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Abstract. Markov decision processes (MDPs) are standard models for
probabilistic systems with non-deterministic behaviours. Long-run aver-
age rewards provide a mathematically elegant formalism for expressing
long term performance. Value iteration (VI) is one of the simplest and
most efficient algorithmic approaches to MDPs with other properties,
such as reachability objectives. Unfortunately, a naive extension of VI
does not work for MDPs with long-run average rewards, as there is no
known stopping criterion. In this work our contributions are threefold.
(1) We refute a conjecture related to stopping criteria for MDPs with
long-run average rewards. (2) We present two practical algorithms for
MDPs with long-run average rewards based on VI. First, we show that
a combination of applying VI locally for each maximal end-component
(MEC) and VI for reachability objectives can provide approximation
guarantees. Second, extending the above approach with a simulation-
guided on-demand variant of VI, we present an anytime algorithm that
is able to deal with very large models. (3) Finally, we present experi-
mental results showing that our methods significantly outperform the
standard approaches on several benchmarks.

1 Introduction

The analysis of probabilistic systems arises in diverse application contexts of
computer science, e.g. analysis of randomized communication and security pro-
tocols, stochastic distributed systems, biological systems, and robot planning,
to name a few. The standard model for the analysis of probabilistic systems
that exhibit both probabilistic and non-deterministic behaviour are Markov deci-
sion processes (MDPs) [How60,FV97,Put94]. An MDP consists of a finite set
of states, a finite set of actions, representing the non-deterministic choices, and
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a transition function that given a state and an action gives the probability dis-
tribution over the successor states. In verification, MDPs are used as models
for e.g. concurrent probabilistic systems [CY95] or probabilistic systems operat-
ing in open environments [Seg95], and are applied in a wide range of applica-
tions [BK08, KNP11].

Long-Run Average Reward. A payoff function in an MDP maps every infinite
path (infinite sequence of state-action pairs) to a real value. One of the most
well-studied and mathematically elegant payoff functions is the long-run average
reward (also known as mean-payoff or limit-average reward, steady-state reward
or simply average reward), where every state-action pair is assigned a real-valued
reward, and the payoff of an infinite path is the long-run average of the rewards
on the path [FV97,Put94]. Beyond the elegance, the long-run average reward is
standard to model performance properties, such as the average delay between
requests and corresponding grants, average rate of a particular event, etc. There-
fore, determining the maximal or minimal expected long-run average reward of
an MDP is a basic and fundamental problem in the quantitative analysis of
probabilistic systems.

Classical Algorithms. A strategy (also known as policy or scheduler) in an MDP
specifies how the non-deterministic choices of actions are resolved in every state.
The value at a state is the maximal expected payoff that can be guaranteed
among all strategies. The values of states in MDPs with payoff defined as the
long-run average reward can be computed in polynomial-time using linear pro-
gramming [FV97,Put94]. The corresponding linear program is quite involved
though. The number of variables is proportional to the number of state-action
pairs and the overall size of the program is linear in the number of transitions
(hence potentially quadratic in the number of actions). While the linear program-
ming approach gives a polynomial-time solution, it is quite slow in practice and
does not scale to larger MDPs. Besides linear programming, other techniques are
considered for MDPs, such as dynamic-programming through strategy iteration
or value iteration [Put94, Chap.9].

Value Iteration. A generic approach that works very well in practice for MDPs
with other payoff functions is value iteration (VI). Intuitively, a particular one-
step operator is applied iteratively and the crux is to show that this iterative
computation converges to the correct solution (i.e. the value). The key advan-
tages of VI are the following:

1. Simplicity. VI provides a very simple and intuitive dynamic-programming
algorithm which is easy to adapt and extend.

2. FEfficiency. For several other payoff functions, such as finite-horizon rewards
(instantaneous or cumulative reward) or reachability objectives, applying the
concept of VI yields a very efficient solution method. In fact, in most well-
known tools such as PRISM [KNP11], value iteration performs much better
than linear programming methods for reachability objectives.
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3. Scalability. The simplicity and flexibility of VI allows for several improve-
ments and adaptations of the idea, further increasing its performance and
enabling quick processing of very large MDPs. For example, when considering
reachability objectives, [PGT03] present point-based value-iteration (PBVI),
applying the iteration operator only to a part of the state space, and [MLGO5]
introduce bounded real-time dynamic programming (BRTDP), where again
only a fraction of the state space is explored based on partial strategies.
Both of these approaches are simulation-guided, where simulations are used
to decide how to explore the state space. The difference is that the former
follows an offline computation, while the latter is online. Both scale well to
large MDPs and use VI as the basic idea to build upon.

