
A Correct-by-Decision Solution for Simultaneous
Place and Route

Alexander Nadel(B)

Intel Corporation, P.O. Box 1659, 31015 Haifa, Israel
alexander.nadel@intel.com

Abstract. To reduce a problem, provided in a human language, to con-
straint solving, one normally maps it to a set of constraints, written in the
language of a suitable logic. This paper highlights a different paradigm,
in which the original problem is converted into a set of constraints and a
decision strategy, where the decision strategy is essential for guaranteeing
the correctness of the modeling. We name such a paradigm Correct-by-
Decision. Furthermore, we propose a Correct-by-Decision-based solution
within a SAT solving framework for a critical industrial problem that
shows up in the physical design stage of the CAD process: simultaneous
place and route under arbitrary constraints (design rules). We demon-
strate the usefulness of our approach experimentally on industrial and
crafted instances.

1 Introduction

Nowadays, constraint solvers are widely applied to solve a rich variety of prob-
lems. Normally, reducing a problem, provided in a human language, to constraint
solving involves the following steps:

1. Choosing the logic and the constraint solver most suitable for the problem at
hand.

2. Reducing the problem to a set of constraints in the chosen logic, querying the
solver, and mapping its results back to the original problem.

We call this generally accepted paradigm of reducing a problem to constraint
solving Correct-by-Constraint Paradigm (CBC).

Recently, a different paradigm has been identified and applied [8,12]. After
choosing the logic and the solver, the problem is reduced to a set of constraints
and a decision strategy for the solver. Both the constraints and the decision
strategy are essential for guaranteeing correctness. We call such a paradigm
the Correct-by-Decision Paradigm (CBC). The difference between CBC and CBD
paradigms is that in CBD the decision strategy is essential for guaranteeing the
correctness of the modeling (in other words, reverting to the default decision
strategy of the solver renders the modeling incorrect).

In [8,12], CBD-based solutions within a SAT solving framework were shown to
outperform CBC-based solutions by four orders of magnitude for two industrial
c© Springer International Publishing AG 2017
R. Majumdar and V. Kunčak (Eds.): CAV 2017, Part II, LNCS 10427, pp. 436–452, 2017.
DOI: 10.1007/978-3-319-63390-9 23

A Correct-by-Decision Solution for Simultaneous Place and Route 437

applications that show up in the physical design stage of Computer-Aided-Design
(CAD): clock routing [8] and routing under constraints (RUC) [12]. Several factors
were responsible for such an effect. First, the number of propositional clauses was
drastically reduced. This is because many of the constraints were not required,
their role being fulfilled by the decision strategy. In particular, the number of
clauses was reduced by two orders of magnitude for clock routing [8]. Second,
applying a problem-aware decision strategy helped make convergence substan-
tially faster (a similar effect was observed in earlier works [3,18]). In addition, the
decision strategy proved to be essential in meeting problem-specific optimization
targets, e.g., reducing the routing cost in [12].

Interestingly, the widely applied scheme of incremental SAT solving under
assumptions [2,7,13,14] can be thought of as an early unintentional application
of CBD. Incremental SAT solving under assumptions is used when the initial
problem can be solved with a series of SAT invocations over an incrementally
constructed SAT instance, each time under different assumptions. It was found
that instead of creating the SAT solver instance from scratch and using unit
clauses to model assumptions, it is more effective to keep the solver instance
alive and model the invocation-specific unit clauses as assumptions, that is, the
first decisions taken by the solver. Such an approach falls into CBD category, since
dropping the assumptions would render the approach unsound. Other examples
of early unintentional CBD applications include [6,10], where a custom decision
strategy was applied for efficient array reasoning and implicative simultaneous
satisfiability, respectively.

The goal of this paper is twofold:

1. To highlight the usefulness of CBD and provide more insight into it. While
previous works [8,12] identified that applying a decision strategy to simu-
late constraints is useful for their specific problems, we highlight CBD as a
stand-alone paradigm. We wish to raise the awareness about CBD among the
community, so that applying CBD for solving existing and new problems might
become an explicit option to be considered by researchers.

2. To propose a CBD-based solution to the critical industrial problem of Simulta-
neous Place and Route under Constraints (PRUC). Both placement and rout-
ing are sub-stages in the physical design stage of CAD. Devices are placed
in the placement stage and then connected (routed) in the routing stage
(see [1,19] for a survey of the currently used approaches to both placement and
routing). The eventual routing solution has to meet design rules which specify
restrictions originating in manufacturing requirements. Currently placement
and routing are carried out separately. The separation simplifies the physical
design process significantly, but can very negatively impact execution time
and solution quality. This is because the placer may come up with a solution
that cannot be routed at all or cannot be routed cleanly w.r.t the design
rules. In such a case additional place-and-route iterations are carried out,
slowing down the process. Moreover, convergence is still not guaranteed. We
propose a formal modeling and a CBD-based solution for the problem of simul-
taneous place and route under arbitrary bit-vector constraints that can be

438 A. Nadel

applied to model simultaneous place and route under arbitrary design rules
for integrated circuits [19] and printed circuit boards [1]. The advantages of
simultaneous place and route were realized in previous work [15,16], where
ad hoc place and route solutions were applied to two specific types of FPGA
designs. [12] proposed a CBD-based solution for the routing stage only.

The rest of the paper is built as follows.
Section 2 sketches a CBD-based solution for the problem of Path-Finding under

Constraints (PFUC) [4,12], that is, the problem of finding a path between two
given vertices in a graph in the presence of constraints. Section 2 is important for
two reasons. First, in it we illustrate the usefulness of CBD on a relatively simple
application. Second, the PFUC solution that it sketches is a sub-component in
both the RUC [12] and our proposed PRUC solutions.

Section 3 briefly reviews [12]’s approach to solving the RUC problem. This
provides the background for our formulation and solution for the PRUC problem,
which is introduced in Sect. 4. Section 5 provides the experimental results, and
Sect. 6 concludes our paper.

