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2 Universität Tübingen, Fachbereich Informatik, Tübingen, Germany
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Abstract. STLInspector is a tool for systematic validation of Signal
Temporal Logic (STL) specifications against informal textual require-
ments. Its goal is to identify typical faults that occur in the process of
formalizing requirements by mutating a candidate specification. STLIn-
spector computes a series of representative signals that enables a require-
ments engineer to validate a candidate specification against all its
mutated variants, thus achieving full mutation coverage. By visual
inspection of the signals via a web-based GUI, an engineer can obtain
high confidence in the correctness of the formalization – even if she is
not familiar with STL. STLInspector makes the assessment of formal
specifications accessible to a wide range of developers in industry, hence
contributes to leveraging the use of formal specifications and computer-
aided verification in industrial practice. We apply the tool to several
collections of STL formulas and show its effectiveness.
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1 Introduction

Recently, Signal Temporal Logic (STL) [14] became increasingly popular as a
specification formalism for requirements of cyber-physical systems (CPS) [13,17]
[1,5–7,9,20]. An STL specification can be thought of as a set of discrete and con-
tinuous signals that represent correct behavior of a CPS over time. Since many
safety-critical industrial systems are CPS, checking correctness of their behavior
is crucial. A variety of methods for checking STL specifications have been devel-
oped including signal monitoring [5,17], model-based falsification [1], and for-
mal verification of STL specifications [20]. However, to be able to trust the test-
ing/verification machinery, it is crucial to trust the formalization of requirements.
It has been observed that industrial requirements can be fairly nontrivial, thus
resulting in complex formulas that are not easily understandable [19]. If a formal
specification does not conform to the corresponding natural language require-
ment, which is the common representation of requirements in industry today,
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verification results based on the specification are useless. Therefore, our tool
STLInspector addresses the problem of checking an STL specification against
an informal natural language requirement involving the requirements engineer
as an oracle. STLInspector provides the requirements engineer with a systematic
way of validating candidate STL specifications and gives her high confidence in
the correctness of the formalization.

We use the example given by Dokhanchi et al. [4] to illustrate the problem
and our solution. Suppose an engineer formalizes the textual requirement.

“At some time in the first 30 s, the vehicle speed (vel) will go over 100 km
h

and stay above 100 km
h for 20 s.”

by the STL formula

ϕc = F[0,30]((vel > 100) ⇒ G[0,20](vel > 100)). (1)

However, a test signal which is generated by STLInspector and depicted in Fig. 1
shows that ϕc does not conform to the textual requirement because the test
signal satisfies ϕc but not the textual requirement. The engineer can detect the
faulty specification by visual inspection of the signal which requires no knowledge
of STL or temporal logics in general. Hence, specification validation becomes
accessible to a wide range of developers in industry.

Fig. 1. A test signal – as visualized in STLInspector – that does not satisfy the textual
requirement. Yet the signal satisfies its formalization ϕc, thus revealing that ϕc is
incorrect.

STLInspector generates a series of such test signals that allows to show
absence of typical errors made during formalization and increases confidence
in its correctness. Inspired by ideas from mutation testing [3,10], typical classes
of errors are formalized by mutation operators. For instance, the stuck-at-one
operator produces the mutant ϕ′

c = F[0,30](true ⇒ G[0,20](vel > 100)) for ϕc

from above. A signal is generated which does only satisfy the mutant ϕ′
c but

not the candidate ϕc and thus represents a corner case of the formula ϕc. If the
engineer identifies the behaviour as non-conforming to the textual requirement,
the particular error associated with the mutation is shown to be absent. In this
sense, STLInspector provides coverage guarantees for the considered set of error
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classes. By adding additional mutation operators, the tool can easily be extended
to also handle domain specific error classes. Signal generation is performed using
an SMT encoding of STL formulas (Sect. 4). We apply the tool to several col-
lections of STL formulas and show its effectiveness (Sect. 5). STLInspector is an
academic prototype and available under Apache 2.0 license at https://github.
com/STLInspector.