Value Iteration for Long-Run Average Reward. While VI is standard for reach-
ability objectives or finite-horizon rewards, it does not work for general MDPs
with long-run average reward. The two key problems pointed out in [Put94,
Sects. 8.5, 9.4] are as follows: (a) if the MDP has some periodicity property,
then VI does not converge; and (b) for general MDPs there are neither bounds
on the speed of convergence nor stopping criteria to determine when the itera-
tion can be stopped to guarantee approximation of the value. The first problem
can be handled by adding self-loop transitions [Put94, Sect. 8.5.4]. However, the
second problem is conceptually more challenging, and a solution is conjectured
in [Put94, Sect.9.4.2].

Our Contribution. In this work, our contributions are related to value iteration
for MDPs with long-run average reward, they range from conceptual clarification
to practical algorithms and experimental results. The details of our contributions
are as follows.

— Conceptual clarification. We first present an example to refute the conjecture
of [Put94, Sect.9.4.2], showing that the approach proposed there does not
suffice for VI on MDPs with long-run average reward.

— Practical approaches. We develop, in two steps, practical algorithms instan-
tiating VI for approximating values in MDPs with long-run average reward.
Our algorithms take advantage of the notion of maximal end-components
(MECs) in MDPs. Intuitively, MECs for MDPs are conceptually similar to
strongly connected components (SCCs) for graphs and recurrent classes for
Markov chains. We exploit these MECs to arrive at our two methods:

1. The first variant applies VI locally to each MEC in order to obtain an
approximation of the values within the MEC. After the approximation in
every MEC, we apply VI to solve a reachability problem in a modified
MDP with collapsed MECs. We show that this simple combination of VI
approaches ensures guarantees on the approximation of the value.

2. We then build on the approach above to present a simulation-guided
variant of VI. In this case, the approximation of values for each MEC
and the reachability objectives are done at the same time using VI. For
the reachability objective a BRDTP-style VI (similar to [BCC+14]) is
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applied, and within MECs VT is applied on-demand (i.e. only when there
is a requirement for more precise value bounds). The resulting algorithm
furthermore is an anytime algorithm, i.e. it can be stopped at any time
and give an upper and lower bounds on the result.

— FExperimental results. We compare our new algorithms to the state-of-the-
art tool MultiGain [BCFK15] on various models. The experiments show that
MultiGain is vastly outperformed by our methods on nearly every model.
Furthermore, we compare several variants of our methods and investigate the
different domains of applicability.

In summary, we present the first instantiation of VI for general MDPs with long-
run average reward. Moreover, we extend it with a simulation-based approach to
obtain an efficient algorithm for large MDPs. Finally, we present experimental
results demonstrating that these methods provide significant improvements over
existing ones.

Further Related Work. There is a number of techniques to compute or approxi-
mate the long-run average reward in MDPs [Put94, How60, Vei66], ranging from
linear programming to value iteration to strategy iteration. Symbolic and explicit
techniques based on strategy iteration are combined in [WBB+10]. Further, the
more general problem of MDPs with multiple long-run average rewards was first
considered in [Cha07], a complete picture was presented in [BBC+14, CKK15]
and partially implemented in [BCFK15]. The extension of our approach to
multiple long-run average rewards, or combination of expectation and vari-
ance [BCFK13], are interesting directions for future work. Finally, VI for MDPs
with guarantees for reachability objectives was considered in [BCC+14,HM14].
Proofs and supplementary material can be found in [ACD+17].