We assume that the reader is familiar with the basics of bit-vector solving
and SAT solving. See [9] for a recent overview.

2 Path-Finding Under Constraints

Consider the problem of path-finding, that is, finding a path from the source
s ∈ V to the target t ∈ V in an undirected non-negatively weighted simple
graph G = (V,E).

Path-finding can be solved using the Dijkstra algorithm. Alternatively, one
can reduce path-finding to propositional satisfiability as shown in Fig. 1. The
formula in Fig. 1 can easily be translated to Conjunctive Normal Form (CNF),
that is, a set of propositional clauses1, and solved with a SAT solver. The active
edges in the model returned by the solver (that is, the edges whose activity
variables are assigned the value 1) comprise the sought-for path from s to t.
Note that the neighbor constraints guarantee that s is connected to t.

Solving path-finding with a SAT solver is overkill since it can be solved with a
polynomial algorithm, however SAT may be useful if the solution should satisfy
additional user-given constraints. Consider the problem of Path-Finding under
Constraints (PFUC) [12] defined as follows.

In PFUC, the input comprises a graph G = (V,E), a source s ∈ V , a target
t ∈ V , and an arbitrary bit-vector formula F (E ∪ V ∪ A), where:

1. E are Boolean variables representing the edge activity.
2. V are Boolean variables representing the vertex activity.
3. A is a set of arbitrary auxiliary Boolean and bit-vector variables.

1 Neighbor constraints are cardinality constraints, which can easily be translated to
CNF (see [5] for a review).

A Correct-by-Decision Solution for Simultaneous Place and Route 439

1. Create a Boolean variable for every vertex and edge representing its activ-
ity, where a vertex/edge is active iff it appears on the solution path from
s to t.

2. Create edge consistency constraints: for each edge e = (v, u), create the
following constraint: e =⇒ v ∧ u (i.e., both vertices of an active edge are
active).

3. Create neighbor constraints: ensure that each vertex v has exactly n active
neighbor edges, where:
(a) n=0 if the vertex is inactive
(b) n=1 if v is the source or the target
(c) n=2 if v is an active internal vertex (that is, neither the source nor

the target)

Fig. 1. Modeling path-finding with constraints

Given a model for F , α, let Eα ⊆ E be the subset of edges assigned to 1 in α
and V (Eα) ⊆ V be the subset of the vertices touched by Eα. We call the graph
G(V (Eα), Eα) the solution graph induced by α.

In PFUC, the output should be either a model α for F , such that there exists
a path from s to t in the solution graph, or UNSAT, if no such model exists.
If the problem is satisfiable, a desirable optimization requirement is to decrease
the overall cost of the active edges.

PFUC can be solved by applying a SAT solver using the following two sets of
clauses as input: those generated by path-finding encoding in Fig. 1 and the input
bit-vector formula F translated to clauses. The problem is that such a CBC-based
solution does not scale [12]. This is because neither the decision heuristic nor
the conflict analysis components of the SAT solver are aware of the high-level
problem at hand. Below we sketch a CBD-based solution that is based on the
solution provided in [12]. It had previously been hinted at in [4].

First, activity variables and edge consistency constraints (entries 1 and 2 in
Fig. 1) are created. The neighbor constraints (entry 3 in Fig. 1) are no longer
required. Instead, the decision strategy will guarantee that there exists a (short)
path from s to t in the solution graph.

Second, SAT solver’s decision strategy is replaced by a strategy that builds
an explicit walk from s to t using an incremental shortest-path algorithm,
such as the Ramalingam-Reps algorithm [17] in [4] or the lazy A*-based flow
in [12]. The new decision strategy strategy constructs such a walk in a stack
π =

{
s

e1−→ v1 . . . vk−1
ek−→ l

}
. At the beginning, π contains the source s only. The

algorithm will extend π following the suggestions of the shortest-path algorithm,
where the shortest-path algorithm is allowed to use active and unassigned edges
only. More specifically, assume that the solver has to take a decision; assume also
that e is the next edge suggested by the shortest-path algorithm to be picked
to connect the latest π’s vertex l to t. If e is unassigned, the algorithm will
push e to the back of π and activate e (by taking the decision which assigns
e’s activity variable the value 1). If e has already been assigned 1 by Boolean

440 A. Nadel

Constraint Propagation (BCP), e is pushed to the back of π, and the shortest-
path algorithm is queried for the next edge. After the SAT solver backtracks, the
algorithm pops any unassigned edges from the back of π. After the walk from
s to t is completed, the solver deactivates any unassigned edges to reduce the
solution cost and then reverts to the default decision heuristic.

Third, the conflict analysis of the solver is extended as follows. Whenever
there is no longer any path from the latest π’s vertex l to t (because some
vertices were deactivated as a result of propagation in F), the solver records
a new clause that comprises the negation of the conflict cut–a subset of the
inactive vertices that blocks any path from l (and s) to t.

Figure 2 illustrates the algorithm. Consider the initial position in Fig. 2a. The
algorithm starts by extending π rightward from s = (0, 0) towards t = (3, 0) by
activating the edge (0,0)–(1,0). After that decision, two vertices become inactive
as a result of Boolean Constraint Propagation as shown in Fig. 2b. The solver
has to backtrack to (0, 0) and continue the walk towards t. As shown in Fig. 2c,
when the solver reaches the vertex (3, 2) there is a conflict as no path from (3, 2)
to t exists. The conflict cut comprises the following set {(2, 0), (3, 1)}. Note that
when the conflict cut’s vertices are inactive, any path from s to t is blocked.
The solver records the conflict cut as a clause, which triggers the SAT solver’s
conflict analysis and backtracking engines. The situation after backtracking is
shown in Fig. 2d. Extending the walk from that point on to t is straightforward.
The eventual solution is shown in Fig. 2e.

