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Abstract. We study strategy improvement algorithms for solving par-
ity games. While these algorithms are known to solve parity games using
a very small number of iterations, experimental studies have found that
a high step complexity causes them to perform poorly in practice. In this
paper we seek to address this situation. Every iteration of the algorithm
must compute a best response, and while the standard way of doing this
uses the Bellman-Ford algorithm, we give experimental results that show
that one-player strategy improvement significantly outperforms this tech-
nique in practice. We then study the best way to implement one-player
strategy improvement, and we develop an efficient parallel algorithm for
carrying out this task, by reducing the problem to computing prefix sums
on a linked list. We report experimental results for these algorithms, and
we find that a GPU implementation of this algorithm shows a significant
speedup over single-core and multi-core CPU implementations.

1 Introduction

Parity Games. A parity game is a zero-sum game played on a finite graph
between two players called Even and Odd. Each vertex of the graph is labelled
with an integer priority. The players move a token around the graph to form an
infinite path, and the winner is determined by the parity of the largest priority
that is visited infinitely often: Even wins if and only if it is even.

Parity games have attracted much attention in the verification community,
because they capture the expressive power of nested least and greatest fixpoint
operators, as formalized in the modal μ-calculus and other fixpoint logics [11].
In particular, deciding the winner in parity games is polynomial-time equivalent
to checking non-emptiness of non-deterministic parity tree automata, and to
the modal μ-calculus model checking, two fundamental algorithmic problems in
automata theory, logic, and verification [7,11,27].

Strategy Improvement. We study strategy improvement for solving parity
games, which is a local search technique that iteratively improves the strat-
egy of one of the two players until an optimal strategy is found. Much like
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R. Majumdar and V. Kunčak (Eds.): CAV 2017, Part II, LNCS 10427, pp. 137–154, 2017.
DOI: 10.1007/978-3-319-63390-9 8



138 J. Fearnley

the simplex method for linear programming, and policy iteration algorithms for
MDPs, strategy improvement algorithms can solve large parity games in a very
small number of iterations in practice. The first strategy improvement algorithm
devised specifically for parity games was given by Vöge and Jurdziński [30], and
since then several further algorithms have been proposed [2,20,26].

Every strategy improvement algorithm uses a switching rule to decide how to
proceed in each step. Theoretically, the best known switching rule is the random-
facet rule, which provides a 2O(

√
n log n) upper bound on the number of strategy

improvement iterations [21]. However, this is a single switch rule, which only
switches one edge in each iteration. In practice, we would expect an arbitrarily
chosen initial strategy to differ from an optimal strategy by O(n) edges, and so
a single switch rule will necessarily cause the strategy improvement algorithm
to take at least O(n) iterations.

In this paper, we focus on the greedy all-switches switching rule, which
switches every vertex that can be switched in each iteration. This rule has been
found to perform very well in practice, and as our experimental results confirm,
greedy all-switches strategy improvement can solve games with more than ten
million vertices in under one-hundred iterations.

Practical Aspects of Strategy Improvement. Although strategy improve-
ment can solve large games using only a handful of iterations, experimental work
has found that it performs very poorly in practice. For example, Friedmann and
Lange performed an experimental study [10] in which the all-switches variant
of the Vöge-Jurdziński algorithm was compared with Jurdziński’s small-progress
measures algorithm [16] and Zielonka’s recursive algorithm [32]. They found
that, in some cases, the Vöge-Jurdziński algorithm takes longer than an hour
to solve games with under one-hundred thousand vertices, whereas the recursive
algorithm can scale to problems that are an order of magnitude larger.

The reason for this is that, although the algorithm uses a very small number
of iterations, the cost of performing each step is very high. In particular, the
Vöge-Jurdziński algorithm, which has served as the standard benchmark for
strategy improvement algorithms, has a step complexity of O(n2), even in games
with a small number of priorities1.

In fact, there are existing algorithms that avoid this high step complexity.
Björklund, Sandberg and Vorobyov present an algorithm whose step complexity
is O(n · d), where d is the number of distinct priorities used in the game. While
d can be as large as n in the case where every vertex has a distinct priority, in
practice d is often a very small constant such as 2 or 4. Luttenberger observed [20]
that a particularly simple algorithm is obtained if one combines the Björklund-
Vorobyov strategy improvement algorithm for mean-payoff games [2], with the
discrete valuation used by the Vöge-Jurdziński algorithm. This algorithm also
has O(n · d) step complexity, and is the one that we will focus on in this paper.

1 This is because the algorithm requires that every vertex has a distinct priority, and
so comparing two valuations requires O(n) time.
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Our Contribution. Our goal in this paper is to show that all-switches strategy
improvement can be used in practice to solve large parity games efficiently. As
we have mentioned above, the number of iterations needed by the algorithm
is usually tiny, and so our effort is dedicated towards improving the cost of
computing each step. The main contributions of this paper are:

Best Response Computation. In each iteration of strategy improvement, the
algorithm has a strategy for one of the two players, and must compute a best
response strategy for the opponent. This can be a very expensive operation in
practice. For the algorithm studied in this paper, this boils down to solving a
solving a shortest paths problem that can contain negative weights. The natural
approach is to apply the Bellman-Ford algorithm. However, the first contribution
of this paper is to show that there is a better approach: best responses can be
computed using a one-player version of strategy improvement.