2 Preliminaries

2.1 Markov Decision Processes

A probability distribution on a finite set X is a mapping p : X +— [0, 1], such that
> zex P(x) = 1. We denote by D(X) the set of all probability distributions on
X. Further, the support of a probability distribution p is denoted by supp(p) =
{z € X | p(z) > 0}.

Definition 1 (MDP). A Markov decision processes (MDP) is a tuple of the
form M = (S, sinit, Act,Av, A, 1), where S is a finite set of states, Sini € S is
the initial state, Act is a finite set of actions, Av : S — 24¢ assigns to every
state a set of available actions, A : S x Act — D(S) is a transition function
that given a state s and an action a € Av(s) yields a probability distribution over
successor states, and 1 : S x Act — RZ0 is q reward function, assigning rewards
to state-action pairs.
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For ease of notation, we write A(s,a,s’) instead of A(s,a)(s’).

An infinite path p in an MDP is an infinite word p = sgagsiay--- € (S X
Act)¥, such that for every i € N, a; € Av(s;) and A(s;,a;i,8;41) > 0. A finite
path w = spapsiaq ... s, € (S X Act)* x S is a finite prefix of an infinite path.

A strategy on an MDP is a function 7 : (S X Act)* x S — D(Act),
which given a finite path w = sgagsia; - ..s, yields a probability distribution
m(w) € D(Av(s,)) on the actions to be taken next. We call a strategy memoryless
randomized (or stationary) if it is of the form 7 : S — D(Act), and memoryless
deterministic (or positional) if it is of the form 7 : S — Act. We denote the set
of all strategies of an MDP by IT, and the set of all memoryless deterministic
strategies by IIMP. Fixing a strategy 7 and an initial state s on an MDP M
gives a unique probability measure P73, _ over infinite paths [Put94, Sect. 2.1.6].
The expected value of a random variable F' is defined as E}, [F] = [F dPRy -
When the MDP is clear from the context, we drop the corresponding subscript
and write P7 and EY instead of P}, ; and E7, ., respectively.

End Components. A pair (T, A), where ) # T C S and 0 # A C [, Av(s),
is an end component of an MDP M if (i) for all s € T,a € AN Av(s) we
have supp(A(s,a)) C T, and (ii) for all s,s' € T there is a finite path w =
sag...ans € (T x A)* x T, i.e. w starts in s, ends in ¢, stays inside T and
only uses actions in A.' Intuitively, an end component describes a set of states
for which a particular strategy exists such that all possible paths remain inside
these states and all of those states are visited infinitely often almost surely. An
end component (7', A) is a mazimal end component (MEC) if there is no other
end component (7", A") such that T C 77 and A C A’. Given an MDP M, the
set of its MECs is denoted by MEC(M). With these definitions, every state of
an MDP belongs to at most one MEC and each MDP has at least one MEC.

Using the concept of MECs, we recall the standard notion of a MEC quo-
tient [dA97]. To obtain this quotient, all MECs are merged into a single repre-
sentative state, while transitions between MECs are preserved. Intuitively, this
abstracts the MDP to its essential infinite time behaviour.

Definition 2 (MEC quotient [dA97]). Let M = (S, Sinit, Act, Av, A, ) be an
MDP with MECs MEC(M) = {(T1, A1), - .., (Tn, An)}. Further, define MECg =
Ui, T; as the set of all states contained in some MEC. The MEC quotient of

M is defined as the MDP M= (§, Sinits Zc\t,m, A, T), where:

- S=8\MECsU{s1,...,5,},
— if for some T; we have s;,;; € T;, then Sini = 8;, otherwise Sinis = Sinits

~ Act = {(s,a) | s € S,a € Av(s)},

! This standard definition assumes that actions are unique for each state, i.e. Av(s) N
Av(s") = 0 for s # s'. The usual procedure of achieving this in general is to replace
Act by S x Act and adapting Av, A, and r appropriately.
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~ the available actions Av are defined as
Vs € S\ MECg. m(s) ={(s,a) | a € Av(s)}

VI<i<n AV(S) ={(s,a) | s € Ty Aa € Av(s) \ A;},

— the transition function Ais defined as follows. Let s € S be some state in the
quotient and (s,a) € Av(S) an action available in . Then

’ Cpy o
A, (s,0),7) = | wen s as) AT =3,
A(s,a,s) otherwise,i.e. § € S\ MECg.