After a solution is found, a simple post-processing algorithm can be applied
to eliminate any cycles in the solution graph [12]. In our example this would
have resulted in the active edge (0,0)–(1,0) being deactivated.

0 1 2 3
0
1
2

(a) Start

0 1 2 3
0
1
2

X
X

(b) Can’t go right

0 1 2 3
0
1
2

X
X

X

(c) A conflict

0 1 2 3
0
1
2

X
X

X

(d) After backtracking

0 1 2 3
0
1
2

X
X

X

(e) Done

Fig. 2. Solving PFUC: trace example. Each intersection of the grid lines comprises a
vertex. Assume that s = (0, 0) and t = (3, 0) and that the following CNF formula is
provided: ¬(1, 0)∨¬(2, 0), ¬(1, 0)∨¬(1, 1), ¬(3, 2)∨¬(3, 1). Bold red edges correspond
to π. “X” marks inactive vertices. (Color figure online)

A CBD-based solution works well for the PFUC problem, since PFUC is com-
prised of two sub-problems, one better suited to a heuristic approach (finding
a short path) and the other to constraint solving (solving the user-given con-
straints).

A Correct-by-Decision Solution for Simultaneous Place and Route 441

3 Routing Under Constraints

This section sketches [12]’s formulation and CBD-based solution to the problem of
Routing under Constraints (RUC), which is required as background to our PRUC
solution.

Consider first the following routing problem. Let G = (V,E) be a non-
negatively weighted simple graph. Let Ni∈{0...m−1} ⊆ V be m pairwise disjoint
non-empty subsets of G’s vertices, called the nets, where the vertices of each net
are called the terminals. A routing (comprising a solution for the routing prob-
lem) is a forest of net routings Ei∈{0...m−1} ⊆ E, such that all Ni’s terminals are
connected in Ni’s net routing and all the net routings are pairwise vertex-disjoint.
See an input example in Fig. 4a and an example of a solution in Fig. 4b. In prac-
tice, solutions minimizing the overall routing cost are preferred. To solve the rout-
ing problem, heuristic approaches are commonly applied – see [1] for a survey.

Consider now the RUC problem. In RUC, the input comprises an instance of
the routing problem (that is, a graph G = (V,E) and nets Ni∈{0...m−1} ⊆ V)
and, in addition, a bit-vector formula F (E ∪ V ∪ N ∪ A), where the variables
have the following semantics:

1. E are Boolean variables representing the edge activity.
2. V are Boolean variables representing the vertex activity.
3. N are bit-vector variables defined as follows: for every vertex v, a bit-vector

variable 0 ≤ nid(v) ∈ N < m of width �log2m − 1� represents the unique net
id of active vertices, where the net id of net Ni is the index i.

4. A is a set of arbitrary auxiliary Boolean and bit-vector variables.

Let R be an RUC instance and α be an assignment to E ∪ V ∪ N ∪ A, then α
satisfies R if and only if all the conditions in Fig. 3 hold.

1. Routing correctness: any two terminals of the same net Ni are connected
in the solution graph G(V (Eα), Eα) and any two terminals of two different
nets are disconnected in G(V (Eα), Eα)

2. Net boundary consistency : for each vertex v ∈ V : 0 ≤ nid(v) < m
3. Terminal consistency : for each terminal t ∈ Ni : nid(t) = i
4. Net edge consistency : for each edge e = (v, u), e =⇒ v ∧ u ∧ (nid(v) =

nid(u)) (i.e., both vertices of an active edge are active and they share the
net id)

Fig. 3. RUC consistency

We now sketch [12]’s CBD-based solution for RUC.
Recall that any CBD-based solution is comprised of constraints and a deci-

sion strategy. In our case, the constraints part is composed of net boundary
consistency, terminal consistency, and net edge consistency shown in Fig. 3. The
routing correctness is ensured by the decision strategy.

442 A. Nadel

0 1 2 3 4
0
1
2
3
4

(a) Routing Input

0 1 2 3 4
0
1
2
3
4

(b) Solution

0 1 2 3 4
0
1
2
3
4

(c) Conflict

D0

D1

(d) Devices

Fig. 4. A routing example on a 5 × 5 solid grid graph, given two nets of two terminals
each N0 = {(0, 2), (4, 2)} and N1 = {(2, 0), (2, 3)}. It also serves as a place & route
example, given two devices D0 = {(2, 1)1, (0, 0)0} and D1 = {(2, 2)0, (0, 0)1}. Assume
the edges’ weights are 1. (Color figure online)

The basic idea behind the decision strategy is to route the nets one by one,
where, within each net, the terminals are routed one by one. Specifically, assume
that the terminal ti of net Ni =

{
t0, t1, . . . , t|Ni|−1

}
is to be routed. Let the

current net vertices be the set V (Ni) of vertices, connected to the already routed
terminals {t0, . . . , ti−1} by active edges. The algorithm will connect ti to the net
vertices using the PFUC algorithm of Sect. 2 (with some extensions to conflict
analysis, discussed below).

Consider, for example, the problem in Fig. 4a (no constraints are provided).
Routing the blue net N1, followed by the red net N0 yields the solution in Fig. 4b.
Assume the solver picked the other net ordering, i.e., that it started routing the
red net N0 first. That would result in the net conflict shown in Fig. 4c, where a
net conflict is a situation in which a conflicting net Nc (N1 in our example) is
blocked by other nets and inactive vertices.

