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Chapter 20
Low Numeracy: From Brain to Education

Brian Butterworth 

20.1  �Introduction

Leopold Kronecker is quoted famously as making the ontological claim that ‘God 
made the integers, all else is the work of man.’1 This is not a testable hypothesis. 
Kronecker may or may not have been a believer in the supernatural when he made 
this statement. He was born a Jew but converted to Christianity a year before his 
death. He apparently believed that only integers and objects constructed from them 
actually existed. This included rational numbers but excluded the reals, π, transcen-
dental numbers more generally, and infinities, all of which may be mathematically 
useful, but didn’t really exist.

If God did make the integers, how did we come to know them? This is a problem 
that has exercised the best philosophical minds since the time of Plato. However, if 
we take his apothegm more metaphorically, he may be arguing that our knowledge 
of maths depends on our knowledge of integers. That is, we recast his ontological 
claim as an epistemological one. We can go further, and recast God as evolution. 
That is to say, is there an evolutionary basis for our knowledge of integers? Here we 
need to step back from the term ‘integer’, which includes negative numbers, and 
restrict ourselves to positive whole numbers, the so-called ‘natural numbers’.

It is now widely acknowledged that the typical human brain is endowed by evolu-
tion with a mechanism for representing and discriminating numbers. It is important to 
be clear right at the outset, that when I talk about numbers I do not mean just our 
familiar symbols – counting words and ‘Arabic’ numerals, I include any representa-
tion of the number of items in a collection, more formally the cardinality of the set, 
including unnamed mental representations. Evidence comes from a variety of sources.

1 http://www-history.mcs.st-andrews.ac.uk/Biographies/Kronecker.html

B. Butterworth (*) 
University College London, London, UK
e-mail: b.butterworth@ucl.ac.uk

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-63555-2_20&domain=pdf
https://doi.org/10.1007/978-3-319-63555-2_20
http://orcid.org/0000-0002-8675-5660
http://www-history.mcs.st-andrews.ac.uk/Biographies/Kronecker.html
mailto:b.butterworth@ucl.ac.uk


478

Human infants notice changes in the number of objects they can see, when other 
dimensions of the objects are controlled. In the first study of this kind, infants of 
5–6  months noticed when successive displays of two dots were followed by a  
display of three dots and when successive displays of three dots were followed by a 
display of two dots. However, they did not notice a change from four to six dots or 
from six to four dots (Starkey and Cooper 1980). With larger numbers of dots, 
infants need a ratio of 2:1 to notice a change in the number of dots (Xu and Spelke 
2000). Recently, studies have shown that infants notice the matches between the 
number of sounds and the number of objects on the screen (Izard et al. 2009; Jordan 
and Brannon 2006), suggesting that the infant’s mental representation of number is 
relatively abstract – that is, independent of modality of presentation.

There is also evidence for individual differences in various measures of this abil-
ity, at least in older children (Geary et  al. 2009; Piazza et  al. 2010; Reeve et  al. 
2012). Twin studies suggest that differences appear to be at least partly genetic 
(Geary et al. 2009; Piazza et al. 2010; Reeve et al. 2012). The genetic factor is rein-
forced by the finding that certain kinds of genetic anomaly, such as Turner’s 
Syndrome, affects numerical abilities, including very basic abilities such as select-
ing the larger of two numbers or giving the number of dots in an array, even when 
general cognitive ability is normal or even superior (Bruandet et  al. 2004; 
Butterworth et al. 1999; Temple and Marriott 1998).

Another line of evidence comes from the studies of other species. Many of those 
in which numerical abilities have been tested show performance comparable with or 
significantly better than human infants. Chimpanzees are able to match the correct 
digit to a random display of dots up to at least ten (Matsuzawa 1985; Tomonaga and 
Matsuzawa 2002). Monkeys are able to select the larger numerosity of two displays 
even when the elements in the display are novel. Moreover, they show a very similar 
‘distance effect’ to humans – that is, the more different the numbers, the more likely 
they are to select the larger correctly (Brannon and Terrace 1998). Birds have been 
known to be good at number tasks for 80 years or more. Numerical abilities have 
been demonstrated in elephants, cats, rats, salamanders and even fish (Agrillo et al. 
2012).