For the sake of readability, we omit the added self-loop transitions of the form
A(S;, (s,a),8;) with s € T; and a € A; from all figures.
— Finally, forse€ S, (s,a) € Av(S), we define 7(s, (s,a)) = r(s,a).

Furthermore, we refer to s1,...,5, as collapsed states and identify them with
the corresponding MECSs.

Ezample 1. Figure la shows an MDP with three MECs, A = ({s5},{a}), B =
({s3,84},{a}),C = ({s5,86},{a})). Its MEC quotient is shown in Fig.1b. A

Remark 1. In general, the MEC quotient does not induce a DAG-structure, since
there might be probabilistic transitions between MECs. Consider for example the
MDP obtained by setting A(sg, b, s4) = {s1 — %, 89 %} in the MDP of Fig. 1a.
Its MEC quotient then has A\(ﬁ, (s2,0)) = {s1— 3, B i}

Remark 2. The MEC decomposition of an MDP M, i.e. the computation of
MEC(M), can be achieved in polynomial time [CY95]. For improved algorithms
on general MDPs and various special cases see [CH11,CH12,CH14,CL13].

(sl,%g?w
g ©

(52,1)),5

(a) An MDP with three MECs. (b) The MEC quotient.

Fig. 1. An example of how the MEC quotient is constructed. By a,r we denote that
the action a yields a reward of r.
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Definition 3 (MEC restricted MDP). Let M be an MDP and (T,A) €
MEC(M) a MEC of M. By picking some initial state s}, € T, we obtain the
restricted MDP M’ = (T, s, .., A, AV', A’ r') where

) 24ty
- AV (s)=Av(s)NA forseT,
- A(s,a,8') = A(s,a,s") fors,s €T, a€ A, and
- 1'(s,a) =r(s,a) forseT, a € A.

Classification of MDPs. If for some MDP M, (S, Act) is a MEC, we call the
MDP strongly connected. If it contains a single MEC plus potentially some tran-
sient states, it is called (weakly) communicating. Otherwise, it is called multi-
chain [Put94, Sect. 8.3].

For a Markov chain, let A™(s,s’) denote the probability of going from the
state s to state s’ in n steps. The period p of a pair s,s’ is the greatest common
divisor of all n’s with A™(s,s’) > 0. The pair s,s’ is called periodic if p > 1
and aperiodic otherwise. A Markov chain is called aperiodic if all pairs s, s” are
aperiodic, otherwise the chain is called periodic. Similarly, an MDP is called
aperiodic if every memoryless randomized strategy induces an aperiodic Markov
chain, otherwise the MDP is called periodic.

Long-Run Average Reward. In this work, we consider the (maximum) long-run
average reward (or mean-payoff) of an MDP, which intuitively describes the
(maximum) average reward per step we expect to see when simulating the MDP
for time going to infinity. Formally, let R; be a random variable, which for an
infinite path p = spagsia; ... returns R;(p) = r(s;, a;), i.e. the reward observed
at step ¢ > 0. Given a strategy m, the n-step average reward then is

1 n—1
vils) =K (n > Ri> :
=0
and the long-run average reward of the strategy  is

v™(s) := liminfv].
n—oo
The liminf is used in the definition, since the limit may not exist in general for
an arbitrary strategy. Nevertheless, for finite MDPs the optimal limit-inferior
(also called the walue) is attained by some memoryless deterministic strategy
7* € ITMP and is in fact the limit [Put94, Theorem 8.1.2].