In case of a net conflict, let the conflict cut be a set of inactive vertices
and vertices of net id nid(v) 	= c which block the path from the current ter-
minal of the conflicting net Nc to V (Nc). In our example, the conflict cut is
{(0, 2), (1, 2), (2, 2), (3, 2), (4, 2)}. The solver will add a new clause, which disal-
lows the conflict cut. The clause will contain the inactive vertices in the cut,
and, in addition, any active vertex v of net id nid(v) 	= c in the cut will con-
tribute to the clause one bit on which the values of nid(v) and c differ. In our
example, the net id comprises a single bit, and the clause will look as follows:
{nid(0,2),nid(1,2),nid(2,2),nid(3,2),nid(4,2)}. Adding the clause will trigger
the solver’s conflict analysis and backtracking engines. In our case, it will block
the red path shown in Fig. 4c. The solver will keep constructing and blocking
red paths until a red path going above the blue terminal (2, 3), and thus not
blocking the blue net N1, will be found.

Our example demonstrates that the order in which the nets are routed is crit-
ical. To speed up the algorithm, two net reordering algorithms were proposed
in [12]: net swapping and net restarting. Both techniques are applied when a
conflicting net Nc is blocked more times than a certain user-given threshold.
Net swapping swaps the order between Nc and the latest net Ni blocking Nc.
It then backtracks to the latest point where Nc is unassigned and starts routing

A Correct-by-Decision Solution for Simultaneous Place and Route 443

Nc. Net restarting moves Nc to the top of the net list and carries out a full
restart. The algorithm will start routing Nc right after the restart. The com-
bination of these techniques (where the net restarting threshold is higher than
the net swapping threshold) has been shown to be extremely efficient [12]. Note
that applying either one of the net reordering techniques would have solved the
example instance in Fig. 4a after the conflict shown in Fig. 4c without any further
conflicts.

4 Simultaneous Place and Route Under Constraints

As we have mentioned, the routing stage follows the placement stage in the CAD
process. More specifically, placement lays out the user-given devices on a grid,
and routing connects them. Below, for simplicity of presentation, we assume
that the grid is 2-dimensional; our algorithms, however, are equally applicable
to 3-dimensional grids.

The input to the Place and Route under Constraints (PRUC) problem contains
the following components:

1. A rectangle R = {Rx, Ry}, serving as the grid.
2. A graph G(V,E), whose each vertex vi ≡ (vx

i ∈ [0, Rx − 1] , vy
i ∈ [0, Ry − 1])∈V

is a point in R. We do not apply any restrictions on the edges (normally, the
edges are induced by the specific connectivity model of the input design).

3. A non-empty set of devices, where a device Di =
{

L0
i , . . . , L

|Di|−1
i

}
is a set

of leaves, each leaf Lj
i = (xj

i , y
j
i)nj

i
containing the leaf’s relative coordinates

(xj
i , y

j
i) w.r.t to the device’s root and the leaf’s net id nj

i . See the definition of
D0 and D1 in Fig. 4’s caption and their illustration in Fig. 4d for an example.
An optional placement rectangle Ri ⊆ R, where the device’s root is to be
placed, is provided for each device. Ri defaults to R.

4. A bit-vector formula F (E ∪ V ∪ N ∪ A) (the semantics of the variables being
similar to those presented in Sect. 3 in the context of RUC).

Informally, given a satisfiable PRUC instance, a PRUC solver should return a
placement for all the devices (where a vertex cannot be occupied by more than
one terminal) and a solution for the RUC instance, induced by the placement. We
need some more notations to formalize PRUC’s output.

Given a device Di, the vertex ri ≡ (ri[x], ri[y]) ∈ V is a potential root, if,
for each leaf Lj

i = (xj
i , y

j
i)nj

i
, the leaf’s terminal t(Lj

i , ri) ≡ (ri[x] + xj
i , ri[y] +

yj
i), given ri, lies within Ri. The set of all potential roots of Di is denoted by
roots(Di).

The example device D1 in Fig. 4 has the following potential roots, given a
5 × 5 solid grid graph: roots(D1) = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2),
(1, 2), (2, 2)}.

Placing a device Di at an actual root vertex ri ≡ (ri[x], ri[y]) ∈ V , means
creating a terminal t(Lj

i , ri) ≡ (ri[x]+xj
i , ri[y]+yj

i) for each leaf Lj
i = (xj

i , y
j
i)nj

i
.

444 A. Nadel

It must hold that the terminal t(Lj
i , ri) is active (i.e., the activity variable of the

terminal’s vertex is turned on) and that its net id matches that of the leaf (that
is, nid(t(Lj

i , ri)) = nj
i). In addition, each vertex can serve as a terminal for at

most one leaf (in other words, at most one device can occupy a vertex).
For example, the routing instance in Fig. 4a could have been created by

placing the two devices in Fig. 4d on a 5 × 5 solid grid graph as follows: D0

is placed at (0, 2) (creating the red terminal (0,2) and the blue terminal (2, 3)),
while D1 is placed at (2, 0) (creating the remaining two terminals).

Formally, a satisfying assignment to a PRUC instance comprises:

1. A placement for each device Di (that is, each Di is mapped to an actual
root).

2. A solution for the RUC instance, comprising G(V,E), the formula F (E∪V ∪N∪
A), and nets Nk∈{0...m−1}, where each net Nk is comprised of the terminals
of all the leaves with net id k.

As in the case of PFUC and RUC, a desirable optimization requirement is to
decrease the overall cost of the active edges. A PRUC should return UNSAT, given
an unsatisfiable instance.

Note that RUC is a special case of PRUC, where all the devices are fixed (that
is, their placement rectangle is fixed to one particular location). It was shown
in [12] that RUC cannot be efficiently solved with either a CBC-based encoding
or with the graph-aware solver Monosat [4]. Even more so, neither can PRUC
be efficiently solved by these means. Below we introduce our CBD-based PRUC
solution, which comprises a set of constraints (Sect. 4.1), a decision strategy
(Sect. 4.2), and performance optimization heuristics (Sect. 4.3).