The performance of strategy improvement algorithms on shortest paths prob-
lems was studied by Cochet-Terrasson and Gaubert [3]. While they showed that
the number of improvement iterations is at most O(|V ||E|), their experimental
results on random graphs found that strategy improvement was outperformed
by the Bellman-Ford algorithm. They found that, while they typically both take
the same number of iterations, one iteration of strategy improvement is more
expensive than one iteration of Bellman-Ford.

Nevertheless, for the case of parity games, we give experimental evidence
to show that one-player strategy improvement outperforms the Bellman-Ford
algorithm when computing best responses. The experimental data shows that
part, but not all, of this improvement is due to the fact that we can initialize
the algorithm with the best response from the previous iteration.

A Parallel Algorithm for Strategy Improvement. Once we fix the decision to use
one-player strategy improvement to compute best responses, we turn our atten-
tion towards the best way to implement this. In recent years, hardware manu-
facturers have made little progress in speeding up single-core CPU workloads,
but progress continues to be made by adding more cores to CPUs. Moreover,
GPUs continue to be made more powerful, and the rise of general purpose com-
puting on GPUs has found many prominent applications, for example, in the
training of deep neural networks. For this reason, we argue that good parallel
implementations are required if we are to use an algorithm in practice.

The second contribution of this paper is to develop an efficient parallel algo-
rithm for computing a strategy improvement iteration. The decision to use one-
player strategy improvement to compute best responses means that the only
non-trivial task is to compute the valuation of a pair of strategies. We show
that this task can be reduced to an instance of list ranking, a well-studied prob-
lem that requires us to compute the prefix-sum of a linked list. The first work
optimal parallel algorithm for list ranking was given by Cole and Vishkin [4].
However, their algorithm is complex and difficult to implement in practice.
Helman and Jájá give a simpler randomized algorithm that is work efficient with
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high probability [12], and in particular it has been shown to work well on modern
GPU hardware [31]. We give a modification of the Helman-Jájá algorithm that
can be used to compute a valuation in a parity game.

Experimental Results. We have produced CPU and GPU implementations of
the aforementioned parallel algorithm. The third contribution of this paper is
to provide experimental results. We use the recently developed benchmark suite
of Keiren [18], which unlike previous benchmarks from PGSolver [10], contains
large parity games derived from real verification tasks.

We find that our implementation scales to parity games with tens of millions
of vertices, and that the limiting factor is memory rather than run time. We
also compare a single-threaded sequential CPU implementation with a multi-
threaded parallel CPU implementation and a GPU implementation, which both
use list ranking algorithm described above. While the parallel CPU implemen-
tation fails to deliver a meaningful speedup, the GPU implementation delivers
an average speedup of 10.37.

Related Work. Strategy improvement originated from the policy iteration
algorithms that are used to solve Markov decision processes [25], and can be seen
as a generalisation of this method to the two-player setting. The method was first
proposed by Hoffman and Karp in order to solve two-player concurrent stochastic
games [1]. It was then adapted by Condon [5] to solve simple-stochastic games,
and by Puri to solve discounted games [24]. Parity games can be reduced in poly-
nomial time to discounted and simple-stochastic games [15,33], so both of these
algorithms could, in principle, be used to solve parity games, but both reductions
require the use of large rational numbers, which makes doing so impractical.

The greedy all-switches switching rule has received much attention in the
past. Its good experimental performance inspired research into whether it always
terminates after polynomially many iterations. However, Friedmann showed that
this was not the case [9], by giving an example upon which the algorithm takes
exponential time. Recently, it has even been shown that deciding whether a given
strategy is visited by the algorithm is actually a PSPACE-complete problem [8].

There has been much previous work on solving parity games in parallel. Most
of the work so far has focused on the small progress measures algorithm [16],
because it can be, implemented in parallel in an straightforward way. In the first
paper on this topic, van de Pol and Weber presented a multi-core implementation
of the algorithm [28], and Huth et al. presented further optimizations to that
algorithm [14]. Two papers have reported on implementations on the parallel
Cell processor used by the Playstation 3 [17,29].

For parallel implementations of strategy improvement, there are two relevant
papers. Hoffman and Luttenberger have given GPU implementations of various
algorithms for solving parity games [13]. In particular, they implemented the
strategy improvement algorithm that is studied in this paper, but they used the
Bellman-Ford algorithm to compute best responses. Meyer and Luttenberger
have reported on a GPU implementation of the Björklund-Vorobyov strategy
improvement algorithm for mean-payoff games [22].
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2 Preliminaries

Parity Games. A parity game is played between two players called Even and
Odd. Formally, it is a tuple G = (V, VEven, VOdd, E,pri), where (V,E) is a directed
graph. The sets VEven and VOdd partition V into the vertices belonging to player
Even, and the vertices belonging to player Odd, respectively. The priority func-
tion pri : V → N assigns a positive natural number to each vertex. We define
DG = {p ∈ N : pri(v) = p for some v ∈ V } to be the set of priorities that are
used in G. We make the standard assumption that there are no terminal vertices,
which means that every vertex is required to have at least one outgoing edge.

A positional strategy for player Even is a function that picks one outgoing
edge for each Even vertex. More formally, a positional strategy for Even is a
function σ : VEven → V such that, for each v ∈ VEven we have that (v, σ(v)) ∈ E.
Positional strategies for player Odd are defined analogously. We use ΣEven and
ΣOdd to denote the set of positional strategies for players Even and Odd, respec-
tively. Every strategy that we consider in this paper will be positional, so from
now on, we shall refer to positional strategies as strategies.