1 .
= sup iminf B [ = S" R, | = sup v™(s) = "(s) = lim vf .
v(s) := sup liminf E] (n ZZ:; ) sup v (s) = max v™(s) im o]

mell M0 well weIIMP n—00

An alternative well-known characterization we use in this paper is

v(s) = max > PIOOM] - v(M), (1)

Tl ) remEc

where QLIM denotes the set of paths that eventually remain forever within M
and v(M) is the unique value achievable in the MDP restricted to the MEC M.
Note that v(M) does not depend on the initial state chosen for the restriction.
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Algorithm 1. VALUEITERATION
Input: MDP M = (S, sinit, Act, Av, A, 1), precision € > 0
Output: w, s.t. |w — v(sinit)| < €
1: to(-) < 0, n 0.
2: while stopping criterion not met do
3: n«—n+1
4: for s € S do
5
6

tn(s) = maxaenv(s) (7(s,a) + X, cg Als, a,5 ) tn1(s"))
: return %tn(Sinit)

3 Value Iteration Solutions

3.1 Naive Value Iteration

Value iteration is a dynamic-programming technique applicable in many con-
texts. It is based on the idea of repetitively updating an approximation of the
value for each state using the previous approximates until the outcome is precise
enough. The standard value iteration for average reward [Put94, Sect.8.5.1] is
shown in Algorithm 1.

First, the algorithm sets ty(s) = 0 for every s € S. Then, in the inner
loop, the value t, is computed from the value of t,_1 by choosing the action
which maximizes the expected reward plus successor values. This way, ¢,, in fact
describes the optimal expected n-step total reward

tn(s) = 7rrengﬁﬂiD]E (Z R; > =n- max v m(s).

Moreover, t,, approximates the n-multiple of the long-run average reward.

Theorem 1 [Put94, Theorem 9.4.1]. For any MDP M and any s € S we have
limy, o0 2t,(s) = v(s) for t, obtained by Algorithm 1.

Stopping Criteria. The convergence property of Theorem 1 is not enough to
make the algorithm practical, since it is not known when to stop the approx-
imation process in general. For this reason, we discuss stopping criteria which
describe when it is safe to do so. More precisely, for a chosen € > 0 the stopping
criterion guarantees that when it is met, we can provide a value w that is e-close
to the average reward v(Sinit)-

We recall a stopping criterion for communicating MDPs defined and proven
correct in [Put94, Sect. 9.5.3]. Note that in a communicating MDP, all states have
the same average reward, which we simply denote by v. For ease of notation,
we enumerate the states of the MDP S = {s1,...,s,} and treat the function
t,, as a vector of values t, = (t,(s1),...,tn(s,)). Further, we define the relative
difference of the value iteration iterates as A, := t,, — t,,_1 and introduce the
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span semi-norm, which is defined as the difference between the maximum and
minimum element of a vector w

sp(w) = max w(s) — Isrélgw(s).

The stopping criterion then is given by the condition
sp(4Q,) <e. (SC1)
When the criterion (SC1) is satisfied we have that
|A,(s) —v| <e Vs e S. (2)

Moreover, we know that for communicating aperiodic MDPs the criterion (SC1)
is satisfied after finitely many steps of Algorithm 1 [Put94, Theorem 8.5.2]. Fur-
thermore, periodic MDPs can be transformed into aperiodic without affecting
the average reward. The transformation works by introducing a self-loop on each
state and adapting the rewards accordingly [Put94, Sect.8.5.4]. Although this
transformation may slow down VI, convergence can now be guaranteed and we
can obtain e-optimal values for any communicating MDP.

The intuition behind this stopping criterion can be explained as follows.
When the computed span norm is small, A,, contains nearly the same value in
each component. This means that the difference between the expected (n — 1)-
step and n-step total reward is roughly the same in each state. Since in each state
the n-step total reward is greedily optimized, there is no possibility of getting
more than this difference per step.

Unfortunately, this stopping criterion cannot be applied on general MDPs,
as it relies on the fact that all states have the same value, which is not true in
general. Consider for example the MDP of Fig. 1a. There, we have that v(ss) =
v(sg) = 10 but v(s3) = v(s4) = 5.