4.1 Constraints

For each device Di and each potential root ri ∈ roots(Di), we create a Boolean
potential root engagement variable e(ri). Intuitively, e(ri) is 1 iff Di is placed at
ri. Now we are ready to present the constraints:

1. Net boundary consistency and net edge consistency constraints are inherited
from the RUC solution in Fig. 3.

2. Placement consistency : for each device Di, exactly one of its potential root
engagement variables holds.

3. Leaf consistency : for each device Di and each potential root engagement
variable e(ri): if e(ri) holds, then, for each leaf Lj

i = (xj
i , y

j
i)nj

i
∈ Di, the

terminal vertex t(Lj
i , ri) is active, and it holds that nid(t(Lj

i , ri)) = nj
i .

4. Placement uniqueness: For every vertex v, if the vertex can serve as a termi-
nal for more than one leaf, then at most one of the relevant potential root
engagement variables (that is, the potential root engagement variables for
roots, which, when used to place a device Di, render v a terminal) holds. In
our example in Fig. 4, the vertex (4, 2) can serve as a terminal for the leaves
L0
0 ≡ (2, 1)1 (if D0 is placed at (2, 1)) and L0

1 ≡ (2, 2)0 (if D1 is placed at
(2, 0)). Hence, the following cardinality constraint is created for the vertex
(4, 2): at-most-1(e(r0 ≡ (2, 1)), e(r1 ≡ (2, 0))).

A Correct-by-Decision Solution for Simultaneous Place and Route 445

Note that the high-level constraints are expressed in terms of standard bit-
vector operators and cardinality constraints. Thus, the constraints can easily be
translated to propositional clauses [5,9].

4.2 Decision Strategy

Our basic decision strategy goes as follows. For each device Di, in the user-given
order, we place the device at some potential root ri (by turning on ri’s potential
root engagement variable) and then route the device. To route a device Di we
proceed as follows: for every leaf Lj

i = (xj
i , y

j
i)nj

i
∈ Di in the user-given order,

we connect the newly created terminal t(Lj
i , ri) to nj

i ’s net vertices V (nj
i) (net

vertices are all the vertices connected to the already routed terminals of net
nj

i by active edges) using the PFUC algorithm, explained in Sect. 2 (with some
modifications to net conflict analysis, explained below).

Placement Heuristic. We introduce our placement heuristic (that is, the
heuristic the decision strategy uses for picking the actual root for the device)
after providing some additional notations.

Assume the decision strategy is about to place a device Di. We call a potential
root ri ∈ roots(Di) available, if its engagement variable e(ri) is unassigned or
assigned 12. For a device Di, let Di’s net id’s N(Di) be the set of the nets
associated with Di’s leaves. A net Nh is fresh if Nh does not belong to N(Dj)
for any of the already placed devices Dj . Di is fresh if all of Di’s nets are fresh
(in other words, a device Di is fresh if and only if none of net ids of the already
placed terminals belongs to N(Di)).

Assume we need to place a fresh device Di. In this case we place the device
as close to the center of the grid R as possible. More specifically, we strive to
minimize the overall cost of the shortest paths in G from the terminals, created
by placing the device, to the center3. The reason we chose this heuristic is because
the closer the device is to the border of the grid the more difficult it is to route
(since the borders restrict the routing options). More specifically, our algorithm
works as follows. We run Breadth-First-Search (BFS) starting at the center of
the grid and working outwards towards its borders. We pick the first available
root ri ∈ roots(Di), such that all Di’s terminals, given ri, were visited by BFS.
Note that the placement consistency constraints ensure that one of the roots
must be available. Placement uniqueness constraints ensure that there exists a
location, not occupied by another device.

Now assume we are about to place a non-fresh device Di. We place Di so as to
minimize the overall cost of the paths from the terminals, generated by placing
2 Let ri be a potential root of a device Di that is about to be placed by the decision

strategy. The engagement variable e(ri) can already be assigned 1 at this point if
Boolean Constraint Propagation (BCP) has been able to conclude that ri is the only
potential root of Di where the device can be placed.

3 The center is the vertex (Rx/2, Ry/2), if available, or, otherwise, the vertex whose
Manhattan distance from (Rx/2, Ry/2) is as small as possible.

446 A. Nadel

Di, to the net vertices of the non-fresh nets. Such a heuristic is useful both for
increasing the odds that the placement will be routable and for decreasing the
overall routing cost to meet the optimization requirement. More specifically, our
algorithm works as follows. For every vertex v and non-fresh net Nh, we calculate
the cost c(v,Nh) of the shortest path from v to Nh’s net vertices V (Nh). This
can be done by running BFS starting from V (Nh) for each non-fresh net Nh.
For every v, let c(v) be the sum of the costs c(v,Nh) across all the non-fresh
nets. We place Di at the root ri ∈ roots(Di) which minimizes the sum of the
c(v)’s for all Di’s terminals, given ri. To further improve efficiency, one can run
the BFS searches which start at the non-fresh nets in parallel and halt once the
first available root is reached.

Net Conflict Analysis. Our PRUC algorithm applies the PFUC algorithm, pre-
sented in Sect. 2, to connect the current terminal t of net Nh (created by placing
leaf Lj

i = (xj
i , y

j
i)h≡nj

i
of the currently routed device Di) to V (Nh). Assume that

PFUC encounters a net conflict, that is, that all the paths from t to V (Nh) are
blocked by the conflict cut, which comprises inactive vertices and vertices of net
id nid(v) 	= h. Our proposed conflict analysis algorithm is based on the conflict
analysis algorithm of the RUC solution, described in Sect. 3.

Recall that the RUC solution records a conflict clause C comprising the inac-
tive vertices in the cut, and that any active vertex v of net id nid(v) 	= h in the
cut contributes to the clause one bit on which the values of nid(v) and h differ.
Note that, unlike in the case of RUC, where the terminals are static, the termi-
nals are created by placing devices for PRUC. For the net conflict to occur, two
dynamically created terminals of net Nh must be separated by the conflict cut.
One such terminal is created by placing the currently routed device Di, while
the other terminal can belong to any previously placed device whose set of nets
includes Nh. Hence, we must augment the conflict clause C with two additional
literals:

1. The negation of the actual root’s engagement variable e(ri) of the currently
routed device Di, and

2. The negation of the actual root’s engagement variable e(rw) of one of the
previously placed devices Dw, whose set of nets includes Nh.

