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Abstract. Markov automata combine non-determinism, probabilistic
branching, and exponentially distributed delays. This compositional vari-
ant of continuous-time Markov decision processes is used in reliability
engineering, performance evaluation and stochastic scheduling. Their
verification so far focused on single objectives such as (timed) reach-
ability, and expected costs. In practice, often the objectives are mutually
dependent and the aim is to reveal trade-offs. We present algorithms
to analyze several objectives simultaneously and approximate Pareto
curves. This includes, e.g., several (timed) reachability objectives, or vari-
ous expected cost objectives. We also consider combinations thereof, such
as on-time-within-budget objectives—which policies guarantee reaching
a goal state within a deadline with at least probability p while keeping the
allowed average costs below a threshold? We adopt existing approaches
for classical Markov decision processes. The main challenge is to treat
policies exploiting state residence times, even for untimed objectives.
Experimental results show the feasibility and scalability of our approach.

1 Introduction

Markov automata [1,2] extend labeled transition systems with probabilistic
branching and exponentially distributed delays. They are a compositional vari-
ant of continuous-time Markov decision processes (CTMDPs), in a similar vein as
Segala’s probabilistic automata extend classical MDPs. Transitions of a Markov
automaton (MA) lead from states to probability distributions over states, and
are either labeled with actions (allowing for interaction) or real numbers (rates of
exponential distributions). MAs are used in reliability engineering [3], hardware
design [4], data-flow computation [5], dependability [6] and performance eval-
uation [7], as MAs are a natural semantic framework for modeling formalisms
such as AADL, dynamic fault trees, stochastic Petri nets, stochastic activity
networks, SADF etc. The verification of MAs so far focused on single objectives
such as reachability, timed reachability, expected costs, and long-run averages [8–
12]. These analyses cannot treat objectives that are mutually influencing each
other, like quickly reaching a target is more costly. The aim of this paper is to
analyze multiple objectives on MAs at once and to facilitate trade-off analysis
by approximating Pareto curves.
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Consider the stochastic job scheduling problem of [13]: perform n jobs with
exponential service times on k identical processors under a pre-emptive schedul-
ing policy. Once a job finishes, all k processors can be assigned any of the m
remaining jobs. When n−m jobs are finished, this yields
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Fig. 1. Approx. Pareto curve
for stochastic job scheduling.

The largest-expected-service-time-first-policy
is optimal to minimize the expected time to com-
plete all jobs [13]. It is unclear how to sched-
ule when imposing extra constraints, e.g., requir-
ing a high probability to finish a batch of c
jobs within a tight deadline (to accelerate their
post-processing), or having a low average wait-
ing time. These multiple objectives involve non-
trivial trade-offs. Our algorithms analyze such
trade-offs. Figure 1, e.g., shows the obtained
result for 12 jobs and 3 processors. It approx-
imates the set of points (p1, p2) for schedules
achieving that (1) the expected time to complete
all jobs is at most p1 and (2) the probability to finish half of the jobs within an
hour is at least p2.

This paper presents techniques to verify MAs with multiple objectives. We
consider multiple (un)timed reachability and expected reward objectives as well
as their combinations. Put shortly, we reduce all these problems to instances
of multi-objective verification problems on classical MDPs. For multi-objective
queries involving (combinations of) untimed reachability and expected reward
objectives, corresponding algorithms on the underlying MDP can be used. In
this case, the MDP is simply obtained by ignoring the timing information, see
Fig. 2(b). The crux is in relating MA schedulers—that can exploit state sojourn
times to optimize their decisions—to MDP schedulers. For multiple timed reach-
ability objectives, digitization [8,9] is employed to obtain an MDP, see Fig. 2(c).
The key is to mimic sojourn times by self-loops with appropriate probabilities.
This provides a sound arbitrary close approximation of the timed behavior and
also allows to combine timed reachability objectives with other types of objec-
tives. The main contribution is to show that digitization is sound for all possible
MA schedulers. This requires a new proof strategy as the existing ones are tai-
lored to optimizing a single objective. All proofs can be found in an extended
version [14]. Experiments on instances of four MA benchmarks show encourag-
ing results. Multiple untimed reachability and expected reward objectives can
be efficiently treated for models with millions of states. As for single objectives
[9], timed reachability is more expensive. Our implementation is competitive to
PRISM for multi-objective MDPs [15,16] and to IMCA [9] for single-objective MAs.

Related Work. Multi-objective decision making for MDPs with discounting and
long-run objectives has been well investigated; for a recent survey, see [17].
Etessami et al. [18] consider verifying finite MDPs with multiple ω-regular
objectives. Other multiple objectives include expected rewards under worst-case
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Fig. 2. MA M with underlying MDP MD and digitization Mδ.

reachability [19,20], quantiles and conditional probabilities [21], mean pay-offs
and stability [22], long-run objectives [23,24], total average discounted rewards
under PCTL [25], and stochastic shortest path objectives [26]. This has been
extended to MDPs with unknown cost function [27], infinite-state MDPs [28]
arising from two-player timed games in a stochastic environment, and stochastic
two-player games [29]. To the best of our knowledge, this is the first work on
multi-objective MDPs extended with random timing.

2 Preliminaries

Notations. The set of real numbers is denoted by R, and we write R>0 = {x ∈
R | x > 0} and R≥0 = R>0 ∪ {0}. For a finite set S, Dist(S) denotes the set of
probability distributions over S. μ ∈ Dist(S) is Dirac if μ(s) = 1 for some s ∈ S.

2.1 Models

Markov automata generalize both Markov decision processes (MDPs) and con-
tinuous time Markov chains (CTMCs). They are extended with rewards (or,
equivalently, costs) to allow modelling, e.g., energy consumption.