In [Put94, Sect.9.4.2], it is conjectured that the following criterion may be
applicable to general MDPs:

sp(A,_1) —sp(A,) < e. (SC2)

This stopping criterion requires that the difference of spans becomes small
enough. While investigating the problem, we also conjectured a slight variation:

||An - An—l”oo <g, (SCS)

where ||w||ec = maxses w(s). Intuitively, both of these criteria try to extend
the intuition of the communicating criterion to general MDPs, i.e. to require
that in each state the reward gained per step stabilizes. Example2 however
demonstrates that neither (SC2) nor (SC3) is a valid stopping criterion.

Ezample 2. Consider the (aperiodic communicating) MDP in Fig. 2 with a para-
metrized reward value @ > 0. The optimal average reward is v = «. But the
first three vectors computed by value iteration are to = (0,0),%; = (0.9 - a, @),
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b,0

Fig. 2. A communicating MDP parametrized by the value a.

to = (1.8 - «,2 - a). Thus, the values of A; = Ay = (0.9 - , @) coincide, which
means that for every choice of € both stopping criteria (SC2) and (SC3) are
satisfied by the third iteration. However, by increasing the value of « we can
make the difference between the average reward v and Ay arbitrary large, so no
guarantee like in Eq. (2) is possible. A

3.2 Local Value Iteration

In order to remedy the lack of stopping criteria, we provide a modification of VI
using MEC decomposition which is able to provide us with an e-optimal result,
utilizing the principle of Eq. (1). The idea is that for each MEC we compute an
e-optimal value, then consider these values fixed and propagate them through
the MDP quotient.

Apart from providing a stopping criterion, this has another practical advan-
tage. Observe that the naive algorithm updates all states of the model even if
the approximation in a single MEC has not e-converged. The same happens
even when all MECs are already e-converged and the values only need to propa-
gate along the transient states. These additional updates of already e-converged
states may come at a high computational cost. Instead, our method adapts to
the potentially very different speeds of convergence in each MEC.

The propagation of the MEC values can be done efficiently by transforming
the whole problem to a reachability instance on a modified version of the MEC
quotient, which can be solved by, for instance, VI. We call this variant the
weighted MEC quotient. To obtain this weighted quotient, we assume that we
have already computed approximate values w(M) of each MEC M. We then
collapse the MECs as in the MEC quotient but furthermore introduce new states
st and s_, which can be reached from each collapsed state by a special action
stay with probabilities corresponding to the approximate value of the MEC.
Intuitively, by taking this action the strategy decides to “stay” in this MEC and
obtain the average reward of the MEC.

Formally, we define the function f as the normalized approximated value,
i.e. for some MEC M; we set f(§;) = ﬁw(MiL so that it takes values in
[0,1]. Then, the probability of reaching s; upon taking the stay action in §; is
defined as f(§;) and dually the transition to s_ is assigned 1 — f(§;) probability.
If for example some MEC M had a value v(M) = %rmax, we would have that
A(8,stay, s4) = % This way, we can interpret reaching s; as obtaining the
maximal possible reward, and reaching s_ to obtaining no reward. With this
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intuition, we show in Theorem 2 that the problem of computing the average
reward is reduced to computing the value of each MEC and determining the
maximum probability of reaching the state sy in the weighted MEC quotient.

Definition 4 (Weighted MEC quotient). Let M= (§,§im-t, Zc\t,,&\\/,AA, 7)
be the MEC quotient of an MDP M and let MECg = {31,...,5,} be the set of
collapsed states. Further, let f : MECg — [0,1] be a function assigning a value
to every collapsed state. We define the weighted MEC quotient of M and f as
the MDP M7 = (Sf sl Actu {stay},Avf, AT vl where

» Zinat?
- 5T =8 U {sy,s_},
- S{lnit - §init;
- AV s defined as
4 Av(3) U {stay} ifs e MECg
vie 8. AV (5) = /l/(s) U{stay} ifse ! Cg,
) otherwise,

— Al is defined as
Vs e S,a e Act\ {stay}. AY(3,4) = A3, a)
vgz € MEC§ Af(§l75tay) = {S+ = f(§i7sf —1-— f(gl)}7

~ and the reward function r¥(5,a) is chosen arbitrarily (e.g. 0 everywhere),
since we only consider a reachability problem on M7 .

