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Abstract. A central challenge in software analysis concerns balanc-
ing different competing tradeoffs. To address this challenge, we pro-
pose an approach based on the Maximum Satisfiability (MaxSAT) prob-
lem, an optimization extension of the Boolean Satisfiability (SAT) prob-
lem. We demonstrate the approach on three diverse applications that
advance the state-of-the-art in balancing tradeoffs in software analysis.
Enabling these applications on real-world programs necessitates solving
large MaxSAT instances comprising over 1030 clauses in a sound and
optimal manner. We propose a general framework that scales to such
instances by iteratively expanding a subset of clauses while providing
soundness and optimality guarantees. We also present new techniques to
instantiate and optimize the framework.

1 Introduction

Designing a suitable software analysis is a challenging endeavor. Besides the fact
that any non-trivial analysis problem is undecidable in general, various practical
aspects drive the need for assumptions and approximations: program behav-
iors that the analysis intends to check may be impossible to define precisely
(e.g., what constitutes a security vulnerability), computing exact answers may
be prohibitively costly (e.g., worst-case exponential in the size of the analyzed
program), and parts of the analyzed program may be missing or opaque to the
analysis. These theoretical and practical issues in turn necessitate balancing var-
ious competing tradeoffs in designing an analysis, such as soundness, precision,
efficiency, and user effort.

Constraint-based analysis [3] is a popular approach to software analysis. The
core idea underlying this approach is to divide a software analysis task into two
separate steps: constraint generation and constraint resolution. The former pro-
duces constraints from a given program that constitute a declarative specification
of the desired information about the program, while the latter then computes
the desired information by solving the constraints. This approach provides many
benefits such as separating the analysis specification from the analysis implemen-
tation, and allowing to leverage sophisticated off-the-shelf constraint solvers. Due
to these benefits, the constraint-based approach has achieved remarkable success,
as exemplified by the many applications of SAT and SMT solvers.
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Existing constraint-based analyses predominantly involve formulating and
solving a decision problem, which is ill-equipped to handle the tradeoffs involved
in software analysis. A natural approach to address this limitation is to extend
the decision problem to allow incorporating optimization objectives. These objec-
tive functions serve to effectively formulate various tradeoffs while preserving the
benefits of the constraint-based approach.

Maximum Satisfiability [1], or MaxSAT for short, is one such optimization
extension of the Boolean Satisfiability (SAT) problem. A MaxSAT instance com-
prises a system of mixed hard and soft clauses, wherein a soft clause is simply
a hard clause with a weight. The goal of a (exact) MaxSAT solver is to find a
solution that is sound, i.e., satisfies all the hard clauses, and optimal, i.e., maxi-
mizes the sum of the weights of satisfied soft clauses. Thus, hard clauses enable
to enforce soundness conditions of a software analysis while soft clauses enable
to encode different tradeoffs.

We demonstrate a MaxSAT based approach to balancing tradeoffs in software
analysis. We show the versatility of this approach using three diverse applications
that advance the state-of-the-art. The first concerns automated verification with
the goal of finding a cheap yet precise program abstraction for a given analysis.
The second concerns interactive verification with the goal of overcoming the
incompleteness of a given analysis in a manner that minimizes the user’s effort.
The third concerns static bug detection with the goal of accurately classifying
alarms reported by a given analysis by learning from a subset of labeled alarms.

Enabling these applications on real-world programs necessitates solving large
MaxSAT instances comprising over 1030 clauses in a sound and optimal manner,
which is beyond the reach of existing MaxSAT solvers. We propose a lazy ground-
ing framework that scales to such instances by iteratively expanding a subset
of clauses while providing soundness and optimality guarantees. The framework
subsumes many grounding techniques in the literature. We also present two new
grounding techniques, one bottom-up and one top-down, as instantiations of the
framework. Finally, we propose two techniques, eager grounding and incremental
solving, to optimize the framework.

The rest of the paper is organized as follows. Section 2 reviews the syntax and
semantics of MaxSAT and its variants. Section 3 presents our three applications
and demonstrates how to formulate them using MaxSAT. Section 4 presents our
techniques and framework for MaxSAT solving. Section 5 surveys related work,
Sect. 6 discusses future directions, and Sect. 7 concludes.

2 Background

In this section, we cover basic definitions and notations. We begin by defining
the MaxSAT problem and its variants (Sect. 2.1). The input for MaxSAT is a
CNF formula obtained by grounding a logic formula. Next, we introduce the
logic used in subsequent sections (Sect. 2.2).
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2.1 MaxSAT

The MaxSAT problem is a variant of the SAT problem. Given a propositional
boolean formula in CNF whose clauses can be weighted, it seeks a model that
maximizes the sum of the weights of the satisfied clauses. These concepts are
defined formally in the next section in a more general setting. We illustrate them
in this section using an example.
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Fig. 1. A simple digraph and its representation as a propositional CNF formula.
A clause with no weight is a hard clause; for example, x4 is the same as x

(∞)
4 .

Consider the graph in Fig. 1. We can represent its edges by clauses which are
implications. We can then ask which vertices are reachable from certain source
vertices. Suppose we choose vertex 4 to be the source. Then, a possible model
is x1 = x2 = x3 = x4 = 1, but it is not the expected one. We include a bias to
indicate that variables be 0, if at all possible. The bias clauses have weight 1.
None of the other clauses (encoding edges or sources) should be violated at the
expense of a bias clause. Thus, we should pick their weight to be high enough. In
this example, 5 would suffice. But, to avoid having to specify this high-enough
weight, we allow ∞ as a weight. We call clauses with infinite weight hard ; and
we call clauses with finite weight soft. This leads to the most general form of the
MaxSAT problem, called weighted partial MaxSAT, or WPMS for short. We use
this form throughout the paper. We state its decision version below.

Problem 1 (WPMS). Given a weight w and a weighted propositional CNF for-
mula φ :=

∧
i ϕ

(wi)
i , decide if φ has a model for which the weight of the satisfied

soft clauses is ≥ w.

2.2 Relational First-Order Logic with Weights

Propositional logic is too low level and too inefficient for our needs. Let us
see why on the example in Fig. 1. There, we have two distinct concepts: the
digraph structure, and the notion of reachability. However, we could not keep
these concepts apart: our choice of how to represent edges is very much driven
by the goal of performing reachability queries. In this section, we will see that it
is possible to keep these concepts distinct if we move to quantifier-free relational
first-order logic with weights. Moreover, this representation is not only more
convenient, but also enables faster solving through lazy grounding.



Maximum Satisfiability in Software Analysis: Applications and Techniques 71

First-order logic has been extended with quantitative notions in many ways:
possibility theory [19], Bayesian probabilities [29], Markov logic networks [18],
and others. Here, we present a simple extension with weights, for which ground
formulas correspond to MaxSAT instances.

Fig. 2. Syntax for quantifier-free relational first-order logic with weights.