A play of the game is an infinite path through the game. More precisely, a play
is a sequence v0, v1, . . . such that for all i ∈ N we have vi ∈ V and (vi, vi+1) ∈ E.
Given a pair of strategies σ ∈ ΣEven and τ ∈ ΣOdd, and a starting vertex v0,
there is a unique play that occurs when the game starts at v0 and both players
follow their respective strategies. So, we define Play(v0, σ, τ) = v0, v1, . . . , where
for each i ∈ N we have vi+1 = σ(vi) if vi ∈ VEven, and vi+1 = τ(vi) if vi ∈ VOdd.

Given a play π = v0, v1, . . . we define:

MaxIo(π) = max{p : ∃ infinitely many i ∈ N s.t. pri(vi) = p},

to be the largest priority that occurs infinitely often along π. The winner is
determined by the parity of this priority: a play π is winning for player Even if
MaxIo(π) is even, and we say that π is winning for Odd if MaxIo(π) is odd.

A strategy σ ∈ ΣEven is a winning strategy for a vertex v ∈ V if, for every (not
necessarily positional) strategy τ ∈ ΣOdd, we have that Play(v, σ, τ) is winning
for player Even. Likewise, a strategy τ ∈ ΣOdd is a winning strategy for v if, for
every (not necessarily positional) strategy σ ∈ ΣEven, we have that Play(v, σ, τ)
is winning for player Odd. The following fundamental theorem states that parity
games are positionally determined.

Theorem 1 [6,23]. The set of vertices V can be partitioned into winning sets
(WEven,WOdd), where Even has a positional winning strategy for all v ∈ WEven,
and Odd has a positional winning strategy for all v ∈ WOdd.

The computational problem that we are interested in is, given a parity game, to
determine the partition (WEven,WOdd).

3 Strategy Improvement

In this section, we describe the strategy improvement algorithm that we will
consider in this paper. The algorithm, originally studied by Luttenberger [20],
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is a combination of the Björklund-Vorobyov strategy improvement algorithm
for mean-payoff games [2], with the discrete strategy improvement valuation of
Vöge and Jurdziński [30]. Strategy improvement algorithms select one of the two
players to be the strategy improver. In this description, and throughout the rest
of the paper, we will select player Even to take this role.

A Modified Game. At the start of the algorithm, we modify the game by
introducing a new sink vertex s into the graph. For each vertex v of the Even
player, we add a new edge from v to the sink. The idea is that, at any point
player Even can choose to take the edge to s and terminate the game. The owner
and priority of s are irrelevant, since the game stops once s is reached.

Admissible Strategies. A strategy σ ∈ ΣEven is said to be admissible if player
Odd cannot force and odd cycle when playing against σ. More formally, σ is
admissible if, for every strategy τ ∈ ΣOdd we have that Play(v, σ, τ) either arrives
at the sink s, or that MaxIo(Play(v, σ, τ)) is even. The strategy improvement
algorithm will only consider admissible strategies for player Even.

Valuations. The core of a strategy improvement algorithm is a valuation, which
measures how good a given pair of strategies is from a given starting vertex. For
our algorithm, the valuation will count how many times each priority occurs on
a given path, so formally a valuation will be a function of the form DG → Z,
and we define ValsG to be the set of all functions of this form.

Given an admissible strategy σ ∈ ΣEven for Even, a strategy τ ∈ ΣOdd for
Odd, and a vertex v ∈ V , we define the valuation function Valσ,τ (v) : V →
ValsG ∪ {�} as follows.

– If π = Play(v, σ, τ) is infinite, then we define Valσ,τ (v) = �
– If π = Play(v, σ, τ) is finite, then it must end at the sink s. The valuation of v

will count the number of times that each priority appears along π. Formally,
if π = v0, v1, . . . , vk, s, then for each p ∈ DV we define a valuation L ∈ ValsG
as follows:

L(p) =
∣
∣{i ∈ N : pri(vi) = p}∣∣.

We set Valσ,τ (v) = L.

Observe that, since σ is an admissible strategy, Valσ,τ (v) = � implies that
Play(v, σ, τ) is winning for Even.

Next, we introduce the operator � which will be used to compare valuations.
We define L � � for every L ∈ ValsG . When we compare two valuations, however,
the procedure is more involved. Let L1, L2 ∈ Valsg be two valuations. If L1 = L2

then L1 � L2 and L2 � L1. Otherwise, we define Maxdiff(L1, L2) to be the
largest priority p such that L1(p) �= L2(p). Then, we have that L1 � L2 if
and only if one of the following is true: either p = Maxdiff(L1, L2) is even and
L1(p) < L2(p), or p = Maxdiff(L1, L2) is odd and L1(p) > L2(p).
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Best Responses. Given an admissible strategy σ ∈ ΣEven, a best response
is a strategy τ ∈ ΣOdd that minimizes the valuation of each vertex. More
formally, we define, br(σ) ∈ ΣOdd to be a strategy with the property that
Valσ,br(σ)(v) � Valσ,τ (v) for every strategy τ ∈ ΣOdd and every vertex v. If there
is more than one such strategy, then we pick one arbitrarily. Although it is not
immediately clear, it can be shown that there is a single strategy τ ∈ ΣOdd that
simultaneously minimises the valuation of all vertices. Strategy improvement
only ever considers an admissible strategy σ played against its best response, so
we define the shorthand Valσ = Valσ,br(σ).

