
Montre: A Tool for Monitoring Timed Regular
Expressions

Dogan Ulus(B)

Verimag, Université Grenoble-Alpes,
Grenoble, France

doganulus@gmail.com

Abstract. We present Montre, a monitoring tool to search patterns
specified by timed regular expressions over real-time behaviors. We use
timed regular expressions as a compact, natural, and highly-expressive
pattern specification language for monitoring applications involving
quantitative timing constraints. Our tool essentially incorporates online
and offline timed pattern matching algorithms so it is capable of find-
ing all occurrences of a given pattern over both logged and streaming
behaviors. Furthermore, Montre is designed to work with other tools
via standard interfaces to perform more complex and versatile tasks for
analyzing and reasoning about cyber-physical systems. As the first of its
kind, we believe Montre will enable a new line of inquiries and tech-
niques in these fields.

1 Introduction

Temporal behaviors are sequences of actions and observations in time generated
by various systems and the environment around us. A temporal pattern is a set
of compositions of different temporal behaviors satisfying some relations among
their components such as precedence and coincidence or possessing some prop-
erties such as repetition and a certain duration. Searching good [bad, desirable,
undesirable] patterns over their temporal behaviors is an important task while
we reason about systems and the environment.

Timed regular expressions (TREs) [2] extend regular expressions, a well-
established formalism for specifying sequences of symbols, with the notion of
real-time and timing constraints. Many patterns requiring both qualitative and
quantitative temporal properties can be specified by TREs in a compact and
natural way. Given a TRE that specifies a temporal pattern and a real-time
behavior the problem of timed pattern matching is defined as locating all seg-
ments that satisfy the expression. This problem has been solved by an offline
algorithm in [14]. It is further endowed with an online algorithm that incremen-
tally matches patterns over streaming behaviors [15].

In this paper, we describe Montre a new tool for timed pattern matching
whose applications are numerous and diverse. First of all, Montre can naturally
check execution traces of software and hardware systems against real time prop-
erties specified in TRE (e.g. [5,7]), thus complementing temporal logic based
c© Springer International Publishing AG 2017
R. Majumdar and V. Kunčak (Eds.): CAV 2017, Part I, LNCS 10426, pp. 329–335, 2017.
DOI: 10.1007/978-3-319-63387-9 16

330 D. Ulus

Fig. 1. The work flow and extent of the monitoring tool Montre

property checkers such as [1,4,11]. Further, Montre can be used for specifica-
tion mining such as [3,8] as matching is a basic task for mining. Outside the
verification context, Montre has a potential use in temporal data mining [10]
and (vehicle or human) trajectory data mining [9,16] as it can label time seg-
ments with meaningful tags such as overtaking (another car) or sprinting. To
illustrate our tool in action, we present such an example from the domain of
sports analytics in Sect. 3 where we find all sprints of a soccer player.

2 Tool Description

The tool Montre essentially incorporates online and offline timed pattern
matching algorithms extended with some practical features such as anchors and
a Boolean layer. It takes a timed behavior and a timed regular expression as
inputs, and produces a finite set of two dimensional zones representing the (pos-
sibly uncountable) set of segments that watch the pattern. Montre provides a
standard text-based interface for easy integration with other tasks such as data
preparations and visualization as we consider them necessary but outside the
scope of Montre. In Fig. 1, we illustrate the work flow and extent of Montre,
and we give details for each component in the following.

Timed Behaviors. A timed behavior is a sequence of time segments where
each segment has a duration value and is associated with a set of propositional
variables that hold continuously in the segment. In general, we assume all propo-
sitions are concurrent. For example, (3, pq); (2, q); (2, p) is a timed behavior with
3 segments over propositions p and q. It means that p and q evaluate to true for
the first 3 time units, then q is true for 2 more time units, and then p is true for
2 time units again. We assume behaviors start at time 0; therefore, the example
behavior can be alternatively stated such that p holds from 0 to 3 and then 5 to
7 while q holds from 0 to 5.

Montre: A Tool for Monitoring Timed Regular Expressions 331

Table 1. Montre timed regular expression syntax

Timed Regular Expressions. An atomic timed regular expression corre-
sponds to a Boolean expression over a set of propositions, denoted by letters
p, q, r. These propositions can stand for predicates over real-valued variables.
Usual Boolean operators (!), (||), (&&) are used to build Boolean expressions.
We say that an atomic expression occurs on a time period (t, t′) if the correspond-
ing Boolean expression holds from t to t′ continuously. Complex timed regular
expressions are built from other expressions by using tre operators: sequential
composition (concatenation) (;), time restriction (%), choice (|), coincidence (&)
and zero-or-more repetition (*). Further, we add one-or-more repetition (+) and
two anchoring (<: and :>) operators to the set of operators. Typically parenthe-
ses are used to group expressions. We summarize all Boolean and tre operations
in Montre in Table 1.