Figure 2 shows the standard syntax for quantifier-free relational first-order
logic formulas in CNF, but it also introduces weights on clauses. We assume a
countable set of variables (x, y, z, . . .), and countable sets of symbols for constants
(a, b, c, . . .) and relations (P,Q,R, . . .). A term is a constant symbol or a variable.
Each relation has a fixed arity k, and takes k terms as arguments. A literal �
is either a relation or its negation; the former is a positive literal, the latter is a
negative literal. A clause ϕ is a disjunction of literals. A weight w is a nonnegative
real number. A weighted clause ϕ(w) is a clause ϕ together with a weight w. A
weighted formula φ is a conjunction of weighted clauses. As usual, we interpret
variables as universal. Occasionally, we emphasize that formula φ uses variables
x1, . . . , xn by writing φ(x1, . . . , xn); similarly for clauses.

Without weights, one usually defines the semantics of formulas by specifying
how they evaluate to a boolean. With weights, we define the semantics of for-
mulas by specifying how they evaluate to a weight, which is a nonnegative real.
In both cases, the evaluation is done on a model.

A (finite) model σ = 〈U, {cσ
i }, {P σ

i }〉 consists of a finite universe U together
with an interpretation of (i) each constant symbol ci as an element cσ

i of U , and
(ii) each kary relation symbol Pi as a kary relation P σ

i ⊆ Uk. This is a standard
setup [36, Chap. 2].

Fig. 3. Semantics for quantifier-free relational first-order logic with weights.

Figure 3 shows the semantics for quantifier-free relational first-order logic
with weights. A clause/formula is said to be ground if it contains no variable
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occurrence. A ground clause ϕ is said to hold in a model σ when it contains a
literal that holds in σ. A ground positive literal P (c1, . . . , cn) holds in σ when
(c1, . . . , cn) ∈ P σ; a ground negative literal ¬P (c1, . . . , cn) holds in σ when
(c1, . . . , cn) /∈ P σ. For a clause ϕ(x1, . . . , xn) we define #σ(ϕ) to be the number
of groundings of ϕ that hold in σ. Given a model σ, the value of a weighted
clause ϕ(w) is w · #σ(ϕ), and the value [[φ]]σ of a formula φ is the sum of the
values of its clauses.

In the rest of the paper, we shall see how several practical problems concern-
ing software analysis (abstraction refinement, user interaction, identifying likely
bugs) can be phrased as instances of the following problem.

Problem 2. Given a formula φ, find a model σ that maximizes the weight [[φ]]σ.

As in the case of WPMS, we allow infinite weights as a shorthand for very
large weights. It is possible to show that the above problem is equivalent to the
problem of exact MAP inference for Markov logic networks [18].

Example 1. Now let us revisit the example from Fig. 1. This time we represent
the problem by a formula φ with the following clauses:

edges: bias: reachability:
edge(1, 2) ¬path(x, y)(1) path(x, x)
edge(2, 3) ¬edge(x, y)(1) path(x, z) ∨ ¬path(x, y) ∨ ¬edge(y, z)
edge(3, 1)
edge(2, 4)

There are several things to note here. First, we disentangled the representation
of the digraph from the queries we want to perform. The digraph structure is rep-
resented by the relation edgeσ, which is specified by 5 clauses: 4 hard and 1 soft.
The notion of reachability is represented by the relation pathσ, which is specified
by 3 clauses: 2 hard and 1 soft. The maximum weight we can achieve is [[φ]]σ = 15,
for example by using model σ = 〈U, 1σ, 2σ, 3σ, 4σ, edgeσ, pathσ〉 with universe
U = {1σ, 2σ, 3σ, 4σ}, and relations edge = {(1σ, 2σ), (2σ, 3σ), (3σ, 1σ), (2σ, 4σ)}
and path =

({1σ, 2σ, 3σ} × {1σ, 2σ, 3σ, 4σ}) ∪ {(4σ, 4σ)}.

We will often omit the superscript σ when there is no danger of confusing
a symbol with what it denotes. Further, in all our applications we will have
constant symbols to denote all elements of the universe, so we will omit listing
the constant symbols explicitly. Thus, for the model in Example 1, we simply
write σ = 〈edge, path〉. On the topic of simplifying notation, we note that clauses
are often definite Horn; that is, they contain exactly one positive literal. These
should be thought of as implications. So, for definite Horn clauses, we may write

�+1 ∧ . . . ∧ �+n
(w)→ �+ instead of

(
�−
1 ∨ . . . �−

n ∨ �+
)(w).

We remark that the development so far would also work if instead of
quantifier-free clauses ϕ we would have arbitrary first-order logic formulas. In
particular, we could still define the notion of a weight [[φ]]σ in the same way,
and Problem2 would not change. However, we found this fragment to be expres-
sive enough for many applications (see Sect. 3), and it has the advantage that
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its groundings are WPMS instances. For this, we need to see ground literals as
boolean variables in a WPMS instance.

Example 2. Recall Example 1. For each ground literal path(a, b) we introduce
a boolean variable pab. Then, for example, the clause ¬path(x, y)(1) leads to
16 WPMS clauses, each containing one boolean variable: p

(1)
11 , p

(1)
12 , p

(1)
13 , . . .

3 Applications

We demonstrate our MaxSAT based approach to tackle the central challenge of
balancing different tradeoffs in software analysis. We do so by illustrating the
approach on three mainstream applications: automated verification (Sect. 3.1),
interactive verification (Sect. 3.2), and static bug detection (Sect. 3.3). Specifi-
cally, we use the graph reachability analysis from Example 1 as an instance to
explain how we can augment a conventional analysis in a systematic and general
manner to balance these tradoffs. Throughout, we observe a recurring theme
of using weights for encoding two conceptually different quantities: costs and
probabilities.

3.1 Automated Verification

A key challenge in automated verification concerns finding a program abstraction
that balances efficiency and precision. A common approach to achieve such a
balance is to use a strategy called CEGAR (counter-example guided abstraction
refinement) [17]. To apply this strategy, however, analysis designers often resort
to heuristics that are specialized to the analysis task at hand. In this section, we
show how to systematically apply CEGAR to constraint-based analyses.

Fig. 4. Example program.

Example. Consider the program in Fig. 4. We are interested in analyzing its
aliasing properties; in particular, we want to check if the two assertions at labels
q1 and q2 hold. Functions id1 and id2 simply return their argument. It is easy to
see that the assertion at q1 holds but the assertion at q2 does not. To conclude
this, however, an analysis must reason precisely about the calls to functions
id1 and id2. When id1 is called from f, its variable v is of course different from
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its variable v when called from g. Thus, the analysis should track two variants of
v, one for each context. In general, however, the analysis cannot track all possible
contexts, because there may be an unbounded number of them due to recursive
functions. It may be prohibitively expensive to track all contexts even if there
are a bounded number of them. So, for both theoretical and practical reasons,
some contexts cannot be distinguished. In our example, not distinguishing the
two contexts leads to considering variable v in id1 to be the same, no matter
from where id1 is called. Alternatively, the calls and returns to and from id1
are modelled by jumps: the return becomes a nondeterministic jump because
it can go back to either f or g. This causes the analysis to conclude that the
assertion at q1 might fail. Indeed, one can start the execution at the beginning
of f, jump into id1 when it is called, but then ‘return’ after the call to id1 in g,
and then continue until q1 is reached. In summary, on the one hand, we cannot
distinguish all contexts for efficiency reasons; and on the other hand, merging
contexts can lead to imprecision.