The Algorithm. We are now ready to describe the strategy improvement algo-
rithm. It begins by selecting the following initial strategy for Even. We define
σinit ∈ ΣEven so that σinit(v) = s for all v ∈ VEven. Note that there is no guaran-
tee that σinit is admissible, because there may be a cycle with odd parity that
contains only vertices belonging to player Odd. So, a preprocessing step must
be performed to eliminate this possibility. One simple preprocessing procedure
is to determine the set of vertices from which Odd can avoid visiting an Even
vertex, and to insert enough dummy Even vertices into this subgame to prevent
Odd from forming a cycle. As it happens, none of the games considered in our
experimental study require preprocessing, so this is not a major issue in practice.

In each iteration, strategy improvement has a strategy for the improver. The
first step is to compute the set of switchable edges for this strategy. An edge
(v, u) is switchable in strategy σ if u �= σ(v) and Valσ(σ(v)) � Valσ(u). We
define Sσ to be the set of edges that are switchable in σ.

The algorithm selects a non-empty subset of the switchable edges and
switches them. We say that a set of edges S ⊆ E is a switchable set if, for
every pair of edges (v, u), (v′, u′) ∈ S, we have has v �= v′, that is, S does not
contain two outgoing edges for a single vertex. If S is a switchable set and σ is
a strategy, then we can switch S in σ to create the new strategy σ[S] where, for
every vertex v:

σ[S](v) =

{

u (v, u) ∈ S,

σ(v) otherwise.

The key property of strategy improvement is that, if S ⊆ Sσ is a switchable
set that contains only switchable edges, then we have that σ[S] is better than σ

in the � ordering. Formally, this means that Valσ(v) � Valσ[S](v) for all vertices
v, and there exists at least one vertex for which we have Valσ(v) � Valσ[S](v).

The strict improvement property mentioned above implies that the algo-
rithm cannot visit the same strategy twice, so it must eventually terminate. The
algorithm can only terminate once it has reached a strategy with no switch-
able edges. We can use this strategy to determine winning sets for both players.
That is, if σ∗ is a strategy with no switchable edges, then we can prove that:
WEven = {v ∈ V : Valσ

∗
(v) = �}, and WOdd = {v ∈ V : Valσ

∗
(v) �= �}.

Luttenberger has given a direct proof that the algorithm is correct [20]. Actu-
ally, a simple proof of correctness can be obtained directly from the correctness
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of Björklund-Vorobyov (BV) algorithm. It is not difficult to show that if we
turn the parity game into a mean-payoff game using the standard reduction,
and then apply the BV algorithm to the resulting mean-payoff game, then the
BV algorithm and this algorithm will pass through exactly the same sequence
of strategies.

Theorem 2. The following statements are true.

– For every strategy σ ∈ ΣEven there is at least one best response τ ∈ ΣOdd.
– Let σ be a strategy, and let S ⊆ Sσ be a switchable set that contains only

switchable edges. We have Valσ(v) � Valσ[S](v) for all vertices v, and there
exists at least one vertex for which we have Valσ(v) � Valσ[S](v).

– Let σ be a strategy that has no switchable edges. We have WEven = {v ∈ V :
Valσ(v) = �}, and WOdd = {v ∈ V : Valσ(v) �= �}.

Switching Rules. Strategy improvement always switches a subset of switchable
edges, but we have not discussed which set should be chosen. This decision is
delegated to a switching rule, which for each strategy picks a subset of the
switchable edges. In this paper we will focus on the greedy all-switches rule,
which always switches every vertex that has a switchable edge. If a vertex has
more than one switchable edge, then it picks an edge (v, u) that maximizes
Valσ(u) under the � ordering (arbitrarily if there is more than one such edge).

4 Computing Best Responses

To implement strategy improvement, we need a method for computing best
responses. Since we only consider admissible strategies for Even, we know that
Odd cannot create a cycle with odd parity, and so computing a best response
simply requires us to find a shortest-path from each vertex to the sink, where
path lengths are compared using the � ordering. Any vertex that has no path to
the sink is winning for Even. The obvious way to do this is to apply a shortest-
paths algorithm. Note that odd priorities correspond to negative edges weights,
so a general algorithm, such as the Bellman-Ford algorithm, must be applied.

One-Player Strategy Improvement. In this paper, we propose an alterna-
tive: we will use one-player strategy improvement equipped with the greedy-all
switches rule. We say that an edge (v, u) is Odd-switchable if v ∈ VOdd and
Valσ,τ (σ(v)) � Valσ,τ (u). To find a best response against a fixed admissible strat-
egy σ ∈ ΣEven, the algorithm starts with an arbitrary Odd strategy τ ∈ ΣOdd,
and repeatedly switches Odd-switchable edges until it arrives at an Odd strategy
in which there are no Odd-switchable edges.

It is not difficult to see that if τ has no Odd-switchable edges when played
against σ, then it is a best response against σ, because a strategy with no Odd-
switchable edges satisfies the Bellman optimality equations for shortest paths.

One-player strategy improvement algorithms for solving shortest paths prob-
lems were studied by Cochet-Terrasson and Gaubert [3]. In particular, they
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proved that the all-switches variant of the algorithm always terminates after at
most O(|V ||E|) steps. Hence, we have the following lemma.

Lemma 3. Let σ be an admissible strategy. One-player strategy improvement
will find a best-response against σ after at most O(|V ||E|) iterations.