Example. Consider Fig. 4. Assume the algorithm is given a 5 × 5 grid and the
devices D0 and D1 (in that order). The algorithm will start by placing the device
D0 as close as possible to the center. The minimal distance to the center is 3
for several potential roots, (0, 2) included. Assume (0, 2) is picked as the actual
root, so D0 is placed as shown in Fig. 4a. The set of net vertices is empty for
both nets before placing D0, so no routing is required for the newly created
terminals. The algorithm will continue by placing D1. The minimal combined
distance to the net vertices of both nets is 7 for several roots, including (2, 0).
Assume the algorithm picks the root (2, 0) for placing D1. Figure 4a reflects the
situation after the placement. Next, the algorithm will route the red terminal

A Correct-by-Decision Solution for Simultaneous Place and Route 447

(4, 2) (of the leaf L0
1 ≡ (2, 2)0) to connect it to V (N0) = {(0, 2)}. The situation

after completing this routing is shown in Fig. 4c.
The algorithm will then attempt to connect the blue terminal (2, 0) (of the

leaf L1
1 ≡ (0, 0)1) to V (N1) = {(2, 3)}. It will immediately encounter a net con-

flict (since the path from (2, 0) to (2, 3) is blocked by the red net N0), and record
a conflict clause. The clause will include the net id variables’ bits {nid(0,2),
nid(1,2),nid(2,2),nid(3,2),nid(4,2)} and the negation of the actual root engage-
ment variables for both devices, namely, ¬e(r0 ≡ (0, 2)) and ¬e(r1 ≡ (2, 0)).

The algorithm will then keep routing the terminals generated by the first
placement it chose, and will, eventually, succeed. More specifically, the solver
will keep constructing and blocking red paths until a red path going above the
blue terminal (2, 3) (and thus not blocking the blue net N1) is found (exactly as
in the RUC case).

The basic PRUC algorithm presented so far is functional but inefficient. As our
example demonstrates, the algorithm will preserve the current device ordering,
leaf ordering and the initial placement picked by the algorithm. Such an approach
is not sufficiently dynamic.

4.3 Performance Optimization Heuristics

We propose three performance optimization heuristics to improve the efficiency
of the algorithm. As we shall see, each of the proposed techniques solves the
example we discussed at the end of Sect. 4.2 right after the first conflict and
without any further conflicts.

For the currently routed device Di, let its root decision level be the decision
level of its actual root engagement variable.

Consider each technique separately for now. We will discuss how to combine
the heuristics a bit later.

Leaf Reordering. Leaf reordering is about reordering the leaves of the cur-
rently routed device Di when routing the terminal of a certain leaf Lj

i . Leaf
reordering is applied after encountering a user-given number of conflicts, initial-
ized with 0 each time the algorithm starts routing the device. The technique
simply moves Lj

i to the beginning of the leaf list of Di, backtracks to Di’s root
decision level, and starts routing Di in the new order.

Consider the conflict shown in Fig. 4c and discussed at the end of Sect. 4.2.
Applying leaf reordering at that point would switch the order of D1’s leaves.
The algorithm would then route the blue terminal (2, 0) first, followed by the
red terminal (4, 2). That would yield the solution in Fig. 4b without further
conflicts.

Device Replacement. Device replacement is about trying out different place-
ments for the currently routed device, rather than sticking to one particular
placement. Device replacement works as follows: when a certain conflict thresh-
old is reached, after the algorithm starts routing the currently routed device Di,

448 A. Nadel

the algorithm backtracks to Di’s root decision level and places Di at the next
available root w.r.t to the current ordering: that is, either the distance from the
center, if Di is fresh, or, otherwise, the overall distance to the net vertices of the
non-fresh nets of the device. If no next available root is available, replacement
cycles back to the first root in the current ordering.

In our example, the device replacement algorithm could have moved device
D1 to several possible locations equidistant from the existing nets, (2, 2) being
one of them. Assume that D1 is placed at (2, 2). The following solution would
then be generated without any further conflicts:

0 1 2 3 4
0
1
2
3
4

Device Reordering. Device reordering is about reordering the devices right
after a certain conflict threshold is encountered after the algorithm starts routing
the currently routed device Di. The technique moves Di to the top of the list
of devices, carries out a full restart (that is, backtracks to decision level 0) and
starts placing and routing in the new order, i.e., Di will be the first one to be
placed and routed.

In our example, switching the order of the devices, placing D1 first followed
by D0, will still result in the placement in Fig. 4a. However, the algorithm will
route without any further conflicts, since the blue leaf comes first for device D0;
hence the blue net N1 will be routed first, followed by the red net N0, yielding
the solution in Fig. 4b.

Combining Performance Optimization Heuristics. The three heuristics
differ w.r.t to their locality.

Leaf reordering is the most local of the three, since it is applied given one
particular device and one concrete placement. Device replacement is more global,
since it can change the actual placement of the current device. Device reordering
is the most global of the three techniques, since it changes the global device
ordering, and also requires a full restart.

To combine the three heuristics, one can try them all out starting with the
more local leaf reordering, followed by the more global device replacement, fol-
lowed by the yet more global device reordering. To this end, the leaf reordering
conflict threshold should be the smallest, followed by the device replacement
threshold, and finally by the device reordering threshold.

For the combination to work, conflict counting towards the next device replace-
ment and the next device reordering must not be restarted when leaf reordering
occurs for the currently routed device. Likewise, conflict counting towards the next
device reordering must not be restarted when device replacement occurs.