Fig. 5. Digraph model of the example program in Fig. 4. Nodes 1, 2, and 3 stand for
the basic blocks of function f; nodes 4, 5, and 6 stand for the basic blocks of function g;
nodes 7 and 8 stand for the bodies of id1 and id2, respectively. Nodes 7′ and 7′′ are
clones of 7; nodes 8′ and 8′′ are clones of 8. Edges representing matching calls and
returns have the same label.

In Fig. 5, we formulate an analysis that can answer whether assertions at
q1 and q2 hold. Our formulation is similar to the reachability problem we saw
earlier in Example 1. The main difference is that edges have labels, which allows
us to use them selectively.

path(x, x)
path(x, y) ∧ edge(y, z, u) ∧ abs(u) → path(x, z) (Path-Def)

We have two ways to model the call from f to id1: by inlining or by a jump.
Intuitively, abs(a1) means we use inlining, and abs(a0) means we use a jump.

To show that the assertion at q1 holds, we need to show that there is no path
from 1 to 6, for some choice of how to model each function call. To this end, we
proceed as follows. First, we introduce the hard constraint ¬path(1, 6). Second,



Maximum Satisfiability in Software Analysis: Applications and Techniques 75

we implement a CEGAR loop. In each iteration, we have some choice of how
to model each function call. We can represent this choice either by selectively
generating edges, or by selectively deactivating some edges. For example, we
could include all edges but deactivate some of them by including clauses

¬abs(a1) ¬abs(b1) ¬abs(c1) ¬abs(d1)
This would prevent inlining from being used. In Fig. 5, we see a path from 1 to 6
that uses only edges with labels from {a0, b0, c0, d0}. This means that ¬path(1, 6)
is inconsistent with modelling all function calls by jumps. Thus, we should change
how we model some function calls. We prefer to keep as many jumps as possible
so that we do as little inlining as possible:

abs(a0)(1) abs(b0)(1) abs(c0)(1) abs(d0)(1)

The solver could answer with a model in which abs = {a0, b0, c0}. In that case,
in the next iteration we inline the call from g to id2, by including clauses

abs(a0)(1) abs(b0)(1) abs(c0)(1) ¬abs(d0)
¬abs(a1) ¬abs(b1) ¬abs(c1) abs(d1)

Now the solution will have to disrupt the path 1 a0→ 7 b0→ 5 d1→ 8′′ d1→ 6, by
not including one of a0 and b0 in abs. Suppose the solver answers with abs =
{a0, c0, d1}. Then, in the next CEGAR iteration we try to model both calls
from g by inlining.

abs(a0)(1) ¬abs(b0) abs(c0)(1) ¬abs(d0)
¬abs(a1) abs(b1) ¬abs(c1) abs(d1)

The solver returns abs = {a0, b1, c0, d1}. Since the maximum possible weight
was achieved, we know that no further refinement is needed: there exists a way
to model function calls that allows us to conclude the assertion at q1 holds.

General Case. The core idea is to formulate the problem of finding a good
abstraction as an optimization problem on a logic with weights (see Problem 2).
In general, the encoding of the program need not be a digraph, and the analysis
need not be reachability. However, the abstraction will often select between dif-
ferent ways of modeling program semantics, and will be represented by a relation
similar to the relation abs in our example. Accordingly, we model the program,
the analysis, and the query by a formula φ, without relying on its structure.
We define the space of abstractions to be a boolean assignment to sites. (In our
example, the sites are the four function calls.) Suppose the current abstraction is
A : Site → {0, 1}. Then, we ask for a model of maximum weight for the formula

φ ∧
( ∧

A(s)=0

abs(s0)(1) ∧ ¬abs(s1)
)

∧
( ∧

A(s)=1

¬abs(s0) ∧ abs(s1)
)
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For each s ∈ Site, we have two constant symbols, s0 and s1. If the formula
has a model of maximum weight, which is the number of imprecise sites, then
the query is proven. If the formula has no model that satisfies all its hard clauses,
then no abstraction can prove the query. Otherwise, by inspecting the model,
we can find a more precise abstraction to try next.

We refer the reader to [70] for instantiations of this approach to pointer
analysis and typestate analysis of Java programs.

Discussion. One can design an automated analysis that balances efficiency and
precision as follows: (1) design a basic constraint-based analysis; (2) parameterize
the analysis; and (3) find a good abstraction by solving an optimization problem.
We saw a simple example of an analysis which tracked information flow in a
program. There are, however, many other analyses that use constraint-based
formulations [11,32,64–66].

What does it mean to parameterize an analysis? Compare Example 1 with
Fig. 5. In one we have edges; in the other we have edges that can be activated or
deactivated. By constraining the relation abs, we were able to model function
calls either by jumps (cheap) or by inlining (expensive). The intuition is that
inlining is expensive due to nesting. This intuition also holds for other context
sensitivity mechanisms, such as k-CFA and k-object sensitivity. Thus, there is
often a way to introduce a relation abs that tells us, for each of several sites in
the program, whether to use cheap or expensive semantics.

Finally, once the relation abs is introduced, we can implement the CEGAR
loop sketched above, which achieves efficiency by increasing precision selectively.
In [70], multiple queries are handled simultaneously: the result of the CEGAR
loop is to classify assertions into those verified and those impossible to verify.
By the latter, we mean that they would not be verified by the most expen-
sive abstraction, if we were to try it. But the CEGAR loop will typically reach
the conclusion that an assertion is impossible to verify without actually trying
the most expensive abstraction. Another extension [24] describes an alternate
CEGAR strategy that considers not only the relative cost of different abstrac-
tions but also their probability of success.

3.2 Interactive Verification

Sound analyses produce a large number of alarms which include a small number
of real bugs. Users then sift through these alarms, classifying them into false
alarms and real bugs. In other words, a computer and a user collaborate on
finding bugs: in a first phase, the computer does its work; in a second phase,
the user does their work. In certain situations, however, it is possible to reduce
the total amount of work done by the user by interleaving: the computer and
the user take turns at doing small amounts of work. The idea is that we should
let users perform certain tasks they are better suited for and we should use the
results of their work to guide the computer’s work.
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Fig. 6. First source-sink information-flow example: if some edges are spurious, then
some source-sink flows are interrupted.

Example. Consider the information-flow example from Fig. 6. We wish to know
if there are paths from sources to sinks. If the analysis runs with no help from
the user, it presents the following alarms:

path(1, 6) path(1, 7) path(2, 6) path(2, 7) path(8, 6) path(8, 7)

After inspecting all 6 alarms, the user decides that all of them are false alarms.
Now consider an alternative scenario. Suppose the analysis suspects that the

edges marked as a and b may be spurious. Then, before presenting a large set of
alarms to the user, it may be beneficial to ask the user if a or b are spurious. If
a is spurious, then 4 alarms disappear; if b is spurious, then 6 alarms disappear.
It is therefore better to ask the user about edge b. We can formulate this choice
of question, between a and b, as an optimization problem.