Ezample 3. Consider the MDP in Fig. 1a. The average rewards of the MECs are
v={Aw— 4,B+— 5 C +— 10}. With f defined as in Theorem 2, Fig. 3 shows the
weighted MEC quotient M. A

Theorem 2. Given an MDP M with MECs MEC(M) = {Mj, ..., M,}, define
f(3) = rrva(Mi) the function mapping each MEC M; to its value. Moreover,

r

let M7 be the weighted MEC quotient of M and f. Then

U(Sinit) = Tmax * :gg PWMf sf (<>3+)-

1 inat

Fig.3. The weighted quotient of the MDP in Fig.la and function f =
{A— 1%7 B %,C — %}. Rewards and stay action labels omitted for readability.
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Algorithm 2. LocALVI
Input: MDP M = (S, sinit, Act, Av, A, 1), precision € > 0

Output: w, s.t. |w — v(sinit)| < €

1. f=0

2: for M; = (Ti, As) € MEC(M) do > Determine values for MECs
3 Compute the average reward w(M;) on M, such that |w(M;) — v(M;)| < ie,
4 f(8:) — sz w(Ms)
5: M7 «— the weighted MEC quotient of M and f
6

7

: Compute p s.t. |[p—sup,cp PﬁMfﬁSifm (Os4)| < 27‘1’1)3): e > Determine reachability

: return Tmax - p

The corresponding algorithm is shown in Algorithm 2. It takes an MDP and the
required precision € as input and returns a value w, which is e-close to the average
reward v(sinit). In the first part, for each MEC M the algorithm computes an
approximate average reward w(M) and assigns it to the function f (normalized
by rmax). Every MEC is a communicating MDP, therefore the value w(M) can
be computed using the naive VI with (SC1) as the stopping criterion. In the
second part, the weighted MEC quotient of M and f is constructed and the
maximum probability p of reaching s, in M/ is approximated.

Theorem 3. For every MDP M and € > 0, Algorithm 2 terminates and is
correct, i.e. returns a value w, s.t. |w — v(smit)| <e.

For the correctness, we require that p is -close to the real maximum proba-
bility of reaching s . This can be achleved by using the VI algorithms for reacha-
bility from [BCC+14] or [HM14], which guarantee error bounds on the computed
probability. Note that p can also be computed by other methods, such as linear
programming. In Sect.4 we empirically compare these approaches.

3.3 On-Demand Value Iteration

Observe that in Algorithm 2, the approximations for all MECs are equally pre-
cise, irrespective of the effect a MEC’s value has on the overall value of the MDP.
Moreover, the whole model is stored in memory and all the MECs are computed
beforehand, which can be expensive for large MDPs. Often this is unnecessary,
as we illustrate in the following example.

Ezample 4. There are three MECs E, E, C in the MDP of Fig. la. Furthermore,
we have that P7 __ (0C) < 0.001. By using the intuition of Eq. (1), we see that
no matter where in the interval [0, ri.x = 20] its value lies, it contributes to the
overall value v(sinit) at most by 0.001 - rpax = 0.02. If the required precision
were € = (.1, the effort invested in computing the value of C would not pay off
at all and one can completely omit constructing C'.

Further, suppose that A was a more complicated MEC, but after a few iter-
ations the criterion (SC1) already shows that the value of A is at most 4.4.
Similarly, after several iterations in B we might see that the value of B is
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greater than 4.5. In this situation, there is no point in further approximating
the value of A since the action b leading to it will not be optimal anyway, and
its precise value will not be reflected in the result. A

To eliminate these inefficient updates, we employ the methodology of bounded
real-time dynamic programming (BRTDP) [MLGO05] adapted to the undis-
counted setting in [BCC+14]. The word bounded refers to keeping and updat-
ing both a lower and an upper bound on the final result. It has been shown
in [Put94,CI14] that bounds for the value of a MEC can be derived from the
current maximum and minimum of the approximations of VI. The idea of the
BRTDP approach is to perform updates not repetitively for all states in a fixed
order, but more often on the more important states. Technically, finite runs of
the system are sampled, and updates to the bounds are propagated only along
the states of the current run. Since successors are sampled according to the tran-
sition probabilities, the frequently visited (and thus updated) states are those
with high probability of being reached, and therefore also having more impact on
the result. In order to guarantee convergence, the non-determinism is resolved
by taking the most promising action, i.e. the one with the current highest upper
bound. Intuitively, when after subsequent updates such an action turns out to
be worse than hoped for, its upper bound decreases and a more promising action
is chosen next time.