Neuropsychological studies of patients with brain damage reveal a complex net-
work in the brain that supports arithmetical processes. Damage to the frontal lobes 
affects the ability to solve novel problems, while damage to the parietal lobes, usu-
ally the left parietal lobe, affects the ability to do routine tasks or to recall previously 
learned facts (Cipolotti and van Harskamp 2001; see Butterworth 1999, Chap. 4 for 
reviews). Neuroimaging shows that the parietal lobes are activated by very simple 
tasks, such as selecting the larger of two numbers or the display with more dots 
(Dehaene et al. 2003; Pinel et al. 2001). In fact, small regions in the left and right 
parietal lobes (the intraparietal sulci) are specific for processing the numerosity of 
displays (Castelli et al. 2006). These regions are part of a brain network involving 
both the parietal and frontal lobes that are activated almost every time we carry out 
a numerical calculation, routine or novel (Andres et al. 2011). These findings link 
numerosity processing and arithmetical calculation in the brain. See Butterworth 
and Walsh (2011) for a review of the neural basis of mathematics. I will return to the 
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question of whether individual differences in brain structure and functioning can be 
linked to individual differences in arithmetical competence.

Various environmental factors can all be associated with lower mathematics 
attainment, including socioeconomic status and minority ethnic status, as well as 
gender, which should perhaps be considered a social rather than genetic factor in this 
context (Royer and Walles 2007). Although it is difficult to assess the role of poor or 
inappropriate teaching, the fact that the introduction of a detailed new national pri-
mary school strategy for numeracy in the UK had only a minor and possibly nonsig-
nificant effect on numeracy for the group studied is indicative (Gross et al. 2009). It 
should also be noted that there are wide individual differences on even very simple 
tasks that depend relatively little on the quality of educational experience, such as 
comparison of the magnitude of two single-digit numbers or enumerating a small 
array of objects (Reigosa-Crespo et al. 2012; Wilson and Dehaene 2007).

Taken together, the evidence presented here suggests that factors specific to the 
domain of numbers and arithmetic make a major independent contribution to low 
arithmetic attainment. This is supported by findings from studies that have found 
low attainment in learners matched for IQ and working memory. In a longitudinal 
study by Geary and colleagues, tests on understanding the numerosity of sets and on 
estimating the position of a number on a number line were two important predictors 
of low achievement in mathematics, affecting some 50% of the sample, and of 
mathematics learning disability, affecting approximately 7% of the sample (Geary 
et al. 2009). In a sample of 1500 pairs of monozygotic (MZ) and 1375 pairs of dizy-
gotic (DZ) 7-year-old twins, Kovas and colleagues found that approximately 30% 
of the genetic variance was specific to mathematics (Kovas et al. 2007). In another 
genetic study, this time of first-degree relatives of dyslexic probands, it was found 
that numerical abilities constituted a separate factor (Schulte-Körne et al. 2007). In 
fact, recent reviews have proposed that developmental dyscalculia follows from a 
core deficit in this domain-specific capacity (Butterworth 2005; Rubinsten and 
Henik 2009; Wilson and Dehaene 2007).

One obvious question arises: how do our numerical innate capacities relate to the 
learner’s ability to acquire arithmetic?

20.2  �Innate Capacities

Now it will come as no surprise to teachers of the first 3 years of school that chil-
dren’s numerical competence begins with whole numbers. However, recent research 
on the innate mechanisms available to humans (and many other species) propose 
two foundational ‘core systems’ that do not involve whole numbers. Deficiencies in 
these core systems – it has been argued – could contribute to low numeracy.

	1.	 A mechanism for keeping track of the objects of attention. This is sometimes 
referred to as the ‘object-tracking system’ (OTS) and has limit of three or four 
objects. It is thought to underlie the phenomenon of ‘subitising’ – making an 
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accurate estimate of one to four objects without serial enumeration (Feigenson 
et al. 2004). It is proposed that the objects to be enumerated are held in working 
memory and that they constitute a representation with ‘numerical content’ 
(Carey 2009; Le Corre and Carey 2007).

	2.	 A mechanism for the analogue representation of the approximate number objects 
in a display. This is referred to as the ‘analogue number system’ (ANS). The 
internal representations of different numerical magnitudes can be thought of as 
Gaussian distributions of activation on a ‘mental number line’. It is typically 
tested by tasks involving clouds of dots (or other objects), typically too numer-
ous to enumerate exactly in the time available. One common task is to compare 
two clouds of dots. (Addition and subtraction tasks for which the solution is 
compared with a third cloud of dots are also used.) Individual differences are 
described in terms of a psychometric function, such as the Weber fraction, the 
smallest proportional difference between two clouds that can be reliably distin-
guished by the individual (Feigenson et al. 2004).