Definition 1 (Markov automaton). A Markov automaton (MA) is a tuple
M = (S,Act ,→, s0, {ρ1, . . . , ρ�}) where S is a finite set of states with initial
state s0 ∈ S, Act is a finite set of actions with ⊥ ∈ Act and Act ∩ R≥0 = ∅,
– → ⊆ S × (Act ∪· R>0)×Dist(S) is a set of transitions such that for all s ∈ S

there is at most one transition (s, λ, μ) ∈ → with λ ∈ R>0, and
– ρ1, . . . , ρ� with � ≥ 0 are reward functions ρi : S ∪· (S × Act) → R≥0.

In the remainder of the paper, let M = (S,Act ,→, s0, {ρ1, . . . , ρ�}) denote an
MA. A transition (s, γ, μ) ∈ →, denoted by s

γ−→ μ, is called probabilistic if γ ∈
Act and Markovian if γ ∈ R>0. In the latter case, γ is the rate of an exponential
distribution, modeling a time-delayed transition. Probabilistic transitions fire
instantaneously. The successor state is determined by μ, i.e., we move to s′ with
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probability μ(s′). Probabilistic (Markovian) states PS (MS) have an outgoing
probabilistic (Markovian) transition, respectively: PS = {s ∈ S | s

α−→ μ, α ∈
Act} and MS = {s ∈ S | s

λ−→ μ, λ ∈ R>0}. The exit rate E(s) of s ∈ MS is

uniquely given by s
E(s)−−−→ μ. The transition probabilities of M are given by the

function P : S ×Act ×S → [0, 1] satisfying P(s, α, s′) = μ(s′) if either s
α−→ μ or

(
α = ⊥ and s

E(s)−−−→ μ
)

and P(s, α, s′) = 0 in all other cases. The value P(s, α, s′)
corresponds to the probability to move from s with action α to s′. The enabled
actions at state s are given by Act(s) = {α ∈ Act | ∃s′ ∈ S : P(s, α, s′) > 0}.
Example 1. Figure 2(a) shows an MA M. We do not depict Dirac probability
distributions. Markovian transitions are illustrated by dashed arrows.

We assume action-deterministic MAs: |{μ ∈ Dist(S) | s
α−→ μ}| ≤ 1 holds for

all s ∈ S and α ∈ Act . Terminal states s /∈ PS ∪ MS are excluded by adding a
Markovian self-loop. As standard for MAs [1,2], we impose the maximal progress
assumption, i.e., probabilistic transitions take precedence over Markovian ones.
Thus, we remove transitions s

λ−→ μ for s ∈ PS and λ ∈ R>0 which yields
S = PS ∪· MS. MAs with Zeno behavior, where infinitely many actions can be
taken within finite time with non-zero probability, are unrealistic and considered
a modeling error.

A reward function ρi defines state rewards and action rewards. When sojourn-
ing in a state s for t time units, the state reward ρi(s) ·t is obtained. Upon taking
a transition s

γ−→ μ, we collect action reward ρi(s, γ) (if γ ∈ Act) or ρ(s,⊥) (if
γ ∈ R>0). For presentation purposes, in the remainder of this section, rewards
are omitted. Full definitions with rewards can be found in [14].

Definition 2 (Markov decision process [30]). A Markov decision process
(MDP) is a tuple D = (S,Act ,P, s0, ∅) with S, s0,Act as in Definition 1
and P : S × Act × S → [0, 1] are the transition probabilities satisfying∑

s′∈S P(s, α, s′) ∈ {0, 1} for all s ∈ S and α ∈ Act.

MDPs are MAs without Markovian states and thus without timing aspects, i.e.,
MDPs exhibit probabilistic branching and non-determinism. Zeno behavior is
not a concern, as we do not consider timing aspects. The underlying MDP of an
MA abstracts away from its timing:

Definition 3 (Underlying MDP). The MDP MD = (S,Act ,P, s0, ∅) is the
underlying MDP of MA M = (S,Act ,→, s0, ∅) with transition probabilities P.

The digitization Mδ of M w.r.t. some digitization constant δ ∈ R>0 is an MDP
which digitizes the time [8,9]. The main difference between MD and Mδ is that
the latter also introduces self-loops which describe the probability to stay in
a Markovian state for δ time units. More precisely, the outgoing transitions of
states s ∈ MS in Mδ represent that either (1) a Markovian transition in M was
taken within δ time units, or (2) no transition is taken within δ time units –
which is captured by taking the self-loop in Mδ. Counting the taken self-loops
at s ∈ MS allows to approximate the sojourn time in s.
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Definition 4 (Digitization of an MA). For MA M = (S,Act ,→, s0, ∅) with
transition probabilities P and digitization constant δ ∈ R>0, the digitization of
M w.r.t. δ is the MDP Mδ = (S,Act ,Pδ, s0, ∅) where

Pδ(s, α, s′) =

⎧
⎪⎨

⎪⎩

P(s,⊥, s′) · (1 − e−E(s)δ) if s ∈ MS, α = ⊥, s �= s′

P(s,⊥, s′) · (1 − e−E(s)δ) + e−E(s)δ if s ∈ MS, α = ⊥, s = s′

P(s, α, s′) otherwise.

Example 2. Figure 2 shows an MA M with its underlying MDP MD and a
digitization Mδ for unspecified δ ∈ R>0.

Paths and Schedulers. Paths represent runs of M starting in the initial state.
Let t(κ) = 0 and α(κ) = κ, if κ ∈ Act , and t(κ) = κ and α(κ) = ⊥, if κ ∈ R≥0.

Definition 5 (Infinite path). An infinite path of MA M with transition prob-
abilities P is an infinite sequence π = s0

κ0−→ s1
κ1−→ . . . of states s0, s1, · · · ∈ S

and stamps κ0, κ1, · · · ∈ Act ∪· R≥0 such that (1)
∑∞

i=0 t(κi) = ∞, and for any
i ≥ 0 it holds that (2) P(si, α(κi), si+1) > 0, (3) si ∈ PS implies κi ∈ Act, and
(4) si ∈ MS implies κi ∈ R≥0.