Related Work: Vispec [9] is a tool that provides a graphical formalism based
on template patterns to formalize specifications without requiring knowledge
of temporal logics. STLInspector complements Vispec by enabling validation
of such formalizations. It is however not restricted to templates. Vispec was
extended by Dokhanchi et al. [4] to detect validity, redundancy and vacuity in
MTL formalizations. These properties can be considered simple mutations and
may be incorporated in STLInspector as a special case. Mutation testing has
been applied to specification validation [10, Section V.B] without considering
continuous-time signals. RATSY [2] is another tool that focuses on debugging
specifications via a game-based approach. In contrast to STLInspector, RATSY
specifications are based on a subset of PSL (expressively equivalent to ω-regular
languages). Thus, it cannot be applied to continuous-time and real-valued sig-
nals. EGRET is a similar tool for string-based specifications which generates
test strings for regular expressions [12].

Signal Temporal Logic: STL was introduced by Maler and Nickovic [13,14].
A signal s is a mapping from time to the valuation of Boolean and real-valued
variables. We consider bounded time signals only, i.e., s : [0, T ] → B

n ×R
m with

n Boolean variables P = {p1, . . . , pn} and m real-valued variables given by the
vector R = (r1, . . . , rm). STL is a logic to specify temporal properties of s. It
consists of Boolean variables, constraints on real-valued variables, logical and
temporal operators. We focus on the linear fragment of STL and signals whose
real-valued components are continuous. Its syntax is as follows.

α := p | DTR ≤ e, ϕ := α | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 UI ϕ2

with p ∈ P , D ∈ R
m, e ∈ R, and I being an interval [a, b] with a, b ∈ R. Note

that STL semantics slightly differ across publications. We use the semantics as
published in [20] and omit its definition due to space restrictions. While there
exist different options to interpret unbounded time formulas over bounded time
signals, for practical purposes bounded time formulas seem to be sufficient.

2 Mutation Testing and Coverage

In this section, we give a short introduction on mutation testing based on Fraser
and Wotawa [8] and describe how we are able to guarantee that certain errors
are not present in an STL formula ϕ by a set of test signals. Mutation testing
involves the notion of a mutant of ϕ, i.e., another formula ϕ′ which is obtained by

https://github.com/STLInspector
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applying a syntactic modification to ϕ. For example, ϕ′
c = F[0,30]((vel < 100) ⇒

G[0,20](vel > 100)) is a mutation of ϕc in Eq. (1) where “>” is replaced by “<”
in the first constraint. This type of syntactic modification is made precise by the
relation replacement operator (rro):

rro(DTR ∼1 e) = {DTR ∼2 e| ∼2∈ RO,∼2 �=∼1} ∼1∈ RO

rro(X � Y ) = {x � Y |x ∈ rro(X)} ∪ {X � y|y ∈ rro(Y )} � ∈ BO

rro(� X) = {� x|x ∈ rro(X)} � ∈ MO

with RO = {≡, �=, >,≤, <}, BO = {∨,∧,→,U[a,b],R[a,b]}, and MO = {¬,F[a,b],
G[a,b],N[a]}1. For ϕc, the relation replacement operator produces the list rro(ϕc)
of 8 mutants including ϕ′

c.
A signal s distinguishes ϕ and a mutant ϕ′ if s |= ϕ and s �|= ϕ′ holds or

s �|= ϕ and s |= ϕ′ holds. In such a case, s is said to kill the mutant ϕ′. For each
such test signal s, the user must determine whether it conforms to the textual
requirement (↑) or not (↓). Four cases can be distinguished.

– s |= ϕ, s �|= ϕ′, ↑: error represented by ϕ′ is not present in ϕ
– s |= ϕ, s �|= ϕ′, ↓: ϕ contains illegitimate behavior
– s �|= ϕ, s |= ϕ′, ↑: ϕ′ contains legitimate behavior that is missing in ϕ
– s �|= ϕ, s |= ϕ′, ↓: error represented by ϕ′ is not present in ϕ

We consider the following mutation operators, which are adaptions of muta-
tion operators defined by Fraser and Wotawa [8] to real-valued and continuous-
time signals. In Sect. 5, we illustrate that they are in fact suitable to detect
errors.