There has been considerable interest, indeed excitement, in many studies that show 
the performance on tasks designed to measure competence in the approximate num-
ber system correlates significantly with arithmetical performance in both children 
and adults (Barth et al. 2006; Gilmore et al. 2010; Halberda et al. 2008, 2012). But 
as we all know, correlation is not cause, and no plausible mechanism for the rela-
tionship has been proposed and accepted.

Now there are various problems with both core systems from the point of view 
of learning arithmetic. In the case of 1, there is an upper limit of 4. Now one key 
property of the number system is that a valid operation on its elements always yields 
another element in the same system. If one such operation is addition and if 3 is an 
element, then 3 + 3 should yield an element in the system, but it cannot, since the 
limit is 4. To get round this, it has been proposed that noticing the number of objects 
being tracked can be linked to the number words a child hears and that they will be 
able to generalise – ‘bootstrap’ – from these experiences to numbers above the limit 
(Carey 2009; Le Corre and Carey 2007). The problem is that the object-tracking 
system is designed to keep track of particular objects with as much detail as is 
required by the task, not abstract away from them (Bays and Husain 2008).

The problem with 2 is that it deals only in approximate quantities, whereas ordi-
nary school arithmetic deals with exact quantities, and the transition from approxi-
mations to exact whole number arithmetic is still mysterious. These problems are 
well known.

While we do not doubt that these systems exist in the brains of human infants and 
other species, we have argued that a quite different core system underlies the devel-
opment of arithmetic. We and others have proposed a mechanism that can represent 
the ‘numerosity’ of a collection of objects, that is the number of objects exactly, not 
approximately, up to a limit imposed by the developing brain. In a pioneering 
exploration, Gelman and Gallistel called these representations ‘numerons’ and 
argued that learning to count is a process of learning how to map number words 
consistently onto numerons (Gelman and Gallistel 1978). I have argued, following 
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Gelman and Gallistel, that humans inherit a ‘number module’ to deal with sets and 
their numerosity and that some developmental weaknesses in arithmetical develop-
ment can be traced to deficiencies in the module (Butterworth 1999, 2005).

We have shown that a neural network computer simulation of the number mod-
ule using what we have called a ‘numerosity code’ accurately models the ‘size 
effect’ in addition. This is where accuracy and speed are a function of the addends – 
that is, the larger the addends or their sum, the longer it takes to retrieve or calculate 
the answer (Butterworth et al. 2001; Zorzi et al. 2005).

In the next section, I describe briefly some studies we have carried out that stress 
the importance of whole number competence in the subsequent development of 
arithmetic, using a very simple test: how quickly and accurately the child can enu-
merate a display of dots and say the answer.

20.3  �Longitudinal Study of Arithmetical Development 
from Kindergarten to Grade 5

This is a study carried out in Melbourne, Australia, led by Robert Reeve and his lab. 
The sample comprised 159 5.5–6.5-year-olds (95 boys). The children attended one 
of seven independent schools in middle-class suburbs of a large Australian city and, 
at the beginning of the study, were halfway through their first year of formal school-
ing. The children were interviewed individually on seven occasions over a 6-year 
period as part of a larger study. On each occasion they completed a series of tests, 
including those reported here. The mean ages for the test times were (a) 6 years 
(5.5–6.5 years) kindergarten, (b) 7 years (6.5–7.5 years), (c) 8.5 years (8–9 years), 
(d) 9 years (8.5–9.5 years), (e) 9.5 years (9–10 years), (f) 10 years (9.5–10.5 years) 
and (g) 11 years (10.5–11.5 years). For full details, see Reeve et al. (2012). Here, I 
will focus on two aspects of the study: competence in numerosity processing as 
measured by the speed and accuracy of dot enumeration and age-appropriate arith-
metic accuracy.

Using cluster analysis, dot enumeration competence revealed three clusters at 
each age, which we labelled fast (31% of the children), medium (50%) and slow 
(19%). These were relatively stable on retesting over the period of the study. That is, 
although children in each cluster improved with age, each tended to stay in the same 
cluster.

It turns out that the cluster established in kindergarten predicts age-appropriate 
arithmetic up to the age of 11 at least. I give below the results for three-digit calcula-
tions at ages 10–11 years (Table 20.1).