An infix si
κi−→ si+1 of a path π represents that we stay at si for t(κi) time

units and then perform action α(κi) and move to state si+1. Condition (1)
excludes Zeno paths, condition (2) ensures positive transition probabilities, and
conditions (3) and (4) assert that stamps κi match the transition type at si.

A finite path is a finite prefix π′ = s0
κ0−→ . . .

κn−1−−−→ sn of an infinite path. The
length of π′ is |π′| = n, its last state is last(π′) = sn, and the time duration is
T (π′) =

∑
0≤i<|π′| t(κi). We denote the sets of finite and infinite paths of M by

FPathsM and IPathsM, respectively. The superscript M is omitted if the model
is clear from the context. For a finite or infinite path π = s0

κ0−→ s1
κ1−→ . . . the

prefix of π of length n is denoted by pref (π, n). The ith state visited by π is
given by π[i] = si. The time-abstraction ta(π) of π removes all sojourn times and

is a path of the underlying MDP MD: ta(π) = s0
α(κ0)−−−→ s1

α(κ1)−−−→ . . . . Paths of
MD are also referred to as the time-abstract paths of M.

Definition 6 (Generic scheduler). A generic scheduler for M is a measur-
able function σ : FPaths ×Act → [0, 1] such that σ(π, ·) ∈ Dist(Act(last(π))) for
each π ∈ FPaths .

A scheduler σ for M resolves the non-determinism of M: σ(π, α) is the prob-
ability to take transition last(π) α−→ μ after observing the run π. The set of
such schedulers is denoted by GMM (GM if M is clear from the context).
σ ∈ GM is deterministic if the distribution σ(π, ·) is Dirac for any π. Time-
abstract schedulers behave independently of the time-stamps of the given path,
i.e., σ(π, α) = σ(π′, α) for all actions α and paths π, π′ with ta(π) = ta(π′). We
write TAM to denote the set of time-abstract schedulers of M. GM is the most
general scheduler class for MAs. For MDPs, the most general scheduler class is
TA.
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2.2 Objectives

An objective Oi is a representation of a quantitative property like the probability
to reach an error state, or the expected energy consumption. To express Boolean
properties (e.g., the probability to reach an error state is below pi), Oi is com-
bined with a threshold �i pi where �i ∈ {<,≤, >,≥} is a threshold relation and
pi ∈ R is a threshold value. Let M, σ |= Oi �i pi denote that the MA M under
scheduler σ ∈ GM satisfies the property Oi �i pi.

Reachability Objectives. I ⊆ R is a time interval if it is of the form I = [a, b]
or I = [a,∞), where 0 ≤ a < b. The set of paths reaching a set of goal states
G ⊆ S in time I is defined as

♦IG = {π = s0
κ0−→ s1

κ1−→ · · · ∈ IPaths | ∃n ≥ 0: π[n] ∈ G and
I ∩ [t, t + t(κn)] �= ∅ for t = T (pref (π, n))}.

We write ♦G instead of ♦[0,∞)G. A probability measure PrMσ on sets of infinite
paths is defined, which generalizes both the standard probability measure on
MDPs and on CTMCs. A formal definition is given in [14].

Definition 7 (Reachability objective). A reachability objective has the
form P(♦IG) for time interval I and goal states G. The objective is timed if
I �= [0,∞) and untimed otherwise. For MA M and scheduler σ ∈ GM, let
M, σ |= P(♦IG) �i pi iff PrMσ (♦IG) �i pi.

Expected Reward Objectives. Expected rewards ERM
σ (ρj , G) define the expected

amount of reward collected (w.r.t. ρj) until a goal state in G ⊆ S is reached.
This is a straightforward generalization of the notion on CTMCs and MDPs. A
formal definition is found in [14].

Definition 8 (Expected reward objective). An expected reward objec-
tive has the form E(#j,G) where j is the index of reward function ρj and
G ⊆ S. For MA M and scheduler σ ∈ GM, let M, σ |= E(#j,G) �i pi iff
ERM

σ (ρj , G) �i pi.

Expected time objectives E(T , G) are expected reward objectives that consider
the reward function ρT with ρT (s) = 1 if s ∈ MS and all other rewards are zero.

3 Multi-objective Model Checking

Standard model checking considers objectives individually. This approach is not
feasible when we are interested in multiple objectives that should be fulfilled by
the same scheduler, e.g., a scheduler that maximizes the expected profit might
violate certain safety constraints. Multi-objective model checking aims to analyze
multiple objectives at once and reveals possible trade-offs.
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Fig. 3. Markov automaton and achievable points.

Definition 9 (Satisfaction of multiple objectives). Let M be an MA and
σ ∈ GM. For objectives O = (O1, . . . ,Od) with threshold relations � = (�1

, . . . ,�d) ∈ {<,≤, >,≥}d and threshold values p = (p1, . . . , pd) ∈ R
d let

M, σ |= O � p ⇐⇒ M, σ |= Oi �i pi for all 1 ≤ i ≤ d.

Furthermore, let achieveM(O � p) ⇐⇒ ∃σ ∈ GM such that M, σ |= O � p.

If M, σ |= O � p, the point p ∈ R
d is achievable in M with scheduler σ. The

set of achievable points of M w.r.t. O and p is {p ∈ R
d | achieveM(O � p)}.

This definition is compatible with the notions on MDPs as given in [16,18].

Example 3. Figure 3(b) and (c) depict the set of achievable points of the MA M
from Fig. 3(a) w.r.t. relations � = (≥,≥) and objectives (P(♦{s2}),P(♦{s4}))
and (P(♦{s2}),P(♦[0,2]{s4})), respectively. Using the set of achievable points,
we can answer Pareto, numerical, and achievability queries as considered in [16],
e.g., the Pareto front lies on the border of the set.