The Algorithm. We can now formally state the algorithm that we will study.
Given a strategy σ ∈ ΣEven, let AllEven(σ) be the function that implements the
greedy all-switches switching rule as described earlier. Moreover, given a pair of
strategies σ ∈ ΣEven and τ ∈ ΣOdd, let AllOdd(σ, τ) be a set S of Odd-switchable
edges (v, u) such that there is no edge (v, w) ∈ E with Valσ,τ (u) � Valσ,τ (w),
and such that each vertex has at most one outgoing edge in S.

Algorithm 1. The strategy improvement algorithm
Initialize σ := σinit and set τ to be an arbitrary strategy.
repeat

repeat
Compute Valσ,τ (v) for every vertex v.
Set τ := τ [SOdd] where SOdd = AllOdd(σ, τ).

until SOdd = ∅
Set σ := σ[SEven] where SEven = AllEven(σ).

until SEven = ∅

The inner loop computes best responses using one-player strategy improve-
ment, while the outer loop performs the two-player strategy improvement algo-
rithm. Note, in particular, that after switching edges in σ, the first Odd strategy
considered by the inner loop is the best response to the previous strategy.

5 Parallel Computation of Valuations

Most operations used by strategy improvement can naturally be carried out in
parallel. In particular, if we have already computed a valuation, then deciding
whether an edge is switchable at a particular vertex v, and finding the switchable
edge that has the highest valuation at v, are both local properties that only
depend on the outgoing edges of v. So these operations can trivially be carried
out in parallel. This leaves the task of computing a valuation as the only task
that does not have an obvious parallel algorithm.

In this section, we give an efficient parallel algorithm for computing a val-
uation. Given two strategies σ ∈ ΣEven and τ ∈ ΣOdd in a game G, we show
how computing Valσ,τ (v) can be parallelized in a work efficient manner. There
is an obvious sequential algorithm for this task that runs in time O(|V | · |DG |)
which works backwards on the tree defined by σ and τ and counts how many
times each priority appears on each path to s. Every vertex not found by this
procedure must have valuation �.
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List Ranking. The idea of our algorithm is to convert the problem of computing
a valuation, into the well-known problem of computing prefix-sums on a linked
list, which is known as list ranking. We will then adapt the efficient parallel
algorithms that have been developed for this problem.

Given a sequence of integers x0, x1, x2, . . . , xk, and a binary associative oper-
ator ⊕, the prefix-sum problem requires us to compute a sequence of integers
y0, y1, y2, . . . , yk such that yi = x1 ⊕ x2 ⊕ · · · ⊕ xi−1. If the input sequence is
given as an array, then efficient parallel algorithms have long been known [19].

If the input sequence is presented as a linked-list, then the problem is called
the list ranking problem, and is more challenging. The first work optimal parallel
algorithm for list ranking was given by Cole and Vishkin [4]. However, their
algorithm is complex and difficult to implement in practice. Helman and Jájá give
a simpler randomized algorithm that is work efficient with high probability [12].

Theorem 4 [12]. There is a randomized algorithm for list ranking that, with
high probability, runs in time O(n/p) whenever n > p2 ln n, where n denotes the
length of the list, and p denotes the number of processors.

We now give a brief overview of the algorithm, as we will later modify it
slightly. A full and detailed description can be found in [12]. The algorithm works
randomly choosing s = n

p log n elements of the list to be splitters. Intuitively, each
splitter defines a sublist that begins at the splitter, and ends at the next splitter
that is encountered in the list (or the end of the list). These sublists are divided
among the processors, and are ranked using the standard sequential algorithm.
Once this has been completed, we can create a reduced list, in which each element
is a splitter, and the value of each element is the prefix-sum of the corresponding
sublist. The reduced list is ranked by a single processor, again using the standard
sequential algorithm. Finally, we can complete the list ranking task as follows:
if an element e of the list has rank xr in its sublist, and the splitter at the start
of sublist has rank xs in the reduced list, then the rank of e is xs ⊕ xr.

Pseudoforests and Euler Tours. We now show how the problem of comput-
ing a valuation can be reduced to list ranking. Let Gσ,τ = (V, VEven, VOdd, E

σ,τ ,
pri) be the game G in which every edge not used by σ and τ is deleted. Since
each vertex has exactly one outgoing edge in this game, the partition of V into
VEven and VOdd are irrelevant, and we shall treat Gσ,τ has a graph labelled by
priorities.

First, we observe that Gσ,τ is a directed pseudoforest. The set of vertices whose
valuation is not � form a directed tree rooted at s. For these vertices, our task is
to count the number of times each priority occurs on each path to the sink, and
hence compute a valuation. Each other vertex is part of a directed pseudotree,
which is a directed tree in which the root also has exactly one outgoing edge
that leads back into the tree. Since we deal only with admissible strategies, every
vertex in a pseudotree has valuation �.

A standard technique for reducing problems on trees to list ranking is the
Euler tour technique. We will describe this technique for the tree rooted at s,
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Fig. 1. Converting a tree into a linked list using the Euler tour technique. Left: the
original tree. Right: the corresponding linked list.

and show that it can be used to compute a valuation. We will also use the same
technique for the other pseudo-trees in the graph, but since this portion of the
algorithm is not standard, we defer the description until later.

