

[CJL] Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems and
cryptanalysis of the GGH multilinear map without a low level encoding
of zero. Eprint 2016/139

[CLT13] Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps
over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-40041-4 26

[Coc01] Cocks, C.: An identity based encryption scheme based on quadratic
residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS,
vol. 2260, pp. 360–363. Springer, Heidelberg (2001). doi:10.1007/
3-540-45325-3 32

[DS16] Ducas, L., Stehlé, D.: Sanitization of FHE ciphertexts. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 294–310.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3 12

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178 (2009)

[GGH13a] Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal
lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 1

[GGH+13b] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.:
Candidate indistinguishability obfuscation and functional encryption for
all circuits. In: FOCS (2013). http://eprint.iacr.org/

[GGH+13c] Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based
encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-40084-1 27

[GGH15] Gentry, C., Gorbunov, S., Halevi, S.: Graph-induced multilinear maps
from lattices. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS,
vol. 9015, pp. 498–527. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46497-7 20

http://dx.doi.org/10.1007/978-3-540-70936-7_29
http://dx.doi.org/10.1007/978-3-662-49890-3_20
http://dx.doi.org/10.1007/978-3-642-13190-5_27
http://dx.doi.org/10.1007/978-3-642-13190-5_27
http://dx.doi.org/10.1007/978-3-662-46800-5_1
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/978-3-642-40041-4_26
http://dx.doi.org/10.1007/3-540-45325-3_32
http://dx.doi.org/10.1007/3-540-45325-3_32
http://dx.doi.org/10.1007/978-3-662-49890-3_12
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://dx.doi.org/10.1007/978-3-642-38348-9_1
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-40084-1_27
http://dx.doi.org/10.1007/978-3-662-46497-7_20
http://dx.doi.org/10.1007/978-3-662-46497-7_20

34 S. Agrawal

[GGHZ14] Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure functional
encryption without obfuscation. In: IACR Cryptology ePrint Archive,
vol. 2014, p. 666 (2014)

[GKP+13] Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In:
STOC, pp. 555–564 (2013)

[GKPV10] Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness
of the learning with errors assumption. In: ITCS (2010)

[GKW16] Goyal, R., Koppula, V., Waters, B.: Semi-adaptive security and bundling
functionalities made generic and easy. In: Hirt, M., Smith, A. (eds.) TCC
2016. LNCS, vol. 9986, pp. 361–388. Springer, Heidelberg (2016). doi:10.
1007/978-3-662-53644-5 14

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption
for fine-grained access control of encrypted data. In: CCS (2006)

[GPV08] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices
and new cryptographic constructions. In: STOC (2008)

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
75–92. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 5

[GTKP+13] Goldwasser, S., Kalai, Y.T., Popa, R., Vaikuntanathan, V., Zeldovich,
N.: Reusable garbled circuits and succinct functional encryption. In: Pro-
ceedings of STOC (2013)

[GVW12] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption
with bounded collusions via multi-party computation. In: Safavi-Naini,
R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 11

[GVW13] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute based encryption
for circuits. In: STOC (2013)

[GVW15] Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for
circuits from LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 503–523. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48000-7 25

[HJ15] Hu, Y., Jia, H.: Cryptanalysis of GGH map. Cryptology ePrint Archive:
Report 2015/301 (2015)

[KSW08] Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting dis-
junctions, polynomial equations, and inner products. In: Smart, N. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78967-3 9

[LOS+10] Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully
secure functional encryption: attribute-based encryption and (hierarchi-
cal) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13190-5 4

[MP12] Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 41

http://dx.doi.org/10.1007/978-3-662-53644-5_14
http://dx.doi.org/10.1007/978-3-662-53644-5_14
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-642-32009-5_11
http://dx.doi.org/10.1007/978-3-662-48000-7_25
http://dx.doi.org/10.1007/978-3-662-48000-7_25
http://dx.doi.org/10.1007/978-3-540-78967-3_9
http://dx.doi.org/10.1007/978-3-642-13190-5_4
http://dx.doi.org/10.1007/978-3-642-13190-5_4
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-642-29011-4_41

Stronger Security for Reusable Garbled Circuits 35

[MSZ16] Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear
maps: cryptanalysis of indistinguishability obfuscation over GGH13. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–
658. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5 22

[Pei13] Peikert, C.: Lattices.. to cryptography (2013). http://web.eecs.umich.
edu/∼cpeikert/pubs/slides-visions.pdf

[PR12] Pandey, O., Rouselakis, Y.: Property preserving symmetric encryp-
tion. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012.
LNCS, vol. 7237, pp. 375–391. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-29011-4 23

[Wat12] Waters, B.: Functional encryption for regular languages. In: Safavi-Naini,
R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 218–235.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-32009-5 14

http://dx.doi.org/10.1007/978-3-662-53008-5_22
http://web.eecs.umich.edu/~cpeikert/pubs/slides-visions.pdf
http://web.eecs.umich.edu/~cpeikert/pubs/slides-visions.pdf
http://dx.doi.org/10.1007/978-3-642-29011-4_23
http://dx.doi.org/10.1007/978-3-642-29011-4_23
http://dx.doi.org/10.1007/978-3-642-32009-5_14

	Stronger Security for Reusable Garbled Circuits, General Definitions and Attacks
	1 Introduction
	1.1 Our Contributions
	1.2 Our Techniques

	2 Preliminaries
	2.1 Functional Encryption
	2.2 Partially Hiding Predicate Encryption
	2.3 Full Security for Single Key Linear FE
	2.4 Algorithms Used by Our Constructions
	2.5 Fully Homomorphic Encryption

	3 Insecurity of Predicate Encryption Schemes Against General Adversaries
	3.1 Attack #1 on Using 1-Keys.

	4 (1, `39`42`"613A``45`47`"603Apoly) Very Selective PHPE
	4.1 Construction
	4.2 Proof of Security

	5 Upgrading Very Selective to Semi Adaptive Security for PHPE
	6 (1,`39`42`"613A``45`47`"603Apoly)-Functional Encryption
	6.1 Construction
	6.2 Proof of Security

	References