Schedulers. For single-objective model checking on MAs, it suffices to consider
deterministic schedulers [31]. For untimed reachability and expected rewards
even time-abstract deterministic schedulers suffice [31]. Multi-objective model
checking on MDPs requires history-dependent, randomized schedulers [18]. On
MAs, schedulers may also employ timing information to make optimal choices,
even if only untimed objectives are considered.

Example 4. Consider the MA M in Fig. 3(a) with untimed objectives
P(♦{s2}) ≥ 0.5 and P(♦{s4}) ≥ 0.5. A simple graph argument yields that
both properties are only satisfied if action α is taken with probability exactly
a half. Thus, on the underlying MDP, no deterministic scheduler satisfies both
objectives. On the MA however, paths can be distinguished by their sojourn
time in s0. As the probability mass to stay in s0 for at most ln(2) is exactly 0.5,
a timed scheduler σ with σ(s0

t−→ s1, α) = 1 if t ≤ ln(2) and 0 otherwise does
satisfy both objectives.

Theorem 1. For some MA M with achieveM(O � p), no deterministic time-
abstract scheduler σ satisfies M, σ |= O � p.
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The Geometric Shape of the Achievable Points. Like for MDPs [18], the set of
achievable points of any combination of aforementioned objectives is convex.

Proposition 1. The set {p ∈ R
d | achieveM(O � p)} is convex.

For MDPs, the set of achievable points is a convex polytope where the vertices
can be realized by deterministic schedulers that use memory bounded by the
number of objectives. As there are finitely many such schedulers, the polytope
is finite [18], i.e., it can be represented by a finite number of vertices. This result
does not carry over to MAs. For example, the achievable points of the MA from
Fig. 3(a) together with the objectives (P(♦{s2}),P(♦[0,2]{s4})) form the infinite
polytope shown in Fig. 3(c). The insight here is that for any sojourn time t ≤ 2
in s0, the timing information is relevant for optimal schedulers: The shorter the
sojourn time in s0, the higher the probability to reach s4 within the time bound.

Theorem 2. For some MA M and objectives O, the polytope {p ∈ R
d |

achieveM(O � p)} is not finite.

As infinite convex polytopes cannot be represented by a finite number of vertices,
any method extending the approach of [16] – which computes these vertices –
can only approximate the set of achievable points.

Problem Statement. For an MA and objectives with threshold relations, con-
struct arbitrarily tight over- and under-approximations of the achievable points.

4 Analysis of Markov Automata with Multiple Objectives

The state-of-the-art in single-objective model checking of MA is to reduce the
MA to an MDP, cf. [8–10], for which efficient algorithms exist. We aim to lift
this approach to multi-objective model checking. Assume MA M and objectives
O with threshold relations �. We discuss how the set of achievable points of
M relates to the set of achievable points of an MDP. The key challenge is to
deal with timing information—even for untimed objectives—and to consider
schedulers beyond those optimizing single objectives. We obtain:

– For untimed reachability and expected reward objectives, the achievable
points of M equal those of its underlying MDP, cf. Theorems 3 and 4.

– For timed reachability objectives, the set of achievable points of a digitized
MDP Mδ provides a sound approximation of the achievable points of M, cf.
Theorem 5. Corollary 1 gives the precision of the approximation.

4.1 Untimed Reachability Objectives

Although timing information is essential for deterministic schedulers, cf. Theo-
rem 1, timing information does not strengthen randomized schedulers:

Theorem 3. For MA M and untimed reachability objectives O it holds that
achieveM(O � p) ⇐⇒ achieveMD (O � p).
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The main idea for proving Theorem 3 is to construct for scheduler σ ∈ GMM

a time-abstract scheduler ta(σ) ∈ TAMD such that they both induce the
same untimed reachability probabilities. To this end, we discuss the connection
between probabilities of paths of MA M and paths of MDP MD.

Definition 10 (Induced paths of a time-abstract path). The set of
induced paths on MA M of a path π̂ of MD is given by

〈π̂〉 = ta−1(π̂) = {π ∈ FPathsM ∪ IPathsM | ta(π) = π̂}.

The set 〈π̂〉 contains all paths of M where replacing sojourn times by ⊥ yields π̂.
For σ ∈ GM, the probability distribution σ(π, ·) ∈ Dist(Act) might depend on
the sojourn times of the path π. The time-abstract scheduler ta(σ) weights the
distribution σ(π, ·) with the probability masses of the paths π ∈ 〈π̂〉.
Definition 11 (Time-abstraction of a scheduler). The time-abstraction of
σ ∈ GMM is defined as ta(σ) ∈ TAMD such that for any π̂ ∈ FPathsMD

ta(σ)(π̂, α) =
∫

π∈〈π̂〉
σ(π, α) dPrMσ (π | 〈π̂〉).

The term PrMσ (π | 〈π̂〉) represents the probability for a path in 〈π̂〉 to have
sojourn times as given by π. The value ta(σ)(π̂, α) coincides with the probability
that σ picks action α, given that the time-abstract path π̂ was observed.

Example 5. Consider the MA M in Fig. 2(a) and the scheduler σ choosing α at
state s3 iff the sojourn time at s0 is at most one. Then ta(σ)(s0

⊥−→ s3, α) =
1 − e−E(s0), the probability that s0 is left within one time unit. For π̄ = s0

⊥−→
s3

α−→ s6 we have

PrMσ (♦{s6}) = PrMσ (〈π̄〉) = 1 − e−E(s0) = PrMD
ta(σ)(π̄) = PrMD

ta(σ)(♦{s6}).

In the example, the considered scheduler and its time-abstraction induce the
same untimed reachability probabilities. We generalize this observation.