In order to compute a valuation for every vertex v in the tree rooted at s,
we need to count the number of times that a given priority p occurs on the
path from v to the root. We create a linked list as follows. First we replace each
directed edge (v, u) with two edges (v, u) and (u, v). Then we select an Euler
tour of this modified graph that starts and ends at the root. We use this tour
to create a linked list, in which each element of the list an edge of the original
tree, and the successors of each element are determined by the Euler tour. The
value associated with each element e is defined as follows:

– If e = (u, v), then the value of e is 1 if pri(v) = p, and 0 otherwise.
– If e = (v, u), then the value of e is −1 if pri(v) = p, and 0 otherwise.

If we then compute a list ranking on this list using + as the operator ⊕, then
the ranking of (v, u) gives the number of times p appears on the path from v to
the sink. Obviously, to compute a valuation we must do the above procedure in
parallel for each priority in the game.

Formal Reduction to List Ranking. We now give a formal definition of the
technique that we just described. Recall that Eσ,τ gives the edges chosen by σ
and τ . We define ←−

E σ,τ = {(u, v) : (v, u) ∈ Eσ,τ},

to be the set of reversed edges. We call each edge in Eσ,τ an up edge, since it
moves towards the root, and correspondingly we call each edge in

←−
E σ,τ a down

edge. The set of elements in our linked list will be L = Eσ,τ ∪ ←−
E σ,τ .

Next we define the successor function succ : L → L ∪ {ε}, which gives the
structure of the list, and where ε is used to denote the end of the list. To do this,
we take an arbitrary Euler tour of the tree, and define � to be the function that
follows this tour. Figure 1 gives an example of this construction.

In our overview, we described how to use list ranking to compute the num-
ber of times a given priority p appears on the path to the sink. In our formal
definition, we will in fact compute a full valuation with a single call to a list
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ranking algorithm. To achieve this, we define the weight function w : L → ValsG
as follows. For each priority p ∈ DG , we first define two valuations Ap, A−p ∈
ValsG so that, for every q ∈ DG :

Ap(q) =

{

1 if q = p,

0 otherwise.
A−p(q) =

{

−1 if q = p,

0 otherwise.

Then, for every list element e = (u, v) ∈ L: if e is an up edge then we set
w(e) = A− pri(u), and if e is a down edge then we set w(e) = Apri(v). Moreover, we
define the binary operator ⊕ as follows. Given two valuations A1, A2, we define
A1 ⊕ A2 = A3 where for every priority p ∈ DG we have A3(p) = A1(p) + A2(p).

Modifications to the Helman-Jájá Algorithm. We must also handle the
vertices that lie in pseudotrees. Our reduction turns every pseudotree into a pair
of cycles. The Helman-Jájá algorithm can be adapted to deal with these, by
ensuring that if a cycle is found in the reduced list, then all vertices on it are
given a valuation of �. Moreover, some vertices may not be part of a reduced list,
because they may be part of a small pseudotree, and none of random splitters
were in that pseudotree. Since the Helman-Jájá always picks the head of the list
to be a splitter (in our case this would be an edge leaving the sink at the start
of the Euler tour), every vertex in the tree rooted at s is in the reduced list. So
any vertex not part of a reduced list can be assigned valuation �.

Constructing the List Ranking Instance in Parallel. Since at least one
of σ and τ will change between every iteration, we must construct a new list
ranking instance in every iteration of our algorithm. Thus, in order to have a
true parallel algorithm, we must be able to carry out the reduction in parallel
as well.

We start by describing a sequential algorithm for the task. Each vertex in the
tree maintains two pointers startv and endv. Initially, startv points to the down
edge of v, and endv points to the up edge of v. Then, in an arbitrary order, we
process each vertex v, and do the following:

1. Determine the parent of v in the tree, and call it u.
2. Connect the list element pointed to by startu to the element pointed to by

startv.
3. Set startu = endv.

Once this has been completed, we then join the list element pointed to by startv
to the list element pointed to by endv, for all vertices v.

Intuitively, this algorithm builds the tour of each subtree incrementally. The
second step adds the tour of the subtree starting at v to the linked list associated
with u. The third step ensures that any further children of u will place their tours
after the tour of the subtree of v.

For example, let us consider the tree and corresponding Euler tour given in
Fig. 1, and let us focus on the vertex b. Initially, startv points to (a, b), while
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endv points to (b, a), which are the down and up edges of b, respectively. Let us
suppose that d is processed before e. When d is processed, (a, b) is connected to
(b, d) and startv is updated to point to (d, b). Subsequently, when e is processed
(d, b) is connected to (b, e), and startv is updated to point to (e, b). Then, in the
final step of the algorithm (b, d) is connected to (d, b) and (e, b) is connected to
(b, a). So, the linked list corresponding to the subtree of b (shown on the right in
Fig. 1) is created. Note that if e was processed before d, then a different linked
list would be created, which would correspond to a different Euler tour of the
tree. From the point of view of the algorithm, it is not relevant which Euler tour
is used to construct the linked list.

In theory, this algorithm can be carried out in parallel in O(n/p) time and
O(np) space by having each processor maintain its own copy of the pointers
startv and endv, and then after the algorithm has been completed, merging the
p different sublists that were created.

In practice, the space blow up can be avoided by using atomic exchange
operations, which are available on both CPU and GPU platforms. More precisely,
we can use an atomic exchange instruction to set startu = endv, while copying
the previous value of startu to a temporary variable, and then connect the list
element that was pointed to by startu to startv.