As before (Sect. 3.1), we use labels on edges. The definition of reachability
remains as in (Path-Def). But here labels represent something different: we use
labels a and b to identify each of the possibly spurious edges, and we use one
extra label c for all the other edges.

edge(3, 4, a) edge(1, 2, c) edge(2, 3, c) edge(8, 4, c)
edge(4, 5, b) edge(5, 6, c) edge(5, 7, c) abs(c)

We require that the non-spurious edges are selected, and that at most one of the
other edges are deselected:

abs(c) abs(a) ∨ abs(b)

Finally, we want a maximum number of alarms to disappear:

¬path(1, 6)(1) ¬path(2, 6)(1) ¬path(8, 6)(1)

¬path(1, 7)(1) ¬path(2, 7)(1) ¬path(8, 7)(1)

For the formula built with the clauses described so far, the model of maximum
weight has abs = {a, c} and weight 6. We interpret this to mean that edge b
may rule out 6 alarms.

General Case. We wish to save user time by bringing to their attention root
cause of imprecision in the analysis that may be responsible for many false
alarms. The core idea is to formulate the problem of finding a good question to
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ask the user as an optimization problem on a logic with weights (Problem2). As
before (Sect. 3.1), we assume that the analysis is described by some formula φ,
and we assume the existence of a special relation abs. In addition, we also assume
that we are given a list �+1 , . . . , �+n of grounded positive literals that represent
alarms. Then, we ask for a model of maximum weight for the formula

φ ∧
( n∧

i=1

(¬�+i
)(1)

)

∧
( ∧

1≤i<j≤m

abs(ai) ∨ abs(aj)
)

∧ abs(c)

The constants a1, . . . , am identify the possibly spurious edges, while the con-
stant c marks all the other edges. In a model of maximum weight, at most one
of a1, . . . , am will be missing from the relation abs. The missing constant iden-
tifies the question we should ask the user. The maximum weight is the number
of alarms that will be classified as false, should the user answer ‘no’. If none
of a1, . . . , am is missing from abs, then none of the alarms can be caused by
imprecision of the analysis.

We refer the reader to [69] for instantiations of this approach to datarace
analysis and pointer analysis of Java programs.

Discussion. What if the user labels an edge as spurious when in fact it is not? In
this case, real bugs may be missed, even though the original analysis is sound.
One can define a notion of relative soundness to accommodate this situation:
bugs are not missed as long as the user makes no mistakes in handling the analy-
sis’ output. Another approach would be to check the users’ answers, which would
feasible if the user not only answers ‘yes’/‘no’ but also offers extra information in
the form of a certificate that supports their answer. This approach is adopted by
the Ivy tool [51], which asks the user for help in finding an inductive invariant,
but checks inductiveness.

Another possible concern is that the term
∧

1≤i<j≤m abs(ai)∨abs(aj), which
is used to ensure that we search for a single spurious edge, grows quadrati-
cally. There exist efficient but non-obvious ways to encode such cardinality con-
straints [21,63] and there also exist ways to handle them directly in satisfiability
solvers [55]. These techniques also work for other cardinalities: we can ask what
is the best set of ≤ k possibly spurious edges, which may be necessary if the
disappearance of any single spurious edge does not rule out any alarm. By a
more involved process, it is also possible to maximize the expected number of
alarms ruled out per spurious edge [69].

3.3 Static Bug Detection

In the previous section, we saw how user feedback can be used to reduce the
number of false alarms produced by a sound analysis. While in theory we deal
mostly with sound analyses, in practice, analysis designers must make pragmatic
assumptions [37]. In this section, we assume that we start from such an analysis,
which could be described as a bug finder. In this situation, we want to avoid
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not only false positives but also false negatives. The approach we take is to
probabilistically learn from user ‘likes’ and ‘dislikes’ on bug reports. Based on
this feedback, the analysis adjusts the approximations it makes.

1

2

3 4

5

6

7

8

9

source

sink

Fig. 7. Second source-sink information-flow example: if many flows with the same
source lead to false bug reports, then other flows from the same source are likely to
also lead to false bug reports.

Example. Figrue 7 gives an information-flow example, similar to the one in the
previous section (Sect. 3.2). This time, however, edges are not labeled, so we
use the simple definition of reachability from Example 1. While each edge in the
graph is always valid, a path computed by the analysis can be spurious due to
the approximations applied.

On this example, the analysis produces 10 reports, corresponding to the cross
product of the 2 sources with the 5 sinks. There reports are mixed true alarms
and false alarms. Suppose that all reports with node 2 as the source are false
alarms because path(2, 4) is spurious. Typically, this is where the interaction
between the analysis and the user stops, and the user has to inspect each report
manually. In this case, the user can quickly get frustrated due to high false
positive rate (50%).

To address this challenge, we allow the analysis to incorporate user feedback
and therefore produce results that are more desirable to the user. For instance,
if the user inspects path(2, 5) and path(2, 6) and determines them to be false
alarms, we incorporate this feedback and suppress path(2, 7), path(2, 8), and
path(2, 9), which are derived for the same root cause. To achieve this effect, we
need to address two challenges:

1. How can we enable a conventional analysis to incorporate user feedback in a
systematic and automatic manner?

2. How can we generalize the impact of feedback on limited reports to others?

For the first challenge, we notice that it is impossible to directly incorporate
user feedback in a conventional analysis, which formulates the analysis problem
as a decision problem. In such a decision problem, all clauses are hard, which
makes the analysis rigid and define a single set of reports that cannot be changed.
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As a result, if we directly add the aforementioned user feedback as hard clauses
¬path(2, 5) and ¬path(2, 6), it will make the constraint system inconsistent.
Ideally, we want the ability to occasionally ignore certain clause groundings that
can introduce imprecision and therefore guide the analysis to produce results
that are more desirable to the user.

Our approach addresses this challenge by attaching weights to certain clauses
whose groundings can introduce false alarms and therefore convert them from
hard into soft. Intuitively, the weight of a clause represents the analysis writer’s
confidence in it: the higher weight it has, the less likely the writer thinks it
will introduce imprecision. These weights can be specified by the analysis writer
manually or automatically learnt from training programs whose bug reports are
fully labeled using standard algorithms [61]. The clauses that are considered
precise remain as hard clauses.

The above transformation results in a probabilistic analysis specified in logic
with weights, which defines a distribution of outputs rather than a single output.
We call this analysis probabilistic as the clause groundings now hold with some
probability. And the final set of bug reports is the most likely one that maximizes
the sum of the weights of the satisfied clause groundings. Moreover, it allows us
to incorporate user feedback as new clauses in the system, which will change
the output distribution and the set of bug reports. Since the user can make
mistakes, we also add user feedback as soft clauses to the system, whose weights
represent the user’s confidence in them and can be also trained from labeled
data. Intuitively, the bug reports produced after feedback are the ones that the
analysis writer and the analysis user will most likely agree upon.