Zones. For a proposition p that holds from t1 to t2, all sub-periods of (t1, t2)
satisfy the expression p. As shown in Fig. 2-(i), such a set of matches {(t, t′) | t1 ≤
t < t′ ≤ t2} can be represented on a two-dimensional plane as a triangular zone.
Then the match set of any atomic expression would be a union of such triangular
zones. A triangular zone is a special case of zones, which constitutes a restricted
class of convex polygons defined by orthogonal and diagonal constraints as shown
Fig. 2-(ii). Zones are basic data objects for timed pattern matching as unions of
zones are closed under Boolean and regular operations. It follows that the match
set of any timed regular expression over a timed behavior can be representable
by a finite union of zones.

332 D. Ulus

Z1

t1

t2

Z1 : t1 ≤ t < t
′ ≤ t2

b b
′

e

e
′

d
′

d

Z2

b ≤ t < b
′

e < t
′ ≤ e

′
d ≤ t

′ − t ≤ d
′

Z2 :

Fig. 2. (i) A triangular zone. (ii) A zone in general.

Implementation. Montre is a command line program1 that uses structured
text files for input/output specification. When invoked Montre parses the timed
regular expression passed as an argument and starts to reads the input file.
According to flags set by the user Montre would run in either online or offline
mode. For online mode it is possible that the input can be given interactively
using the command line or directed from another process as usual. At its core,
Montre contains our efficient zone manipulation library, libmontre, called
dynamically by top-level online and offline timed pattern matching algorithms.
As Boolean and regular operations over sets of zones are intensive numerical
computations, we have implemented libmontre in C++. In the implementation,
we use an integer-valued time model where all time values are represented by
integers for efficiency and accuracy reasons. For the majority of applications,
integers give us sufficient precision and range; and a proper scaling can be found.

We implement timed pattern matching algorithms in Pure2, a functional pro-
gramming language based on term rewriting with a support for native code com-
pilation and native calls to dynamic libraries. For the online algorithm [15], built
upon derivatives of regular expressions [12,13], we extensively use the rewriting
functionality when deriving an expression with respect to a newly observed seg-
ment. The offline algorithm [14] is a recursive computation over the syntax tree
of the expression; therefore, the role of Pure’s rewriting engine is minimal. The
worst case complexity is polynomial in the size of input behavior and expression
for the offline approach. For the online approach it is polynomial in the size of
the behavior and exponential in expression. In practice, however, we realisti-
cally assume patterns to be much shorter than behaviors and somewhat sparse
in them. Then we expect a linear-time performance in the size of input behav-
ior for both algorithms. Under these assumptions, Montre can process timed
behaviors with a size of 1M segments in a few seconds (offline) and a few hundred
seconds (online).

1 Available at http://github.com/doganulus/montre.
2 Available at http://purelang.bitbucket.io.

http://github.com/doganulus/montre
http://purelang.bitbucket.io

Montre: A Tool for Monitoring Timed Regular Expressions 333

3 An Illustrative Example

We present an example use of Montre on a data set obtained by tracking positions
of players in a real soccer match. In this example, we find all sprints performed by
a single player where a sprint is formally specified by a timed regular expression
over speed and acceleration behaviors. The data are obtained by a computer
vision algorithm with a frame rate of 10 Hz so we have a xy-coordinate for each
player on the field at every 100 milliseconds. Therefore we use milliseconds as
our base time unit for behaviors and expressions.

In order to specify a pattern for sprints, we need to address two issues in order:
(1) how to categorize continuous speed and acceleration axes, and (2) which
composition of these categories defines a sprinting effort best. Clearly, there
are no universal answers for these questions so we rely on the study [6] in the
following. First, we partition speed and acceleration axes into four categories
(near-zero, low, medium, and high), and we associate a letter for each category
in Table 2. For example, a period of medium speed, denoted by r, means the
speed value resides between 3.7 and 6 m/s during the period.

Often a sprint effort is characterized by any movement above a certain speed
threshold for a limited time. This gives us our first sprint pattern such that
a period of high speed between 1–10 s, formally written as follows:

(<:s:>)%(1000,10000) (P1)

Above we use anchor operators from both sides on the proposition s to obtain
only maximal periods that satisfy s; otherwise, any sub-period satisfies the pat-
tern as well. The operator % specifies that the duration is restricted to be in 1000
and 10000 milliseconds. Alternatively we may want to find other efforts starting
with high acceleration but not reaching top speeds necessarily. This gives us our
second sprint pattern such that a period of high acceleration followed by a period
of medium or high speed between 1–10 s, formally written as follows:

(<:g);(<:(r||s):>)%(1000,10000) (P2)

Notice that we do not use the right-anchor on g. This allows a medium or
high speed period to overlap with a high acceleration period as it is usually
the case that they are concurrent. Writing an equivalent pattern using classical

Table 2. Speed and acceleration thresholds [6].