– Relation replacement
– Temporal operator insertion
– Temporal interval replacement
– Missing temporal operator
– Atomic proposition negation
– Expression negation
– Operand replacement

– Logical operator replacement
– Temporal operator replacement
– Stuck at zero
– Stuck at one
– Missing condition
– Associate shift

Due to space restrictions, we do not give additional operator definitions
but refer to the documentation of STLInspector and the work by Fraser and
Wotawa [8] and Mayer [15]. For a given list of mutants M , the mutation cov-
erage of a set of signals can be defined as the percentage of mutants in M
which are killed by these signals, not considering mutants that are semantically
equivalent to the candidate formula. STLInspector generates sets of test signals
which have 100% mutation coverage for all mutants generated by the mutation
operators given above. Hence, we can guarantee that a formalization candidate
does not contain any errors from a finite set of error classes where each class is

1 Note that ϕ R[a,b] ψ = ¬(¬ϕ U[a,b] ¬ψ), F[a,b] ϕ = � U[a,b] ϕ, G[a,b] ϕ = ¬F[a,b] ¬ϕ,
N[a] ϕ = G[a,a] ϕ.
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represented by a finite set of mutants. If a formula contains multiple errors, we
cannot guarantee that the errors are detected unless there is a mutation opera-
tor for those specific multiple errors. However, the empirical evaluation in Sect. 5
indicates that we typically find errors also in the multiple error case. Note that
the tool can be easily adapted to similar notions of coverage, for instance UFC
and PICC [8].

3 Architecture of STLInspector

The tool is written in Python. STLInspector can be used as a command line
tool, via the browser-based graphical user interface, or integrated into existing
programs. In the following, we describe the GUI and the core components which
are structured as visualized in Fig. 2.

STL
Formula

STL
Parsing

Mutants
Generation

Test Signal
Generation

Test
Signals

Fig. 2. Structure of the core functionality.

STL Parsing: The STL formula – written in textual form – is parsed into a
syntax tree with Antlr [18]. The input format is described in the documentation.
Examples are G[1,3] vel >= 10 and vel == 0 U[0,30] seatBeltFastened.

Mutants Generation: In this component, all mutation operators listed in
Sect. 2 are applied to the input formula. Every mutation operator outputs a list
of mutants which are merged into one list containing all possible mutants.

Test Signal Generation: For a mutant ϕ′ of the STL formula ϕ, STLInspector
randomly chooses between the generation of a test signal s such that s |= ϕ∧¬ϕ′

and s |= ¬ϕ∧ϕ′ to avoid bias on the satisfaction of ϕ. A test signal s is generated
using the SMT encoding described in Sect. 4. Furthermore, it is checked whether
the test signal s can be used to kill additional mutants. Test signal generation
is repeatedly performed until a set S of test signals is obtained such that every
mutant – except equivalent mutants – is killed by at least one element of S.
Note that one test signal typically kills multiple mutants, thus less test signals
are required than mutants (Sect. 5).

Web-Based GUI: STLInspector includes a front-end similar to Jupyter [11].
The user can enter an STL formula and the corresponding informal textual
requirement. The front-end shows the generated test signals and the user decides
whether or not the signal satisfies the informal requirement. STLInspector out-
puts which one of the four cases of Sect. 2 applies. If an error was found, the
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user can change the STL candidate and continue the visual inspection. For one
STL candidate, the evaluation results of different users can be saved and easily
compared on the project overview page.