Lemma 1. For any π̂ ∈ FPathsMD we have PrMσ (〈π̂〉) = PrMD
ta(σ)(π̂).

The result is lifted to untimed reachability probabilities.

Proposition 2. For any G ⊆ S it holds that PrMσ (♦G) = PrMD
ta(σ)(♦G).

As the definition of ta(σ) is independent of the considered set of goal states
G ⊆ S, Proposition 2 can be lifted to multiple untimed reachability objectives.

Proof of Theorem 3 (sketch). By applying Proposition 2, we can show that
M, σ |= O � p ⇐⇒ MD, ta(σ) |= O � p for any scheduler σ ∈ GMM

and untimed reachability objectives O = (P(♦G1), . . . ,P(♦Gd)) with thresholds
� p. Theorem 3 is a direct consequence of this.
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4.2 Expected Reward Objectives

The results for expected reward objectives are similar to untimed reachability
objectives: An analysis of the underlying MDP suffices. We show the following
extension of Theorem 3 to expected reward objectives.

Theorem 4. For MA M and untimed reachability and expected reward objec-
tives O: achieveM(O � p) ⇐⇒ achieveMD (O � p).

To prove this, we show that a scheduler σ ∈ GMM and its time-abstraction
ta(σ) ∈ TA induce the same expected rewards on M and MD, respectively.
Theorem 4 follows then analogously to Theorem 3.

Proposition 3. Let ρ be some reward function of M and let ρD be its counter-
part for MD. For G ⊆ S we have ERM

σ (ρ,G) = ERMD
ta(σ)(ρ

D, G).

Notice that ρD encodes the expected reward of M obtained in a state s by
assuming the sojourn time to be the expected sojourn time 1/E(s). Although the
claim is similar to Proposition 2, its proof cannot be adapted straightforwardly.
In particular, the analogon to Lemma 1 does not hold: The expected reward
collected along a time-abstract path π̂ ∈ FPathsMD does in general not coincide
for M and MD.

Example 6. We consider standard notations for rewards as detailed in [14]. Let
M be the MA with underlying MDP MD as shown in Fig. 2. Let ρ(s0) = 1 and
zero otherwise. Reconsider the scheduler σ from Example 5. Let π̂α = s0

⊥−→
s3

α−→ s6. The probability PrMσ ({s0 t−→ s3
α−→ s6 ∈ 〈π̂α〉 | t > 1}) is zero since

σ chooses β on such paths. For the remaining paths in 〈π̂α〉, action α is chosen
with probability one. The expected reward in M along π̂α is:

∫

π∈〈π̂α〉
rewM(ρ, π) dPrMσ (π) =

∫ 1

0

ρ(s0) · t · E(s0) · e−E(s0)t dt = 1 − 2e−1.

The expected reward in MD along π̂α differs as

rewMD (ρD, π̂α) · PrMD
ta(σ)(π̂α) = ρD(s0,⊥) · ta(σ)(s0

⊥−→ s3, α) = 1 − e−1.

The intuition is as follows: If path s0
t−→ s3

α−→ s6 of M under σ occurs, we have
t ≤ 1 since σ chose α. Hence, the reward collected from paths in 〈π̂α〉 is at most
1 · ρ(s0) = 1. There is thus a dependency between the choice of the scheduler
at s3 and the collected reward at s0. This dependency is absent in MD as the
reward at a state is independent of the subsequent performed actions.

Let π̂β = s0
⊥−→ s3

β−→ s4. The expected reward along π̂β is 2e−1 for M and
e−1 for MD. As the rewards for π̂α and π̂β sum up to one in both M and MD,
the expected reward along all paths of length two coincides for M and MD.

This observation can be generalized to arbitrary MA and paths of arbitrary
length.



150 T. Quatmann et al.

Proof of Proposition 3 (sketch). For every n ≥ 0, the expected reward collected
along paths of length at most n coincides for M under σ and MD under ta(σ).
The proposition follows by letting n approach infinity.

Thus, queries on MA with mixtures of untimed reachability and expected
reward objectives can be analyzed on the underlying MDP MD.

4.3 Timed Reachability Objectives

Timed reachability objectives cannot be analyzed on MD as it abstracts away
from sojourn times. We lift the digitization approach for single-objective timed
reachability [8,9] to multiple objectives. Instead of abstracting timing informa-
tion, it is digitized. Let Mδ denote the digitization of M for arbitrary digitization
constant δ ∈ R>0, see Definition 4. A time interval I ⊆ R≥0 of the form [a,∞) or
[a, b] with dia := a/δ ∈ N and dib := b/δ ∈ N is called well-formed. For the remain-
der, we only consider well-formed intervals, ensured by an appropriate digitiza-
tion constant. An interval for time-bounds I is transformed to digitization step
bounds di(I) ⊆ N. Let a = inf I, we set di(I) = {t/δ ∈ N | t ∈ I} \ {0 | a > 0}.

We first relate paths in M to paths in its digitization.

Definition 12 (Digitization of a path). The digitization di(π) of path π =
s0

κ0−→ s1
κ1−→ . . . in M is the path in Mδ given by

di(π) =
(
s0

α(κ0)−−−→)m0
s0

α(κ0)−−−→ (
s1

α(κ1)−−−→)m1
s1

α(κ1)−−−→ . . .

where mi = max{m ∈ N | mδ ≤ t(κi)} for each i ≥ 0.

Example 7. For the path π = s0
1.1−−→ s3

β−→ s4
η−→ s5

0.3−−→ s4 of the MA M in
Fig. 2(a) and δ = 0.4, we get di(π) = s0

⊥−→ s0
⊥−→ s0

⊥−→ s3
β−→ s4

η−→ s5
⊥−→ s4.