334 D. Ulus

Fig. 3. The trajectory of a soccer player for 45 min on the field, and his sprinting
periods found by Montre for patterns P1-P3.

regular expressions over a product alphabet would be a very tedious task partly
due to a requirement to handle such interleavings explicitly (and the lack of
timing constraints). For TREs all propositions are considered to be concurrent
by definition, which results in concise and intuitive expressions. Finally we give
a third pattern to find rather short but intense sprints such that

(<:(f||g));((<:s:>)%(1000,2000)) (P3)

Then we visualize all sprints found by Montre for patterns P1-P3 in Fig. 3 over
the behavior of a single player during one half of the game (45 min.) containing
27 K data points that reduces to timed behaviors of 5K segments after pre-
processing. Note that we used Python to prepare data and visualize results.

4 Conclusions

Timed regular expressions can define many timed properties and Montre is the
first tool to check such properties and detect timed patterns. Its performance is
satisfactory for such monitoring tasks but we note that there is still some room
for optimization especially for the online algorithm. The example we presented
illustrates a complete Montre experience from raw data to visualization. As
seen defining good patterns and categories are important to achieve intended
results but it is not always obvious what a good pattern is. Such patterns should
be found in the future using (unsupervised) pattern mining methods. We believe
Montre would provide a good starting point for such research as it encapsulates
timed pattern matching with an easy-to-use interface.

Montre: A Tool for Monitoring Timed Regular Expressions 335

Acknowledgment. Thanks to Oded Maler for his helpful comments on the text, and
to Hande Alemdar and Serdar Alemdar for the soccer data they provided.

References

1. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool
for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M.
(eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-19835-9 21

2. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. J. ACM 49(2), 172–206
(2002)

3. Cutulenco, G., Joshi, Y., Narayan, A., Fischmeister, S.: Mining timed regular
expressions from system traces. In: Workshop on Software Mining, pp. 3–10 (2016)

4. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 167–170. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6 17

5. Dustdar, S., Gambi, A., Krenn, W., Nickovic, D.: A pattern-based formalization
of cloud-based elastic systems. In: Principles of Engineering Service-Oriented and
Cloud Systems (PESOS), pp. 31–37 (2015)

6. Dwyer, D.B., Gabbett, T.J.: Global positioning system data analysis: velocity
ranges and a new definition of sprinting for field sport athletes. The. J. Strength
Cond. Res. 26(3), 818–824 (2012)

7. Ferrère, T., Maler, O., Ničković, D., Ulus, D.: Measuring with timed patterns.
In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015 Part II. LNCS, vol. 9207, pp.
322–337. Springer, Cham (2015). doi:10.1007/978-3-319-21668-3 19

8. Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-
loop control models. In: Hybrid Systems: Computation and Control, (HSCC), pp.
43–52 (2013)

9. Mazimpaka, J.D., Timpf, S.: Trajectory data mining: a review of methods and
applications. J. Spat. Inf. Sci. 2016(13), 61–99 (2016)

10. Mitsa, T.: Temporal Data Mining. CRC Press, Boca Raton (2010)
11. Nickovic, D., Maler, O.: AMT: a property-based monitoring tool for analog sys-

tems. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763,
pp. 304–319. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75454-1 22

12. Owens, S., Reppy, J.H., Turon, A.: Regular-expression derivatives re-examined. J.
Funct. Program. 19(2), 173–190 (2009)

13. Roşu, G., Viswanathan, M.: Testing extended regular language membership incre-
mentally by rewriting. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp.
499–514. Springer, Heidelberg (2003). doi:10.1007/3-540-44881-0 35

14. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay,
A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer,
Cham (2014). doi:10.1007/978-3-319-10512-3 16

15. Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Online timed pattern matching using
derivatives. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636,
pp. 736–751. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49674-9 47

16. Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol.
(TIST) 6(3), 29 (2015)

http://dx.doi.org/10.1007/978-3-642-19835-9_21
http://dx.doi.org/10.1007/978-3-642-14295-6_17
http://dx.doi.org/10.1007/978-3-319-21668-3_19
http://dx.doi.org/10.1007/978-3-540-75454-1_22
http://dx.doi.org/10.1007/3-540-44881-0_35
http://dx.doi.org/10.1007/978-3-319-10512-3_16
http://dx.doi.org/10.1007/978-3-662-49674-9_47

	Montre: A Tool for Monitoring Timed Regular Expressions
	1 Introduction
	2 Tool Description
	3 An Illustrative Example
	4 Conclusions
	References