Our recent analyses show that from kindergarten to Year 2, the clusters are the 
main predictors of the strategies used in single-digit addition, with fast clusters 
more likely to recall answers from memory and use decomposition for sums over 
10 in kindergarten, whereas the slow cluster children are only recalling the answers 
and decomposing in Year 2 and then less than 30% of the time.

20  Low Numeracy: From Brain to Education
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20.4  �The Neural and Genetic Basis of Low Numeracy

This is a study of 104 monozygotic twins and 56 same-sex dizygotic twins aged 
8–14 years. (Zygosity was assessed using molecular genetic methods.) For more 
further details, see Ranpura et al. (2013, submitted). All the twins in the study had 
brain scans and carried out a battery of 40 cognitive and numerical tests. Using fac-
tor analysis, we extracted four factors, with numerical processing accounting for 
24% of the variance and having the highest loading. It comprised three timed arith-
metic scores (addition, subtraction, multiplication), together with dot enumeration 
speed and the standardised WOND Numerical Operations (Wechsler 1996) score. 
Thus, a second factor (19% of the variance) included measures of general intelli-
gence and working memory; a third factor (12%) included processing speed and 
performance IQ; while the fourth factor (9%) included tests of motor praxis and 
finger gnosis. Thus, the factor analysis reveals that that core number skills and arith-
metic correlate well with each other and segregate from general cognitive and per-
formance measures.

We replicated other research in finding a difference in grey matter in the brains 
of children with low numeracy or dyscalculia in the brain region of interest for 
numerosity processing (Isaacs et al. 2001). See Fig. 20.1.

We were also able to establish the heritability of both competence and grey mat-
ter density by comparing MZ with DZ twins: if the concordance between pairs of 
MZ twins is significantly higher than between pairs of DZ twins, this indicates a 
genetic factor.

	1.	 Grey matter density is moderately heritable (h2 = 0.28), but common environ-
mental and unique environmental factors are also significant. Shared environ-
ment (c2) is usually thought of as home background and schooling, which applies 
to both twins; unique environment (e2) is thought of as factors specific to one of 
the twins.

	2.	 Arithmetical competence and dot enumeration are both heritable. See Table 20.2.
	3.	 The link between dot enumeration and both arithmetical competence and the 

region of interest is heritable. Using a different way of analysing the heritability 
data, called ‘cross-twin, cross-trait correlation’, we found that the correlation of 
dot enumeration with timed addition was substantially heritable, with over 50% 
of that correlation attributable to genetic factors (h2h2rG  =  0.54, rho  =  0.76, 
p < 0.05). Moreover, the links between the region of interest and dot enumera-
tion, as well as arithmetical competence, were also heritable.

Table 20.1  Three-digit subtraction, three-digit multiplication and three-digit division accuracy at 
age 10–11 years

Dot enumeration cluster established in kindergarten
Slow Medium Fast
M SD M SD M SD

Subtraction 46.67 7.38 81.25 2.90 90.65 2.58
Multiplication 60.56 6.53 85.10 2.15 87.07 3.57
Division 41.67 7.02 75.62 2.88 84.86 2.97
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20.5  �Implications for Mathematics Education

The starting point for intervention should be a recognition that some children begin 
with a disadvantage and that their disadvantage lies in their capacity to deal with 
sets and their numerosities. This, of course, is the basis of arithmetic both from a 
logical and a developmental point of view. As we show here, low numeracy has a 

Fig. 20.1  Voxel-based morphometry (structural brain imaging) identifies a left parietal cluster that 
correlates with core number skill (35 voxels with a peak at MNI –48, −36, 34, pFWE-corrected 
<0.05)

Table 20.2  Heritability of arithmetic and dot enumeration

h2 c2 e2

Genetic factor Shared environment Unique environment

Timed addition 0.54 0.28 0.17
Timed subtraction 0.44 0.38 0.18
Timed multiplication 0.55 0.31 0.15
Dot enumeration 0.47 0.15 0.38

20  Low Numeracy: From Brain to Education
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heritable component, which confirms recent genetic studies as noted above (e.g. 
Kovas et al. 2007).

We can use dot enumeration in diagnostic assessments. Because these numerosity-
based assessments depend much less on educational experience than tests of arith-
metic, they minimise noise from instructional and motivational factors, not to 
mention family and environmental stressors that can also lead to low math attain-
ment scores. Getting the correct assessment is fundamental to selecting the appro-
priate intervention.