For the example analysis, we observe that reflexivity of path always holds,
while transitivity of path can introduce imprecision. As a result we attach a
weight to the clause which encodes transitivity, say 100. We also add user feed-
back as clauses ¬path(2, 5)(200) and ¬path(2, 6)(200). We attach high weights
to user feedback clauses as we assume the user is confident in the feedback. As
a result, we obtain the analysis specification with user feedback in logic with
weights below:

Rules: Bias: Feedback:
path(x, x) ¬edge(x, y)(1) ¬path(2, 5)(200)

path(x, y) ∧ edge(y, z)
(100)−→ path(x, z) ¬path(x, y)(1) ¬path(2, 6)(200)

We now discuss how our approach addresses the second challenge, of general-
izing user feedback from some reports to others. We observe that all five false
alarms are derived due to the spurious fact path(2, 4), which reveals a more
general insight about false alarms: most false alarms are symptoms of a few root
causes. Rectifying these few root causes (path(2, 4) in the example) can signif-
icantly improve the analysis precision. We illustrate how our approach achieves
this effect by studying the MaxSAT instance generated by the above analysis
specification with feedback:
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c1 : path(2, 2) ∧
c2 : path(2, 3) ∨ ¬path(2, 2) ∨ ¬edge(2, 3)(100) ∧
c3 : path(2, 4) ∨ ¬path(2, 3) ∨ ¬edge(2, 4)(100) ∧
c4 : path(2, 5) ∨ ¬path(2, 4) ∨ ¬edge(4, 5)(100) ∧
c5 : path(2, 6) ∨ ¬path(2, 4) ∨ ¬edge(4, 6)(100) ∧
c6 : path(2, 7) ∨ ¬path(2, 4) ∨ ¬edge(4, 7)(100) ∧
c7 : path(2, 8) ∨ ¬path(2, 4) ∨ ¬edge(4, 8)(100) ∧
c8 : path(2, 9) ∨ ¬path(2, 4) ∨ ¬edge(4, 9)(100) ∧
f1 : ¬path(2, 5)(200) ∧
f2 : ¬path(2, 6)(200) ∧

...

For the purpose of illustration, we only show the clauses that are related to
the false alarms. In addition, we elide the bias clauses and assume that the
computed model is always minimal. We notice that clauses c1-c5 form a con-
flict with the feedback clauses f1 and f2. As a result, a model of the MaxSAT
instance cannot satisfy all of them. To maximize the sum of the weights of sat-
isfied soft clauses, the model will violate c3 while satisfying the other aforemen-
tioned clauses. Hence, variables path(2, 4), path(2, 5), path(2, 6) will be set to
false in the solution. Since the computed model is minimal, variables path(2, 7),
path(2, 8), path(2, 9) will also be set to false, which correspond to the other
false alarms that are derived from path(2, 4). Hence, we successfully generalize
the impact of the feedback on reports path(2, 5) and path(2, 6) by eliminating
their common root cause path(2, 4), which in turn suppresses the other three
false alarms that are derived from it.

General Case. We now discuss the general recipe for our approach. It is divided
into an offline learning phase and an online inference phase. The offline phase
takes a conventional analysis specified by an analysis writer and produces a prob-
abilistic analysis specified in logic with weights. It produces the weight for each
clause by learning it from training programs whose bug reports are fully labeled.
The online phase applies the probabilistic analysis on a program supplied by the
analysis user and produces bug reports in an interactive way. In each iteration,
the user selects and inspects a subset of reports produced by the analysis, and
provides positive or negative feedback. The analysis incorporates the feedback
and update the reports for the next iteration. This interaction continues until
all the bug reports are resolved.

We refer the reader to [39] for instantiations of this approach to datarace
analysis and monomorphic call site analysis of Java programs.

Discussion. This approach is similar to the one introduced in Sect. 3.2 as they
both improve the analysis accuracy by incorporating user effort. However, while
the previous approach requires the user to inspect intermediate analysis facts, the
current approach directly learns from user feedback on end reports. As a result,
the previous approach requires the user to understand intermediate analysis
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results but the current approach does not. On the other hand, the previous
approach can guarantee the soundness of the result if the user always gives
correct answers, while the current approach may introduce false negatives due
to its probabilistic nature. Hence, the current approach is more suitable for bug
finding whereas the previous approach can be applied in interactive verification.

4 Techniques

We present techniques we have developed for MaxSAT solving. While primarily
motivated by the domain of software analysis, they are general enough to be
applicable to other domains too such as Big Data analytics and statistical AI.

We present a framework embodying our general approach (Sect. 4.1). We then
present two techniques as instantiations of the framework (Sect. 4.2). Finally, we
present two techniques that enable to optimize the framework (Sect. 4.3).

4.1 Framework

Our framework targets the problem of finding a model of a relational first-
order logic formula with weights. The standard approach consists of two phases:
grounding and solving. In the grounding phase, the formula is reduced to a
WPMS instance by instantiating all variables with all possible constants. In
the solving phase, the WPMS instance is solved using an off-the-shelf WPMS
solver. Both phases are challenging to scale: in the grounding phase, naively
instantiating all variables with all possible constants can lead to an intractable
WPMS instance (comprising upto 1030 clauses); in the solving phase, the WPMS
problem itself is also a combinatorial optimization problem, known for its
intractability [4,41]. We address both these challenges by interleaving the two
phases in an iterative lazy grounding process that progressively expands a subset
of clauses while providing soundness and optimality guarantees.

Fig. 8. Architecture of our lazy grounding framework for solving large MaxSAT
instances. It scales by iteratively expanding a workset comprising a subset of clauses
in the input MaxSAT instance. Our bottom-up and top-down grounding techniques,
and many others in the literature, are instances of this framework.
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Algorithm 1. Lazy Grounding Framework.
Input: (H, S): hard and soft clauses of input instance.
Output: ν: sound and optimal solution (assumes H is satisfiable).

1 (φ, ψ) ← Init(H, S)
2 (ν, w) ← (∅, 0)
3 while true do
4 (φ′, ψ′) ← Ground(H, S, ν, φ, ψ)
5 (ν′, w′) ← MaxSAT(φ ∪ φ′, ψ ∪ ψ′)
6 if Done(φ, φ′, ψ, ψ′, w, w′) then return ν
7 (φ, ψ) ← (φ ∪ φ′, ψ ∪ ψ′)
8 (ν, w) ← (ν′, w′)

The architecture of our framework is depicted in Fig. 8 and its overall algo-
rithm is presented as Algorithm 1. For elaboration, we divide a weighted logic
formula into separate hard clauses (denoted by H) and soft clauses (denoted by
S). The framework is parametric in three procedures: Init, Ground, and Done.
It begins by invoking the Init procedure on line 1 to compute an initial set of
hard clauses φ and soft clauses ψ. Next, it executes the loop defined on lines
3–8. In each iteration of the loop, the algorithm keeps track of a pair comprising
the new solution ν′ and its weight w′, which is the sum of the weights of the soft
clauses satisfied by ν′. On line 4, it invokes the Ground procedure to compute
the set of hard clauses φ′ and soft clauses ψ′ to ground next. Typically, φ′ and ψ′

correspond to the set of hard and soft clauses violated by the previous solution
ν. On line 5, the current hard and soft clauses and the newly grounded hard and
soft clauses are fed to an off-the-shelf WPMS solver to produce a new solution
ν′ and its corresponding weight w′. Initially, the solution is empty with weight
zero (line 2). Next, on line 6, the algorithm checks if ν satisfies the terminating
condition by invoking the Done procedure. If not, then on line 7, both sets of
grounded clauses φ′ and ψ′ are added to the corresponding sets of grounded hard
clauses φ and grounded soft clauses ψ respectively. Accordingly, the solution ν
and its corresponding weight w are updated as well.

Different instantiations of the three procedures that parameterize our frame-
work yield different grounding algorithms proposed in the literature [14,34,38,
40,49,50,53]. We broadly classify instantiations of the framework into two cat-
egories akin to top-down and bottom-up approaches to Datalog evaluation [2].
We next present one instantiation that we have developed in each category.