6 Experimental Results

Experimental Setup. Our experimental study uses four implementations.

– GPU-LR: a GPU implementation that uses the list-ranking algorithm to com-
pute valuations. The GPU is responsible for ranking the sublists, while rank-
ing the reduced list is carried sequentially on the CPU.

– CPU-Seq: a single-threaded implementation that uses the natural sequential
algorithm for computing valuations.

– CPU-LR: a multi-threaded CPU implementation that uses the list-ranking
algorithm to compute valuations. The sublists are ranked in parallel, while
the reduced lists is ranked by a single thread.

– Bellman-Ford: a single-threaded CPU implementation that uses the Bellman-
Ford algorithm to compute best responses.

All implementations are in C++, and the GPU portions are implemented using
NVIDIA CUDA. The code is publicly available2. We also compare our results
to PGSolver’s recursive algorithm, with all of PGSolver’s heuristics disabled in
order to deliver a fair comparison. We chose the recursive algorithm because
it was found to be the most competitive in the previous experimental study of
Friedmann and Lange [10].

For our benchmark games we utilise the suite that was recently developed
by Keiren [18]. This provides a wide array of parity games that have been used
throughout the literature for model-checking and equivalence checking. Since
there are over 1000 games, we have selected a subset of those games to use here,
2 https://github.com/jfearnley/parallel-si.

https://github.com/jfearnley/parallel-si
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Table 1. The games that we consider in our experimental study. The table displays
the number of vertices, player Even vertices, player Odd vertices, edges, and distinct
priorities.

Game Property Vertices ΣEven ΣOdd Edges Pris

CABP/Par 2 branching-bisim 167 k 79 k 88 k 434 k 2

CABP/Par 1 weak-bisim 147 k 122 k 25 k 501 k 2

ABP(BW)/CABP weak-bisim 157 k 129 k 27 k 523 k 2

Elevator fairness 862 k 503 k 359 k 1.4 m 3

Election eventually-stable 2.3 m 343 k 2.0 m 7.9 m 4

Lift (Incorrect) liveness 2.0 m 999 k 999 k 9.8 m 4

SWP/SWP 1 strong-bisim 3.8 m 1.5 m 2.2 m 11.5 m 2

SWP io-read-write 6.8 m 4.2 m 2.6 m 15.8 m 3

CABP io-receive 7.0 m 5.2 m 1.8 m 24.9 m 2

ABP/Onebit weak-bisim 8.3 m 7.2 m 1.1 m 31.3 m 2

Hesselink/Hesselink weak-bisim 29.9 m 22.9 m 7.0 m 78.8 m 2

SWP/SWP 2 branching-bisim 37.6 m 20.1 m 17.6 m 120.8 m 2

ABP(BW)/Onebit weak-bisim 35.4 m 30.6 m 4.8 m 134.9 m 2

SWP/SWP 3 weak-bisim 32.9 m 29.0 m 3.9 m 167.5 m 2

and these are shown in Table 1. In particular, we have chosen a set of games
that span a variety of sizes, and that cover a variety of tasks from verification.
We found that strategy improvement solves many of the games in the suite in a
very small number of iterations, so the results that we present here focus on the
games upon which strategy improvement takes the largest number of iterations.
The vast majority of the games in the suite have between 2 and 4 priorities,
and the ones that do not are artificially constructed (eg. random games), so we
believe that our sample is representative of real world verification tasks.

The test machine has an Intel Core i7-4770K CPU, clocked at 3.50 GHz
(3.90 GHz boost), with 4 physical cores, and 16 GB of RAM. The GPU is an
NVIDIA GeForce GTX 780, which has 2304 CUDA cores clocked at 1.05 GHz
and 3 GB of RAM. At the time of purchase in 2013, the CPU cost £248.20 and
the GPU cost £444.94. Since the CPU has 8 logical cores with hyper-threading
enabled, we use 8 threads in our CPU multi-threaded implementations. When
benchmarking for time, we ran each instance three times, and the reported results
are the average of the three. We implemented a time limit of 10 min. We only
report the amount of time needed to solve the game, discarding the time taken
to parse the game.

Best Response Algorithms. Our first experiment is to determine which
method for computing best responses is faster in practice. In this exper-
iment we compare the single-core sequential implementation of one-player
strategy improvement (SI) against a single-core sequential implementation of
the Bellman-Ford algorithm.
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Table 2. Experimental results comparing the algorithm used to compute a best
response. The algorithms are (1) SI: one-player strategy improvement (2) SI (Reset):
one-player strategy improvement starting from an arbitrary strategy (3) Bellman-Ford.
For each algorithm we report the total time and the total number of iterations used
by the best response algorithm.

Game Maj. SI SI-Reset Bellman-Ford

Edges Iter Time (s) Iter Time (s) Iter Time (s) Iter

CABP/Par 2 434 k 8 0.33 53 0.49 100 1.65 161

CABP/Par 1 501 k 12 0.22 47 0.36 93 2.41 235

ABP(BW)/CABP 523 k 9 0.15 28 0.29 65 1.38 128

Elevator 1.4 m 33 13.18 231 17.88 364 216.36 2238

Election 7.9 m 77 41.43 364 57.66 585 157.5 842

Lift (Incorrect) 9.8 m 16 9.09 69 22.82 215 42.47 242

SWP/SWP 1 11.5 m 8 14.69 58 22.25 93 71.21 152

SWP 15.8 m 11 25.44 82 31.69 104 109.31 148

CABP 24.9 m 11 5.45 11 5.54 11 59.37 108

ABP/Onebit 31.3 m 20 34.15 57 93.78 234 494.97 604

As we have mentioned, our one-player strategy improvement starts with the
optimal strategy against the previous strategy of the improver. To quantify the
benefit of this, we have also include results for a version of the one-player strategy
improvement algorithm that, at the start of each best response computation,
resets to the initial arbitrarily chosen strategy. We refer to this as SI-Reset.