A Correct-by-Decision Solution for Simultaneous Place and Route 449

5 Experimental Results

Our experiments on industrial and crafted instances are described below. We
used machines with 32 GB of memory running Intel� Xeon� processors with
3 GHz CPU frequency. The timeout was set to 20 min for all the experiments.

5.1 Industrial

We experimented with 48 clips of Intel’s designs. Each such clip is currently
solved by a proprietary industrial place and route flow that applies placement
first followed by routing. On average it takes about 24 hours to solve one clip
with 60 to 85 invocations of the place and route flow. Multiple invocations are
needed since the placer sometimes fails to generate a routable routing instance.

In our experiments, we aim to demonstrate the potential usefulness of apply-
ing our algorithms in industrial settings. Another goal is to study the impact of
applying and combining the three performance optimization heuristics presented
in Sect. 4.3: leaf reordering, device replacement, and device reordering. We gen-
erated 48 different configurations by combining the following conflict thresholds
for the three heuristics, where ∞ means that the technique is not applied at all:
1: for all lro ∈ {3, 10, 25,∞} do
2: for all drp ∈ {3, 10, 25, 100,∞} do
3: for all dro ∈ {3, 10, 25, 100, 1000,∞} do
4: if (lro = ∞ or (lro < drp and lro < dro)) and (drp = ∞ or

drp < dro) then
5: Generate a configuration (lro, drp, dro) with leaf reordering

threshold lro, device replacing threshold drp, and device reordering threshold
dro.
Note that based on the conclusions of Sect. 4.3 we let the leaf reordering

conflict threshold always be the smallest one, followed by the device replacement
threshold, and then by the device reordering threshold.

Table 1 shows the results for the best 12 configurations in terms of solved
instances within the time-out of 20 min (the ‘Time in sec.’ column shows the over-
all run-time, where the time-out value of 1200 s is added for unsolved instances).

The best performing configuration, solving 44/48 instances within 20 min, is
(∞, 3, 25). Hence, combining frequent device replacement with frequent device
reordering yields the best results. Leaf reordering, on the other hand, does not
contribute, based on these results. The configuration (∞,∞,∞) (that is, none
of the three performance optimization heuristics is applied) does not appear in
the table, since it solved only 14 instances.

Additional analysis revealed that the 4 instances that remained unsolved by
the best configuration (∞, 3, 25) are solved by at least one of the following 3
configurations: (∞, 10, 100), (∞, 10, 25), and (10, 25, 100). Interestingly, one of
the instances is solved solely by two configurations which apply leaf reordering–
(10, 25, 100) and (10,∞, 25). This result hints that although leaf reordering was
not found to be useful overall, it can still contribute to solving some instances.

450 A. Nadel

Table 1. Best configs for industrial

lro drp dro Solved Time in sec.

∞ 3 25 44 16823

∞ ∞ 10 40 18641

∞ 10 25 40 16463

∞ ∞ 25 40 16880

3 ∞ 10 39 19593

10 ∞ 25 39 18068

∞ 3 10 38 17763

3 ∞ 25 38 16675

∞ 10 100 36 24422

∞ ∞ 3 36 22623

10 25 100 35 24346

∞ 3 100 35 23824

Table 2. Best configs for crafted

lro drp dro Solved Time in sec.

∞ 3 10 30 1914

∞ 3 25 30 8932

∞ ∞ 3 30 16046

3 10 25 29 10683

∞ 3 100 29 12503

∞ ∞ 10 29 15459

3 10 100 28 19598

∞ 10 25 27 15008

3 ∞ 25 22 17558

3 ∞ 10 20 16734

∞ 25 100 19 24116

10 ∞ 25 18 27598

The new CBD-based tool is as good as the existing industrial solution in terms
of quality. The average wire length is almost identical; the difference is 0.6%
(the new approach being slightly better). This is ultimately because both the
existing heuristical solution and the new CBD-based tool are based on shortest-
path algorithms. In addition, physical design experts have confirmed that the
quality of the new tool is as good as that of the existing solution.

5.2 Crafted

This section analyzes the performance of our algorithms on PRUC instances we
crafted. All the benchmarks and detailed results are publicly available at [11].
We pursued two goals:

1. To generate challenging yet solvable publicly available PRUC instances to
encourage further PRUC research, and

2. To further analyze the performance of leaf reordering, device replacement,
and device reordering.

The instances were generated as follows.
First, we used a 100×100 solid grid graph. It was shown in [12] that reducing

RUC (being PRUC’s special case) to either bit-vector reasoning or Monosat [4]
solver input does not scale to grids of such a size, even on simple instances.

Second, we used 5 × 5 devices with 4 leaves, each leaf using random relative
coordinates (within the rectangle (0, 0)–(4, 4)) and a random net.

Third, according to our preliminary experiments, it made sense to use 10
devices and 40 nets for each instance in order to create instances which are
challenging enough yet not too difficult to solve.

A Correct-by-Decision Solution for Simultaneous Place and Route 451

Fourth, each instance was augmented with (C/100)∗|V | binary clauses, where
|V | = 10000 and C is a parameter. The clauses are generated as follows: pick a
random vertex v = (x, y) and another random vertex u sharing either the x or
y coordinate with v, and add the clause ¬v ∨ ¬u.

All in all, we generated 30 random instances as follows:
1: for all C ∈ {0, 15, 30} do
2: for all i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} do
3: Generate a PRUC instance on a 100 × 100 grid with 10 5 × 5 devices

with 4 leaves each, each leaf using random relative coordinates within the
rectangle (0, 0)–(4, 4) and a random net with net id in the interval [0 − 39].
In addition, generate (C/100) ∗ 10000 random binary clauses as described
above.
We used the same 48 configurations we had experimented with in Sect. 5.1.