4.2 Instantiations

Applications built upon constraint-based approaches are typically only con-
cerned with the assignment to certain variables of interest, which we refer to
as queries. The bottom-up approach computes an assignment to all variables
from which one can subsequently extract the assignment to queries. The top-
down approach, on the other hand, only grounds clauses that are needed to
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Algorithm 2. Bottom-Up Approach
1 Procedure Init(H,S)
2 (φ, ψ) ← (∅, ∅)
3 return (φ,ψ)

4 Procedure Ground(H, S, ν, φ, ψ)
5 (φ, ψ) ← (∅, ∅)
6 foreach h ∈ H do
7 if ν � [[h]]σ then φ ← φ ∪ [[h]]σ

8 foreach (w, h) ∈ S do
9 if ν � [[h]]σ then ψ ← ψ ∪ {(w, ρ) | ρ ∈ [[h]]σ}

10 return (φ,ψ)

11 Procedure Done(φ, φ’, ψ, ψ’, w, w’)
12 return φ′ = ∅ ∧ w = w′

compute the assignment to queries. This approach offers significant performance
gains when queries comprise a small fraction of all variables, which is the case in
many applications. We introduced the top-down approach for MaxSAT in [71].

Bottom-Up Approach. Algorithm 2 presents our bottom-up instantiation from
[38]. Procedure Init returns an empty set of hard ground clauses and an empty
set of soft ground clauses (line 2). For each hard clause in the input instance,
procedure Ground checks if the current solution violates any of its groundings and
includes those violated ground clauses as new hard clauses (lines 6–7). Similarly,
Ground also includes violated soft ground clauses (lines 8–9), and they share the
same weight as the corresponding soft clause in the input instance. Given hard
and soft ground clauses and the corresponding solutions from two successive
iterations, procedure Done checks whether the current solution is a sound and
optimal solution. Specifically, Done returns true if no hard clauses in the input
instance are violated (i.e., φ′ = ∅) and the weight of the current solution equals
the weight of the last solution (i.e., w = w′). Intuitively, it means that we cannot
improve the solution further even we consider more ground clauses.

SoftCegar [14] and Cutting Plane Inference (CPI) [50,53] are instances of the
bottom-up approach. SoftCegar uses a slight variant that grounds all the soft
clauses upfront but lazily grounds the hard clauses, while CPI employs a more
conservative instantiation of Done.

Top-Down Approach. A top-down approach aims to find a partial assignment
to queries such that there exists a completion of it that is a sound and optimum
solution to the full problem. Algorithm3 shows a naive top-down instantiation.
More advanced instantiations are presented in [71]. The Init procedure returns
all soft and hard ground clauses that involve at least one of the queried variables
(denoted by Q) (lines 3–6). For ease of exposition, the pseudo code of the Init
procedure explicitly enumerates all ground clauses. In practice, it is implemented
using symbolic approaches such as SQL queries [49] for efficiency. The Ground
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Algorithm 3. Top-Down Approach
1 Procedure Init(H,S)
2 (φ, ψ) ← (∅, ∅)
3 foreach (w, h) ∈ S do
4 foreach ρ ∈ [[h]]σ do
5 if any variable of ρ ∈ Q then ψ ← ψ ∪ {(w, ρ)}
6 initialize φ in a similar way without considering weights
7 return (φ,ψ)

8 Procedure Ground(H, S, ν, φ, ψ)
9 (φ′, ψ′) ← (∅, ∅)

10 V ← variables used in φ ∪ ψ
11 foreach (w, h) ∈ S do
12 foreach ρ ∈ [[h]]σ do
13 if (w, ρ) /∈ ψ ∧ ν � ρ ∧ any variable of ρ ∈ V then
14 ψ′ ← ψ′ ∪ {(w, ρ)}

15 update φ′ in a similar way without considering weights
16 w ← evaluate(ψ, ν)
17 (ν′, w′) ← MaxSAT(φ ∪ φ′, ψ ∪ ψ′)
18 if φ′ = ∅ ∧ w = w′ then
19 return (∅, ∅)
20 else
21 ψ′

s ← {(w, ρ) ∈ ψ′ | ν′ |= ρ}
22 return (φ′, ψ′

s)

23 Procedure Done(φ, φ’, ψ, ψ’, w, w’)
24 return φ′ = ∅ ∧ ψ′ = ∅

procedure returns ground clauses that may help improve the current solution.
To achieve this goal, it first searches for ground clauses (φ′, ψ′) that (1) are
not in the work set, but (2) share variables with clauses int it, and (3) are not
satisfied by the current solution ν (line 9–15). Then it checks whether the current
solution ν violates any ground hard clauses in φ′ and whether the weight of the
solution can be improved by considering (φ′, ψ′) (line 16–22). It checks the latter
condition by computing the solution (denoted by ν′) to (φ ∪ φ′, ψ ∪ ψ′) and the
corresponding weight (denoted by w′) (line 16–17). If neither condition holds,
it returns empty sets of ground clauses and concludes that the current solution
cannot be improved further. Otherwise, it returns the hard ground clauses in φ′

that are violated by ν and the soft ground clauses in ψ′ that are satisfied by ν′

as these ground clauses will highly likely improve the current solution. It follows
that the top-down approach terminates when Ground returns empty sets. The
correctness of Algorithm 3 is proved in [71].
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Algorithm 4. Optimization with eager proofs
1 Procedure Init(H, S)
2 (φ, ψ) ← (∅, ∅)
3 φ′ ←initial facts
4 while φ′

� φ do
5 φ ← φ ∪ φ′

6 foreach h ∈ H do
7 foreach ρ ∈ [[h]]σ do
8 if ρ =

∧n
i=1 ti =⇒ t0 then

9 if
∧n

i=1 ti ∈ φ then
10 φ′ ← φ′ ∪ {t0}

11 return (φ,ψ)

12 Procedure Done(φ, φ’, ψ, ψ’, w, w’)
13 return φ′ = ∅ ∧ w = w′

4.3 Optimizations

We introduce two optimizations to further improve the efficiency of our frame-
work: eager grounding and incremental solving.

Eager Grounding. Our first observation is that most constraints in domains
like software analysis are Horn clauses. Horn clauses form a set of proof-tree
like structures. When one of them is violated by the solution of the current
iteration in lazy grounding, many others will be violated in the next iteration,
which in turn will cause a chain effect in the subsequent iterations. We can
avoid such chain effects by eager proof exploitation [38], which computes an
optimal initial grounding for Horn clauses. The Init procedure of Algorithm 4
shows the optimization with eager proofs, which starts with initial facts as hard
clauses and iteratively applies Horn clauses to derive new facts as hard clauses.
Theorem 1 shows the optimality of the Init procedure. Though Theorem 1 gives
no guarantee of the necessity to ground soft Horn clauses upfront, we find that
it is also helpful in practice. The eager proof exploitation procedure can be
efficiently implemented using an off-the-shelf Datalog engine.

Theorem 1 (Optimal initial grounding for Horn clauses). Init in
Algorithm4 grounds all necessary hard Horn clauses and no more hard Horn
clauses need to be grounded in later phases.