The mi in the definition above represent a digitization of the sojourn times t(κi)
such that miδ ≤ t(κi) < (mi+1)δ. These digitized times are incorporated into
the digitization of a path by taking the self-loop at state si ∈ MS mi times.
We also refer to the paths of Mδ as digital paths (of M). The number |π̄|ds
of digitization steps of a digital path π̄ is the number of transitions emerging
from Markovian states, i.e., |π̄|ds = |{i < |π̄| | π̄[i] ∈ MS}|. One digitization step
represents the elapse of at most δ time units—either by staying at some s ∈ MS
for δ time or by leaving s within δ time. The number |di(π)|ds multiplied with
δ yields an estimate for the duration T (π). A digital path π̄ can be interpreted
as representation of the set of paths of M whose digitization is π̄.

Definition 13 (Induced paths of a digital path). The set of induced paths
of a (finite or infinite) digital path π̄ of Mδ is

[π̄] = di−1(π̄) = {π ∈ FPathsM ∪ IPathsM | di(π) = π̄}.
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For sets of digital paths Π we define the induced paths [Π] =
⋃

π̄∈Π [π̄]. To
relate timed reachability probabilities for M under scheduler σ ∈ GMM with
ds-bounded reachability probabilities for Mδ, relating σ to a scheduler for Mδ

is necessary.

Definition 14 (Digitization of a scheduler). The digitization of σ ∈ GMM

is given by di(σ) ∈ TAMδ such that for any π̄ ∈ FPathsMδ with last(π̄) ∈ PS

di(σ)(π̄, α) =
∫

π∈[π̄]

σ(π, α) dPrMσ (π | [π̄]).

The digitization di(σ) is similar to the time-abstraction ta(σ) as both schedulers
get a path with restricted timing information as input and mimic the choice of
σ. However, while ta(σ) receives no information regarding sojourn times, di(σ)
receives the digital estimate. Intuitively, di(σ)(π̄, α) considers σ(π, α) for each
π ∈ [π̄], weighted with the probability that the sojourn times of a path in [π̄]
are as given by π. The restriction last(π̄) ∈ PS asserts that π̄ does not end with
a self-loop on a Markovian state, implying [π̄] �= ∅.
Example 8. Let MA M in Fig. 2(a) and δ = 0.4. Again, σ ∈ GMM chooses α
at state s3 iff the sojourn time at s0 is at most one. Consider the digital paths
π̄m = (s0

⊥−→)ms0
⊥−→ s3. For π ∈ [π̄1] = {s0 t−→ s3 | 0.4 ≤ t < 0.8} we have

σ(π, α) = 1. It follows di(σ)(π1, α) = 1. For π ∈ [π̄2] = {s0 t−→ s3 | 0.8 ≤ t < 1.2}
it is unclear whether σ chooses α or β. Hence, di(σ) randomly guesses:

di(σ)(π̄2, α) =
∫

π∈[π̄2]

σ(π, α) dPrMσ (π | [π̄2]) =

∫ 1.0

0.8
E(s0)e−E(s0)t dt

∫ 1.2

0.8
E(s0)e−E(s0)t dt

≈ 0.55.

On Mδ we consider ds-bounded reachability instead of timed reachability.

Definition 15 (ds-bounded reachability). The set of infinite digital paths
that reach G ⊆ S within the interval J ⊆ N of consecutive natural numbers is

♦J
dsG = {π̄ ∈ IPathsMδ | ∃n ≥ 0: π̄[n] ∈ G and |pref (π̄, n)|ds ∈ J}.

The timed reachability probabilities for M are estimated by ds-bounded reacha-
bility probabilities for Mδ. The induced ds-bounded reachability probability for
M (under σ) coincides with ds-bounded reachability probability on Mδ (under
di(σ)).

Proposition 4. Let M be an MA with G ⊆ S, σ ∈ GM, and digitization Mδ.
Further, let J ⊆ N be a set of consecutive natural numbers. It holds that

PrMσ ([♦J
dsG]) = PrMδ

di(σ)(♦
J
dsG).

Thus, induced ds-bounded reachability on MAs can be computed on their dig-
itization. Next, we relate ds-bounded and timed reachability on MAs, i.e., we
quantify the maximum difference between time-bounded and ds-bounded reach-
ability probabilities.
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Example 9. Let M be the MA given in Fig. 4(a). We consider the well-formed
time interval I = [0, 5δ], yielding digitization step bounds di(I) = {0, . . . , 5}. The
digitization constant δ ∈ R>0 remains unspecified in this example. Figure 4(b)
illustrates paths π1, π2, and π3 of M. We depict sojourn times by arrow length.
A black dot indicates that the path stays at the current state for a multiple of
δ time units. All depicted paths reach G = {s3} within 5δ time units. However,
the digitizations of π1, π2, and π3 reach G within 5, 4, and 6 digitization steps,
respectively. This yields

π1, π2 ∈ ♦IG ∩ [♦di(I)
ds G] and π3 ∈ ♦IG \ [♦di(I)

ds G].

s0

s1

2

0.5

0.5

1

(a) MA M.

|
0

|
1

|
2

|
3

|
4

|
5

|
6 time

s0 s0 s1 s1π1: · · ·

s0 s0 s1 s1π2: · · ·

s0 s0 s0 s0 s0 s1 s1π3: · · ·

(b) Sample paths of M.

Fig. 4. MA M and illustration of paths of M (cf. Example 9).

Let λ = max{E(s) | s ∈ MS} be the maximum exit rate of M. For a �= 0
define

ε↓([a, b]) = ε↓([a,∞)) = 1 − (1 + λδ)dia · e−λa, ε↓([0, b)) = ε↓([0,∞]) = 0,

ε↑([a, b]) = 1 − (1 + λδ)dib · e−λb

︸ ︷︷ ︸
=ε↑([0,b])

+ 1 − e−λδ

︸ ︷︷ ︸
=ε↑([a,∞))

, and ε↑([0,∞)) = 0.