The results are displayed in Table 2. We only report results for games that
Bellman-Ford solved within the 10 min time limit. We report the total number
of major iterations, which are the iterations in which the improver’s strategy
is switched. The number of major iterations does not depend on the algorithm
used to compute best responses. For each algorithm we report the overall time
and the total number of iterations used computing best responses.

Before discussing the results in detail we should first note that these results
paint a very positive picture for strategy improvement. All games were solved
in at most 77 major iterations, with most being solved with significantly fewer
major iterations. The number of iterations used on the Election instance was
the most that we saw over any instance in our study, including those that we do
not report here. This clearly shows that strategy improvement can scale to very
large instances.

Moving on to the choice of best response algorithm, the most striking feature
is that Bellman-Ford is on average 8.43 times slower than one-player strategy
improvement (min 3.80, max 16.42). Some of this difference can be explained
by the fact that Bellman-Ford is on average 1.72 times slower per iteration
than one-player strategy improvement (min 1.11, max 2.38), which may be due
to implementation inefficiencies. But most of the difference is due to the fact
that Bellman-Ford uses on average 5.30 times more iterations than one-player
strategy improvement (min 1.80, max 10.60).
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The results with SI-Reset show that only some of this difference can be
attributed to reusing the previous best response as SI-Reset uses on average
2.05 times more iterations than SI (min 1.00, max 4.11). Overall we found that
SI used an average of 5.49 iterations to compute each best response (min 1.0
max 9.9), which again indicates that this method can scale to very large games.

Table 3. Experimental results comparing the running time of (1) GPU-LR: list ranking
on the GPU (2) CPU-Seq: a sequential CPU implementation (3) CPU-LR: list ranking
on a 4-core CPU (4) PGSolver: the recursive algorithm from PGSolver. † indicates a
failure due to lack of memory.

Game Edges Iterations Time (s)

Maj. Tot. GPU-LR CPU-Seq CPU-LR PGSolver

CABP/Par 2 434.0 k 8 53 0.05 0.33 0.48 0.48

CABP/Par 1 501.0 k 12 47 0.04 0.22 0.4 0.46

ABP(BW)/CABP 523.0 k 9 28 0.03 0.15 0.25 0.49

Elevator 1.4m 33 231 0.87 13.18 11.56 13.23

Election 7.9m 77 364 4.37 41.43 58.43 30.45

Lift (Incorrect) 9.8m 16 69 0.79 9.09 9.35 40.76

SWP/SWP 1 11.5m 8 58 1.06 14.69 14.57 28.83

SWP 15.8m 11 82 2.71 25.44 35.01 201.83

CABP 24.9m 11 11 0.39 5.45 5.33 134.33

ABP/Onebit 31.3m 20 57 2.28 34.15 32.46 —†

Hesselink/Hesselink 78.8m 28 142 —† 318.98 299.43 —†

SWP/SWP 2 120.8m 10 99 —† 282.17 265.62 —†

ABP(BW)/Onebit 134.9m 20 57 —† 147.03 142.35 —†

SWP/SWP 3 167.5m 10 71 —† 142.96 168.45 —†

Parallel Implementations. Our second set of experimental results concerns
our parallel implementation of strategy improvement when best responses are
computed by one-player strategy improvement. The results are displayed in
Table 3.

The first thing to note is that the parallel algorithm does not deliver good
performance when implemented on a CPU. On average the multi-threaded CPU
list ranking algorithm was 1.25 times slower than the single-threaded sequential
algorithm (min 0.88, max 1.77). This can be partially explained by the fact
that the total amount of work done by the parallel algorithm is at least twice
the amount of work performed by the sequential algorithm, since turning the
strategy into a linked list doubles the number of vertices.

On the other hand, the GPU implementation delivers a significant speedup.
To give a fair comparison between the GPU implementation and the CPU imple-
mentations, we compute the ratio between the time taken by GPU-LR, and the
minimum of the times taken by CPU-Seq and CPU-LR. Using this metric we find
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that the average speedup is 10.37 (min 5.54, max 14.21). The average speedup
increases to 12.17 if we discard instances with fewer than 1 million edges, where
setup overhead makes the GPU algorithm less competitive.

The downside to the GPU implementation is that games with more than
about 32 million edges are too large to fit within the 3 GB of memory on our
test GPU. Obviously, there is a cost trade off between the extra speed delivered
by a GPU and the cost of purchasing a GPU with enough memory. At the time
of writing, relatively cheap consumer graphics cards can be bought with up to
8 GB of memory, while expensive dedicated compute cards are available with up
to 24 GB of memory.

Finally, we compare our results to PGSolver’s recursive algorithm. Here, to
have a fair comparison, we should compare with the sequential CPU algorithm,
as both algorithms are single-threaded. Unfortunately PGSolver ran out of mem-
ory for the very large games in our test set, but for the smaller games it can be
seen that CPU-Seq is always competitive, and in many cases significantly faster
than PGSolver.
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