Consider the results in Table 2, showing the best 12 configurations in terms of
the number of instances solved. The absolutely best configuration, which solved
all the instances 4.5 times faster than the next best configuration, is (∞, 3, 10).
Hence, combining frequent device replacement with frequent device reordering
yields the best results for crafted instances, similarly to our experiments with
industrial instances, with an even smaller device reordering conflict threshold.
Leaf reordering does not seem to be helpful for the crafted instances. The con-
figuration (∞,∞,∞), which applies none of the three performance optimization
techniques, solved none of the instances.

6 Conclusion

This paper highlights a novel paradigm for reducing a problem to constraint solv-
ing, which we called Correct-by-Decision (CBD). In CBD, the problem is reduced to
a set of constraints and a decision strategy, where the decision strategy is essen-
tial for guaranteeing correctness. We saw that CBD is useful when the problem is
composed of two interleaved sub-problems, one of which has an easy heuristical
solution, while the other requires solving a set of constraints.

Furthermore, we proposed a CBD-based solution to a critical industrial prob-
lem that shows up in the physical design stage of the CAD process: simultane-
ous place and route under arbitrary constraints (design rules), which we called
PRUC. We demonstrated that our approach can successfully cope with industrial
instances and analyzed the performance of different heuristics we proposed on
these instances. We also crafted challenging publicly available PRUC instances
and studied the performance of our algorithms on these instances.

References

1. Abboud, N., Grötschel, M., Koch, T.: Mathematical methods for physical layout
of printed circuit boards: an overview. OR Spectr. 30(3), 453–468 (2008)

2. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT
solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van
Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39071-5 23

http://dx.doi.org/10.1007/978-3-642-39071-5_23

452 A. Nadel

3. Barrett, C., Donham, J.: Combining SAT methods with non-clausal decision heuris-
tics. Electr. Notes Theor. Comput. Sci. 125(3), 3–12 (2005)

4. Bayless, S., Bayless, N., Hoos, H.H., Hu, A.J.: SAT modulo monotonic theories. In:
Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence, 25–30 January 2015, Austin, Texas, USA, pp. 3702–3709.
AAAI Press, New York (2015)

5. Biere, A., Le Berre, D., Lonca, E., Manthey, N.: Detecting cardinality constraints
in CNF. In: Sinz, C., Egly, U. (eds.) [20], pp. 285–301

6. Brummayer, R., Biere, A.: Lemmas on demand for the extensional theory of arrays.
JSAT 6(1–3), 165–201 (2009)

7. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
doi:10.1007/978-3-540-24605-3 37

8. Erez, A., Nadel, A.: Finding bounded path in graph using SMT for automatic clock
routing. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9207, pp.
20–36. Springer, Cham (2015). doi:10.1007/978-3-319-21668-3 2

9. Hadarean, L.: An efficient and trustworthy theory solver for bit-vectors in satisfi-
ability modulo theories. Dissertation, New York University (2015)

10. Khasidashvili, Z., Nadel, A.: Implicative simultaneous satisfiability and applica-
tions. In: Eder, K., Lourenço, J., Shehory, O. (eds.) HVC 2011. LNCS, vol. 7261,
pp. 66–79. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34188-5 9

11. Nadel, A.: A correct-by-decision solution for simultaneous place and route: bench-
marks and detailed results. https://goo.gl/MNl1PE

12. Nadel, A.: Routing under constraints. In: Piskac, R., Talupur, M. (eds.) 2016 For-
mal Methods in Computer-Aided Design, FMCAD 2016, Mountain View, CA,
USA, 3–6 October 2016, pp. 125–132. IEEE, Washington, D.C. (2016)

13. Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-31612-8 19

14. Nadel, A., Ryvchin, V., Strichman, O.: Ultimately incremental SAT. In: Sinz, C.,
Egly, U. (eds.) [20], pp. 206–218

15. Nag, S., Rutenbar, R.A.: Performance-driven simultaneous place and route for
row-based FPGAs. In: DAC, pp. 301–307 (1994)

16. Nag, S.K., Rutenbar, R.A.: Performance-driven simultaneous place and route for
island-style FPGAs. In: Rudell, R.L., (eds.) Proceedings of the 1995 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 1995, San Jose, Cal-
ifornia, USA, 5–9 November 1995, pp. 332–338. IEEE Computer Society/ACM,
Washington, D.C. (1995)

17. Ramalingam, G., Reps, T.W.: An incremental algorithm for a generalization of the
shortest-path problem. J. Algorithms 21(2), 267–305 (1996)

18. Sabharwal, A.: Symchaff: a structure-aware satisfiability solver. In: Veloso, M.M.,
Kambhampati, S. (eds.) Proceedings of the Twentieth National Conference on
Artificial Intelligence and the Seventeenth Innovative Applications of Artificial
Intelligence Conference, 9–13 July 2005, Pittsburgh, Pennsylvania, USA, pp. 467–
474. AAAI Press/The MIT Press, Austin (2005)

19. Sherwani, N.A.: Algorithms for VLSI Physical Design Automation, 3rd edn.
Kluwer, Dordrecht (1998)

20. Sinz, C., Egly, U. (eds.): SAT 2014. LNCS, vol. 8561. Springer, Cham (2014)

http://dx.doi.org/10.1007/978-3-540-24605-3_37
http://dx.doi.org/10.1007/978-3-319-21668-3_2
http://dx.doi.org/10.1007/978-3-642-34188-5_9
https://goo.gl/MNl1PE
http://dx.doi.org/10.1007/978-3-642-31612-8_19

	A Correct-by-Decision Solution for Simultaneous Place and Route
	1 Introduction
	2 Path-Finding Under Constraints
	3 Routing Under Constraints
	4 Simultaneous Place and Route Under Constraints
	4.1 Constraints
	4.2 Decision Strategy
	4.3 Performance Optimization Heuristics

	5 Experimental Results
	5.1 Industrial
	5.2 Crafted

	6 Conclusion
	References