4 Test Signal Encoding and Generation

For a given STL formula ϕ, a test signal s which satisfies s |= ϕ is generated
using the SMT-solver Z3 [16]. In the following, the SMT encoding of s |= ϕ is
sketched. Time is partitioned into an alternating sequence of points and open
intervals, similar to Maler and Ničković [13], however with a fixed time step c:

IT = {{0}, (0, c), {c}, (c, 2c), . . .}, [0, T ] =
⋃

I∈IT
I

The parameters c and T are selected automatically where c must divide T and all
bounds of temporal operator intervals in the formula ϕ. Signals are generated
such that the value of Boolean variables is constant for intervals in IT . The
set of such signals satisfying a formula can be encoded as an SMT formula
using the rewriting technique by Roehm et al. [20]. For instance, the formula
ϕc = ϕ1U[0,1]ϕ2 can be rewritten as follows:

s |= ϕc ⇔ s |= (ϕ1U[0,0]ϕ2) ∨ (ϕ1U(0,1)ϕ2) ∨ (ϕ1U[1,1]ϕ2)
⇐ s |= ϕ2 ∨ (ϕ1 ∧ G(0,1)ϕ1 ∧ F(0,1)ϕ2) ∨ (ϕ1 ∧ G(0,1)ϕ1 ∧ F[1,1]ϕ2)

The rewritten formula can be expressed by the SMT formula ϕ0
2 ∨ (ϕ0

1 ∧ ϕ0.5
1 ∧

ϕ0.5
2 )∨(ϕ0

1∧ϕ0.5
1 ∧ϕ1

2) using ϕ0
1 = ϕ1, ϕ0.5

1 = G(0,1)ϕ1, etc., and solved by Z3 [16].
The encoding ensures that for a real variable, the continuous signal obtained
from piecewise linear interpolation of the sample points satisfies ϕ for the linear
fragment of STL. The full theory [15] is omitted due to space restrictions.

5 Evaluation

We evaluate the effectiveness of mutation-based test signals in finding errors by
two case studies. First, we use STLInspector to check STL formulas published as
part of the UnCoVerCPS EU project [21]. They identified 8 common requirement
patterns and formalized them by STL formulas and timed monitor automata.
Since the patterns contain unbounded operators, we replace them by bounded
ones. For the 4th requirement, one signal shows that the bounded STL formula
does not conform to the requirement. Furthermore, the same signal shows that
the original unbounded STL formula (as well as the monitor automaton) does
not conform to the requirement either2. Our second evaluation is based on data
of an online survey3 by Dokhanchi et al. [4]. They requested participants to
2 In fact, the proposed formula is equivalent to G[0,∞)(q ⇒ G[0,∞)(p ⇒ G[0,∞)p)),

which formalizes “after q, once p becomes true, p holds forever”.
3 We gratefully acknowledge the support of Bardh Hoxha and his colleagues to get

access to some results of their survey.
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write STL formalizations for several informal textual requirements. For each of
the 66 formalizations ϕi, that we have access to from the survey, we generate
a set Si of test signals with 100% mutation coverage. For each formalization,
STLInspector generates 6 test signals on average (minimum 3, maximum 11).
We check whether ϕi can be distinguished from the correct formalization ϕc

based on the test signals of Si. Out of the 66 formalizations with 31 being unique,
we are able to distinguish all of the 44 faulty ones (26 unique ones) from the
correct formalizations. Since we are able to detect all faulty formalizations with
our test generation, our list of mutation operators is sufficient to detect errors
for the given formalizations. Since 12 of the 26 unique faulty formalizations need
more than one mutation to transform them into the correct formula, we are able
to discover the faulty formalizations even in the case where we do not have a
guarantee to do so. We conclude from both case studies that mutation-based
specification validation with STLInspector helps in finding errors and increasing
confidence in correctness of STL formalizations.
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13. Maler, O., Ničković, D.: Monitoring properties of analog and mixed-signal circuits.
Int. J. Softw. Tools Technol. Transfer 15, 247–268 (2013)

14. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In:
Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT 2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30206-3 12

15. Mayer, E.C.: Mutation-based validation of temporal logic specifications with guar-
antees. Bachelor’s thesis, Universität Tübingen (2017)
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