Proof. See the proof in Appendix A of [38]. ��

Incremental Solving. Our framework generates a sequence of MaxSAT
instances such that the instance in the next iteration is obtained by adding
new hard or soft clauses to the instance in the current iteration. Formally,
we have a sequential MaxSAT problem: (φ1, ψ1), (φ2, ψ2), ..., (φn, ψn), with
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Algorithm 5. Fu&Malik Algorithm with partial weights [4, 14]
Input: φ = φH ∪ φS

Output: optimal solution to φ
1 while true do
2 (st, ν, φC) ← SAT(φ, A)
3 if st = SAT then return ν // optimal solution to φ
4 VR ← ∅ // relax variables of the core

5 wmin ← min{w|c ∈ φC ∧ (w, c) ∈ φS}
6 foreach c ∈ φC do
7 if (w, c) ∈ φS then
8 VR ← VR ∪ {r} // r is a fresh relaxation variable

9 φ ← φ \ {(w, c)} ∪ {(w − wmin, c), (wmin, c ∨ r)} // split soft

clauses

10 if VR = ∅ then return unsat // no soft clauses in the core

11 φ ← φ ∪ CNF (
∑

r∈VR
r ≤ 1) // add hard cardinality constraint

φk ⊆ φk+1, ψk ⊆ ψk+1. A straightforward solution is to independently solve each
instance (φk, ψk) using an off-the-shelf MaxSAT solver. We propose an incre-
mental MaxSAT solving technique [60] to solve the sequential MaxSAT problem
more efficiently.

The unsat core-guided MaxSAT algorithm, also known as Fu&Malik
algorithm [23], forms the basis of many popular MaxSAT algorithms [4,41,43,
46]. Algorithm 5 shows the Fu&Malik algorithm extended with partial weights.
The algorithm iteratively calls a SAT solver and relaxes an unsatisfiable subfor-
mula. Initially, φ consists of all hard and soft clauses from the input instance.
In each iteration, it calls a SAT solver on φ, which returns a triple (st, ν, φC).
If st is satisfiable, ν is the optimal solution; otherwise, φC is an unsatisfiable
subformula (or UNSAT core) of φ. Then, it computes the minimum weight wmin

of the soft clauses in the UNSAT core (line-5). It then splits each soft clause in
the UNSAT core into two: one with the same clause but with weight reduced by
wmin, and the other with the original clause relaxed by a newly created variable
and with weight wmin (lines 6–9). If there are no soft clauses in the UNSAT core,
it returns UNSAT as there exists a conflict in hard clauses (line-10). Otherwise,
a new hard clause is added to φ stating that at most one of the soft clauses in
the UNSAT core can be relaxed (line-11).

There are two levels of incrementality we can explore to improve Algorithm5.
Similar to the sequential MaxSAT problem, solving an individual MaxSAT
instance involves a sequence of SAT problems. So, the first level of incrementality
is to use the SAT solver incrementally. Martins et al. [43] propose an incremen-
tal blocking technique to leverage incremental SAT solving [20]. We propose the
second level of incrementality which is across MaxSAT instances. The key idea is
to reuse UNSAT cores by slightly revising Algorithm 5. When the k-th MaxSAT
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instance is solved1 at line-5, instead of returning the solution and exiting, we
output the current solution for the k-th instance, then read the newly added
clauses (φk+1 \ φk, ψk+1 \ ψk) for the (k + 1)-th instance, and jump to line-3.
This approach is correct because the addition of new soft or hard clauses does
not invalidate any of the previously found UNSAT cores.

An interesting empirical observation is that incremental solving does not
always improve performance; on the contrary, it may even deteriorate perfor-
mance. This is because UNSAT cores with low weight discovered in earlier
instances can cause too many splits of soft clauses, especially when soft clauses
with high weights are added later. To resolve this issue, we propose a restart
mechanism, which restarts the current MaxSAT instance solving after detecting
any low quality cores. We empirically find that the number of splits of each indi-
vidual soft clause is an effective quality measurement, and that restarting after
the number of splits is more than 5 achieves best performance on our applica-
tions.

5 Related Work

We survey work on MaxSAT applications and techniques for MaxSAT solving.

Applications. MaxSAT has been widely used in many domains [6,13,15,22,
25,30,31,33,56,67,68,72]. The Linux package manage tool OPIUM [67] uses
MaxSAT to find the optimal package install/uninstall configuration. Walter et
al. [68] apply MaxSAT in industry automotive configurations. Zhu et al. [72]
apply MaxSAT to localize faults in integrated circuits. By combining bounded
model checking and MaxSAT, BugAssist [31] performs error localization for
C programs, and ConcBugAssist [33] finds concurrency bugs and recommends
repairs. Jin and Orso[30] show how to improve the performance and accu-
racy of error localization using MaxSAT. To detect malware in Android apps,
ASTROID [22] automatically learns semantic malware signatures by using
MaxSAT to find the maximally suspicious common subgraph from a few sam-
ples of a malware family. Besides, MaxSAT is also helpful in visualization [13],
industrial designs [15,56], reasoning about biological networks [25], and various
data analysis tasks [6].

Techniques. There are a number of different approaches for exact MaxSAT
solving, including branch-and-bound based, satisfiability-based, unsatisfiability-
based, and their combinations [5,8,26,28,42,43,45–47]. The most successful of
these on real-world instances, as witnessed in annual MaxSAT evaluations [1],
perform iterative solving using a SAT solver as an oracle in each iteration [5,46].
Such solvers differ primarily in how they estimate the optimal cost (e.g., linear
or binary search), and the kind of information that they use to estimate the cost
(e.g. cores, the structure of cores, or satisfying assignments). Many algorithms
have been proposed that perform search on either upper bound or lower bound
1 We assume hard clauses can be satisfied; otherwise hard clauses of all future instances

will be unsatisfied and we can exit immediately.
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of the optimal cost [5,45–47], Some algorithms efficiently perform a combined
search over both bounds [26,28]. A drawback of the most sophisticated com-
bined search algorithms is that they modify the formula using expensive Pseudo
Boolean (PB) constraints that increase the size of the formula and potentially
hurt the solver’s performance. A recent approach [8] avoids this problem by
using succinct formula transformations that do not use PB constraints and can
be applied incrementally. Lastly, similar to our optimizations in Sect. 4.3, many
other techniques (e.g. [7,27]) also focus on optimizing Horn clauses.

6 Future Directions

We plan to extend our approach in three directions to further advance constraint-
based analysis using MaxSAT: constraint languages, solver techniques, and
explainability of solutions.

Language Features. As discussed in Sect. 2, since propositional formulae are
too low-level for effectively specifying software analyses, we use relational first-
order logic with weights as our constraint language. While it suffices for applica-
tions and analyses described in our previous work [24,39,69,70], it can be further
improved with richer features, two of which we discuss below.

While the current logic excels at specifying analysis problems that can be
succinctly expressed in relational domains, it has difficulties in expressing analy-
sis problems in integer, real, string, and other domains. Akin to how Satisfiability
Modulo Theories (SMT) extends SAT, we can handle these domains by incorpo-
rating their corresponding theories in our language via techniques similar to the
Nelson-Oppen approach. One emerging language for such problem is Maximum
Satisfiability Modulo Theories (MaxSMT) [9,10,16,35,48,58,59].