ε↓(I) and ε↑(I) approach 0 for small digitization constants δ ∈ R>0.

Proposition 5. For MA M, scheduler σ ∈ GM, goal states G ⊆ S, digitization
constant δ ∈ R>0 and time interval I

PrMσ (♦IG) ∈ PrMσ ([♦I
dsG]) +

[
−ε↓(I), ε↑(I)

]

Proof (Sketch). The sets ♦IG and [♦di(I)
ds G] are illustrated in Fig. 5. We have

Prσ(♦IG) = Prσ([♦di(I)
ds G]) + Prσ(♦IG \ [♦di(I)

ds G]) − Prσ([♦di(I)
ds G] \ ♦IG).

One then shows

PrMσ (♦IG \ [♦di(I)
ds G]) ≤ ε↑(I) and PrMσ ([♦di(I)

ds G] \ ♦IG) ≤ ε↓(I).
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♦IG \ [♦di(I)
ds G] [♦di(I)

ds G] \ ♦IG♦IG ∩ [♦di(I)
ds G]

[♦di(I)
ds G]♦IG

Fig. 5. Illustration of the sets ♦IG and [♦di(I)
ds G].

To this end, show for any k ∈ N that 1− (1 + λδ)k · e−λδk is an upper bound for
the probability of paths that induce more then k digitization steps within the
first kδ time units. Then, this probability can be related to the probability of
paths in ♦IG \ [♦di(I)

ds G] and [♦di(I)
ds G] \ ♦IG, respectively.

From Propositions 4 and 5, we immediately have Corollary 1, which ensures
that the value PrMσ (♦IG) can be approximated with arbitrary precision by com-
puting PrMδ

di(σ)(♦
di(I)
ds G) for a sufficiently small δ.

Corollary 1. For MA M, scheduler σ ∈ GM, goal states G ⊆ S, digitization
constant δ ∈ R>0 and time interval I

PrMσ (♦IG) ∈ PrMδ

di(σ)(♦
di(I)
ds G) +

[
−ε↓(I), ε↑(I)

]

This generalizes existing results [8,9] that only consider schedulers which max-
imize (or minimize) the corresponding probabilities. More details are given in
[14].

Next, we lift Corollary 1 to multiple objectives O = (O1, . . . ,Od). We define
the satisfaction of a timed reachability objective P(♦IG) for the digitization Mδ

as Mδ, σ |= P(♦IG) �i pi iff PrMδ
σ (♦di(I)

ds G) �i pi. This allows us to consider
notations like achieveMδ(O � p), where O contains one or more timed reachabil-
ity objectives. For a point p = (p1, . . . , pd) ∈ R

d we consider the hyperrectangle

ε(O,p) =
dą

i=1

[
pi − ε↓i , pi + ε↑i

]
⊆ R

d, where ε↑i =

{
ε↑(I) if Oi = P(♦IG)
0 if Oi = E(#j,G)

and ε↓i is defined similarly. The next example shows how the set of achievable
points of M can be approximated using achievable points of Mδ.

Example 10. Let O = (P(♦I1G1),P(♦I2G2)) be two timed reachability objectives
for an MA M with digitization Mδ such that ε↓1 = 0.13, ε↑1 = 0.22, ε↓2 = 0.07,
and ε↑2 = 0.15. The blue rectangle in Fig. 6(a) illustrates the set ε(O,p) for the
point p = (0.4, 0.3). Assume achieveMδ(O � p) holds for threshold relations
� = {≥,≥}, i.e., p is achievable for the digitization Mδ. From Corollary 1, we
infer that ε(O,p) contains at least one point p′ that is achievable for M. Hence,
the bottom left corner point of the rectangle is achievable for M. This holds for
any rectangle ε(O,q) with q ∈ A, where A is the set of achievable points of Mδ

denoted by the gray area1 in Fig. 6(b). It follows that any point in A− (depicted

1 In the figure, A− partly overlaps A, i.e., the green area also belongs to A.
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by the green area) is achievable for M. On the other hand, an achievable point
of M has to be contained in a set ε(O,q) for at least one q ∈ A. The red
area depicts the points R

d \ A+ for which this is not the case, i.e., points that
are not achievable for M. The digitization constant δ controls the accuracy of
the resulting approximation. Figure 6(c) depicts a possible result when a smaller
digitization constant δ̃ < δ is considered.

p

ε↓
1 ε↑

1

ε↓
2

ε↑
2

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

(a) The set ε(O,p).

p

A− A

R
2 \ A+

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

(b) Coarse approximation.

p̃

Ã− Ã

R
2 \ Ã+

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

(c) Refined approximation.

Fig. 6. Approximation of achievable points. (Color figure online)

The observations from the example above are formalized in the following
theorem. The theorem also covers unbounded reachability objectives by consid-
ering the time interval I = [0,∞). For expected reward objectives of the form
E(#j,G) it can be shown that ERM

σ (ρj , G) = ERMδ

di(σ)(ρ
δ
j , G). This claim is sim-

ilar to Proposition 3 and can be shown analogously. This enables multi-objective
model checking of MAs with timed reachability objectives.

Theorem 5. Let M be an MA with digitization Mδ. Furthermore, let O be
(un)timed reachability or expected reward objectives with threshold relations �
and |O| = d. It holds that A− ⊆ {p ∈ R

d | achieveM(O � p)} ⊆ A+ with:

A− = {p′ ∈ R
d | ∀p ∈ R

d : p′ ∈ ε(O,p) implies achieveMδ(O � p)} and

A+ = {p′ ∈ R
d | ∃p ∈ R

d : p′ ∈ ε(O,p) and achieveMδ(O � p)}.