Early attempts to develop new instructional interventions were based on neuro-
science findings and the best practices of skilled teachers (e.g. Butterworth and Yeo 
2004; Griffin et al. 1994). An important limitation of these interventions is that they 
required detailed instructional schemes and one-to-one teaching. It is difficult to 
implement these interventions in the typical math classroom, which has a whole-
class age-related curriculum that makes little allowance for atypically developing 
children who require more attention and practice. In theory, remediation requires an 
approach personalised to individual learners. In practice, it is difficult to afford such 
instruction for even a small proportion of pupils in publicly funded education. In the 
UK, it has been estimated that effective intervention for 5–7-year-olds in the lowest 
10th percentile, using one-to-one teaching, would cost about £2600 per learner.

The result is that many learners are still struggling with basic arithmetic in sec-
ondary school (Shalev et al. 2005). And yet effective early remediation is critical for 
reducing the later impact on poor numeracy skills. Although very expensive, it 
promises to repay 12–19 times the investment (Gross et al. 2009).

As I have argued elsewhere, one approach to the problem of delivering person-
alised instruction to individual learners is to make use of technology. Personalised 
adaptive learning technology solutions emulate the guidance of the special educa-
tional needs teacher, focusing on manipulation of numerosities (Butterworth and 
Yeo 2004; Räsänen et al. 2009; Wilson et al. 2006). These solutions go far beyond 
the educational software currently in use for numeracy teaching, which mainly tar-
gets mainstream learners. Commercial software does little more than rehearse stu-
dents in what they already know, perhaps building automaticity and efficiency, but 
it does not foster understanding, and it does not address the numerosity processing 
deficit in many learners and, especially, in dyscalculics. Rarely are commercial 
games founded on good pedagogy.

Of course, there is no clear logical pathway from assessment to educational rem-
edy, so our software seeks to use ideas from the best practitioners, such as Dorian Yeo 
(Butterworth and Yeo 2004), and established pedagogical principles, including:

	1.	 Constructionism – construct an action to achieve goal (Harel and Papert 1991).
	2.	 Informative feedback (Dayan and Niv 2008).
	3.	 Concept learning through contrasting instances and generalising concepts 

through attention to invariant properties (Marton and Pong 2007).
	4.	 Direct attention to salient properties (Frith 2007). This entails ensuring that 

everything on the screen is relevant to the task in hand.
	5.	 The zone of proximal development  – adapt each task to be just challenging 

enough (Vygotsky 1978).
	6.	 Use intrinsic rather than extrinsic reinforcement (Laurillard 2012).

B. Butterworth
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Examples of the games following these principles have been developed by Diana 
Laurillard and Baajour Hassan and can be found at http://number-sense.co.uk (see 
Fig. 20.2).

Their Dots2Track game exemplifies these principles. The task is to type the num-
ber of dots in a display. At level 1, these are arranged as in dominoes. In the case of 
an error, learner’s dots are counted onto a line above it and the correct number of 
dots on the line below it, exploiting principles 2 and 3. There is an opportunity to 
construct the correct answer by increasing or decreasing the number the learner 
chose (1). Everything on the screen is relevant (4), and game is adaptive, becoming 
more difficult depending on the accuracy and speed of the responses (5). The only 
reward is getting the right answer (6). There is preliminary data on the effectiveness 
of these games (Butterworth and Laurillard 2010).

Even if a learner has an inherited deficiency in the number module that is reflected 
in brain structure and functioning, this does not mean a life sentence of low numer-
acy. It may be that the right interventions over sufficient time can strengthen the 
number competence to a typical level and indeed modify the brain to a more typical 
structure, as has been shown in the case of phonological training for dyslexic learn-
ers (Eden et al. 2004). This will require a longitudinal study that has not yet been 
carried out.

20.6  �Conclusions

I have argued here that the genetic research is supported by neurobehavioural 
research identifying the representation of numerosities – the number of objects in a 
set – as a foundational capacity in the development of arithmetic. Where this capac-
ity is weak, education should seek to strengthen this capacity using sets of real or 
virtual objects and linking the sets to the spoken and written numbers until the 
learner can use numbers fluently and confidently. This will provide a sound basis for 
developing arithmetic.

Fig. 20.2  Dots2Track (for an explanation see text)

20  Low Numeracy: From Brain to Education
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