The other feature is the support for the least fixpoint operator, as almost
all software analyses involve computing the least fixpoint of certain equations.
Our current constraint language supports this operator indirectly by requiring
additional soft clauses to bias the solution to a minimal model. However, a built-
in least fixpoint operator would be much more preferred. First, it eliminates the
need for the aforementioned soft constraints which can complicate the process
of analysis design as they may interact with other soft constraints. Secondly,
by including the operator explicitly in the language, the underlying solver can
exploit more efficient algorithms that are specialized for handling least fixpoints.

Solver Techniques. We describe four techniques that can further improve the
effectiveness of our solving framework.

Magic Sets Transformation. Akin to their counterparts in Datalog evalu-
ation, the top-down approaches and the bottom-up approaches have different
advantages and disadvantages. One promising idea to combine their benefits
without their drawbacks is Magic Set transformation [54]. The idea is to apply
the bottom-up approaches but rewrite the constraint formulation so that the
constraint solving is driven by the demand of queries. In this way, we are able to
only consider the clauses that are related to the queries while leveraging efficient
solvers of the bottom-up approaches.
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Lifted Inference. While our current grounding-based framework effectively
leverages advances in MaxSAT solvers, it loses the high-level information while
translating problems in our constraint language into low-level propositional for-
mulae. Lifted inference [12,44,52,57,62] is a technique that aims to solve the
constraint problem symbolically without grounding. While lifted inference can
effectively avoid grounding large propositional formulae for certain problems, it
fails to leverage existing efficient propositional solvers. One promising direction
is to combine lifted inference with our grounding approach in a systematic way.

Compositional Solving. By exploiting modularity of programs, we envision
compositional solving as an effective approach to improve the solver efficiency.
The idea is to break a constraint problem into more tractable subproblems and
solve them independently. It is motivated by the success of compositional and
summary-based analysis techniques in scaling to large programs.

Approximate Solving. Despite all the domain insights we exploit, MaxSAT is
a combinatorial optimization problem, which is known for its intractability. As
a result, there will be pathological cases where none of the aforementioend tech-
niques are effective. One idea to address this challenge is to investigate approx-
imate solving, which trades precision for efficiency. Moreover, to trade precision
for efficiency is a controlled manner, it is desirable to design an algorithm with
tunable precision.

Explainability. Software analyses often return explanations along with the
results, which are invaluable to their usability. For example, a typical bug finding
tool not only returns the software defects it finds but also inputs that can trigger
these defects. However, in the case of constraint-based analysis, the underlying
constraint solver must provide explanations of the solutions to enable such func-
tionality. While SAT and SMT solvers provide such information in the form
of resolution graphs (in the case of satisfiable results) and UNSAT cores (in
the case of unsatisfiable results), how to provide explanations for optimization
solvers remains an open problem.

7 Conclusion

We proposed a MaxSAT based approach to tackle the central challenge of bal-
ancing different tradeoffs in software analysis. We demonstrated the approach
on mainstream applications concerning automated verification, interactive veri-
fication, and static bug detection. The MaxSAT instances posed in these appli-
cations transcend the reach of existing MaxSAT solvers in terms of scalability,
soundness, and optimality. We presented a lazy grounding framework to solve
such instances. We proposed new grounding techniques as instantiations of this
framework as well as optimizations to the framework.
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for network repair. In: FMCAD (2016)

28. Ignatiev, A., Morgado, A., Manquinho, V., Lynce, I., Marques-Silva, J.: Progression
in maximum satisfiability. In: ECAI (2014)

29. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs. Springer,
Heidelberg (2007). doi:10.1007/978-0-387-68282-2

30. Jin, W., Orso, A.: Improving efficiency and accuracy of formula-based debugging.
In: Bloem, R., Arbel, E. (eds.) HVC 2016. LNCS, vol. 10028, pp. 99–116. Springer,
Cham (2016). doi:10.1007/978-3-319-49052-6 7

31. Jose, M., Majumdar, R.: Cause clue clauses: error localization using maximum
satisfiability. In: PLDI (2011)

32. Kastrinis, G., Smaragdakis, Y.: Hybrid context sensitivity for points-to analysis.
In: PLDI (2013)

33. Khoshnood, S., Kusano, M., Wang, C.: ConcBugAssist: constraint solving for diag-
nosis and repair of concurrency bugs. In: ISSTA (2015)

34. Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Domingos, P.:
The Alchemy system for statistical relational AI. Technical report, Department of
Computer Science and Engineering, University of Washington, Seattle, WA (2007).
http://alchemy.cs.washington.edu

35. Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with SMT solvers. In: POPL (2014)

36. Libkin, L.: Elements of Finite Model Theory. Springer, Heidelberg (2004). doi:10.
1007/978-3-662-07003-1

37. Livshits, B., Sridharan, M., Smaragdakis, Y., Lhoták, O., Amaral, J.N., Chang,
B.E., Guyer, S.Z., Khedker, U.P., Møller, A., Vardoulakis, D.: In defense of soundi-
ness: a manifesto. CACM (2015)

38. Mangal, R., Zhang, X., Kamath, A., Nori, A.V., Naik, M.: Scaling relational infer-
ence using proofs and refutations. In: AAAI (2016)

39. Mangal, R., Zhang, X., Nori, A.V., Naik, M.: A user-guided approach to program
analysis. In: FSE (2015)

http://www.sciencedirect.com/science/article/pii/S1571066105825423
http://dx.doi.org/10.1007/11814948_25
http://dx.doi.org/10.1007/978-3-642-33558-7_67
http://dx.doi.org/10.1007/978-0-387-68282-2
http://dx.doi.org/10.1007/978-3-319-49052-6_7
http://alchemy.cs.washington.edu
http://dx.doi.org/10.1007/978-3-662-07003-1
http://dx.doi.org/10.1007/978-3-662-07003-1


Maximum Satisfiability in Software Analysis: Applications and Techniques 93

40. Mangal, R., Zhang, X., Nori, A.V., Naik, M.: Volt: a lazy grounding frame-
work for solving very large MaxSAT instances. In: Heule, M., Weaver, S. (eds.)
SAT 2015. LNCS, vol. 9340, pp. 299–306. Springer, Cham (2015). doi:10.1007/
978-3-319-24318-4 22

41. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean
optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2 45

42. Marques-Silva, J., Planes, J.: Algorithms for maximum satisfiability using unsat-
isfiable cores. In: DATE (2008)

43. Martins, R., Joshi, S., Manquinho, V., Lynce, I.: Incremental cardinality con-
straints for MaxSAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 531–
548. Springer, Cham (2014). doi:10.1007/978-3-319-10428-7 39

44. Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted
probabilistic inference with counting formulas. In: AAAI (2008)

45. Morgado, A., Dodaro, C., Marques-Silva, J.: Core-guided MaxSAT with soft cardi-
nality constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 564–573.
Springer, Cham (2014). doi:10.1007/978-3-319-10428-7 41

46. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and
core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534
(2013). http://dx.doi.org/10.1007/s10601-013-9146-2

47. Narodytska, N., Bacchus, F.: Maximum satisfiability using core-guided MaxSAT
resolution. In: AAAI (2014)

48. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.
In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer,
Heidelberg (2006). doi:10.1007/11814948 18
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