5 Experimental Evaluation

Implementation. We implemented multi-objective model checking of MAs into
Storm [32]. The input model is given in the PRISM language2 and translated
into a sparse representation. For MA M, the implementation performs a multi-
objective analysis on the underlying MDP MD or a digitization Mδ and infers
(an approximation of) the achievable points of M by exploiting the results from
Sect. 4. For computing the achievable points of MD and Mδ, we apply the
approach of [16]. It repeatedly checks weighted combinations of the objectives

2 We slightly extend the PRISM language in order to describe MAs.
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(by means of value iteration [30] – a standard technique in single-objective MDP
model checking) to refine an approximation of the set of achievable points. This
procedure is extended as follows. Full details can be found in [33].

– We support ds-bounded reachability objectives by combining the approach
of [16] (which supports step-bounded reachability on MDPs) with techniques
from single-objective MA analysis [8]. Roughly, we reduce ds-bounded reach-
ability to untimed reachability by storing the digitized time-epoch (i.e., the
current number of digitization steps) into the state space. A blow-up of the
resulting model is avoided by considering each time-epoch separately.

– In contrast to [16], we allow a simultaneous analysis of minimizing and maxi-
mizing expected reward objectives. This is achieved by performing additional
preprocessing steps that comprise an analysis of end components.

The source code including all material to reproduce the experiments is available
at http://www.stormchecker.org/benchmarks.html.

Setup. Our implementation uses a single core (2 GHz) of a 48-core HP BL685C
G7 limited to 20 GB RAM. The timeout (TO) is two hours. For a model, a set
of objectives, and a precision η ∈ R>0, we measure the time to compute an η-
approximation3 of the set of achievable points. This set-up coincides with Pareto
queries as discussed in [16]. The digitization constant δ is chosen heuristically
such that recalculations with smaller constants δ̃ < δ are avoided. We set the
precision for value-iteration to ε = 10−6. We use classical value iteration; the
use of improved algorithms [34] is left for future work.

Results for MAs. We consider four case studies: (i) a job scheduler [13], see
Sect. 1; (ii) a polling system [35,36] containing a server processing jobs that
arrive at two stations; (iii) a video streaming client buffering received packages
and deciding when to start playback; and (iv) a randomized mutual exclusion
algorithm [36], a variant of [37] with a process-dependent random delay in the
critical section. Details on the benchmarks and the objectives are given in [14].

Table 1 lists results. For each instance we give the defining constants, the
number of states of the MA and the used η-approximation. A multi-objective
query is given by the triple (l,m, n) indicating l untimed, m expected reward,
and n timed objectives. For each MA and query we depict the total run-time
of our implementation (time) and the number of vertices of the obtained under-
approximation (pts).

Queries analyzed on the underlying MDP are solved efficiently on large mod-
els with up to millions of states. For timed objectives the run-times increase
drastically due to the costly analysis of digitized reachability objectives on the
digitization, cf. [9]. Queries with up to four objectives can be dealt with within
the time limit. Furthermore, for an approximation one order of magnitude better,
the number of vertices of the result increases approximately by a factor three.

3 An η-approximation of A ⊆ R
d is given by A−, A+ ⊆ R

d with A− ⊆ A ⊆ A+ and
for all p ∈ A+ exists a q ∈ A− such that the distance between p and q is at most η.

http://www.stormchecker.org/benchmarks.html
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Table 1. Experimental results for multi-objective MAs.

benchmark (♦,ER, ♦I) (♦,ER, ♦I) (♦,ER, ♦I) (♦,ER, ♦I)
N(-K) #states log10(η) pts time pts time pts time pts time

job scheduling (0, 3, 0) (0, 1, 1) (1, 3, 0) (1, 1, 2)

10-2 12 554
−2 9 1.8 9 41 15 435 16 2 322
−3 44 128 21 834 TO TO

12-3 116 814
−2 11 42 9 798 21 2 026 TO
−3 53 323 TO TO TO

17-2 4.6 · 106 −2 14 1 040 TO 22 4 936 TO
−3 58 2 692 TO TO TO

polling (0, 2, 0) (0, 4, 0) (0, 0, 2) (0, 2, 2)

3-2 1 020
−2 4 0.3 5 0.6 3 130 12 669
−3 4 0.3 5 0.8 7 3 030 TO

3-3 9 858
−2 5 1.3 8 23 6 2 530 TO
−3 6 2.0 19 3 199 TO TO

4-4 827 735
−2 10 963 20 4 349 TO TO
−3 11 1 509 TO TO TO

stream (0, 2, 0) (0, 1, 1) (0, 0, 2) (0, 2, 1)

30 1 426
−2 20 0.9 16 90 16 55 26 268
−3 51 8.8 46 2 686 38 1 341 TO

250 94 376
−2 31 50 15 5 830 16 4 050 TO
−3 90 184 TO TO TO

1000 1.5 · 106 −2 41 3 765 TO TO TO
−3 TO TO TO TO

mutex (0, 0, 3) (0, 0, 3)

2 13 476
−2 16 351 13 1 166
−3 13 2 739 TO

3 38 453 −2 15 2 333 TO

In addition, a lower digitization constant has then to be considered which often
leads to timeouts in experiments with timed objectives.

Comparison with PRISM [15] and IMCA [9]. We compared the performance of
our implementation with both PRISM and IMCA. Verification times are summa-
rized in Fig. 7: On points above the diagonal, our implementation is faster. For
the comparison with PRISM (no MAs), we considered the multi-objective MDP
benchmarks from [16,19]. Both implementations are based on [16]. For the com-
parison with IMCA (no multi-objective queries) we used the benchmarks from
Table 1, with just a single objective. We observe that our implementation is
competitive. Details are given in [14].
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Fig. 7. Verification times (in seconds) of our implementation and other tools.
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6 Conclusion

We considered multi-objective verification of Markov automata, including in
particular timed reachability objectives. The next step is to apply our algorithms
to the manifold applications of MA, such as generalized stochastic Petri nets to
enrich the analysis possibilities of such nets.
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