Since BRTDP of [BCC+14] is developed only for MDP with the reacha-
bility (and LTL) objective, we decompose our problem into a reachability and
MEC analysis part. In order to avoid pre-computation of all MECs with the
same precision, we instead compute the values for each MEC only when they
could influence the long-run average reward starting from the initial state. Intu-
itively, the more a particular MEC is encountered while sampling, the more it
is “reached” and the more precise information we require about its value.

To achieve this, we store upper and lower bounds on its value in the functions
w and ! and refine them on demand by applying VI. We modify the definition
of the weighted MEC quotient to incorporate these lower and upper bounds
by introducing the state s» (in addition to si,s_). We call this construction
the bounded MEC quotient. Intuitively, the probability of reaching s, from a
collapsed state now represents the lower bound on its value, while the probability
of reaching s7 describes the gap between the upper and lower bound.

Definition 5 (Bounded MEC quotient). Let M = (§,§im-t, Zc\t,m,ﬁ, )
be the MEC' quotient of an MDP M with collapsed states MECg = {31,...,5,}
and let l,u : {31,...,8,} — [0,1] be functions that assign a lower and upper

bound, respectively, to every collapsed state in M. The bounded MEC quotient
MbE% of M and I, u is defined as in Definition 4 with the following changes.

~ Shu = S U {s;},
- A (s) = 0,
- V3 € MECg. Abu(3,stay) = {s4 — 1(8),s_ — 1 —u(8),s7 — u(8) —1(3)}.

The unshortened definition can be found in [ACD+17, Appendix D).
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Algorithm 3. ONDEMANDVI
Input: MDP M = (S, sinit, Act, Av, A, 1), precision € > 0, threshold k£ > 2

Output: w, s.t. |w — v(sinit)| < €

1: Set u(-,-) «— 1, u(s—,") «— 0; I(-,-) < 0, I(s4,-) < 1 > Initialize
2: Let A(s) 1= argmax,eayt.u(s) u(s, a)

3: Let u(s) := max,ca(s) u(s,a) and I(s) := max,ca(s) (s, a)

4: repeat
5: §— sf;:{t, we—§ > Generate path
6: repeat
7 a < sampled uniformly from A(s)
8 s « sampled according to A““(s, a)
9: W — W, a, s
10: until s € {s4,s_,s2} or Appear(s,w) =k > Terminate path
11: if pop(w) = s» then > Refine MEC in which stay was taken
12: pop(w)
13: q — top(w)
14: Run VI on ¢, updating w and I, until v — [ is halved
15: Update Ab%(g, stay) according to Definition 5
16: else if Appear(s,w) = k then > Update EC-collapsing
17: ONTHEFLYEC
18: repeat > Back-propagate values
19: a < pop(w), s < pop(w)
20: u(s,a) — > g As,a,8") - u(s")
21: I(s,a) — Y cgAls,a,8") - 1(s)
22: until w =0
23: until u(sinit) — {(sinit) < 2e > Terminate

Tmax

24: return rpay - %(u(sinit) + 1(Sinit))

The probability of reaching s, and the probability of reaching {s, s} give the
lower and upper bound on the value v(sin;t), respectively.

Corollary 1. Let M be an MDP and l,u functions mapping each MEC M,
of M to (normalized) lower and upper bounds on the value, respectively, i.e.
1(8;) < L—v(M;) <u(8;). Then

Tmax
Tmax = SUP P, 00 (084) S v(Sinit) < Tmax - sup P, 0 (054, s2}),
mell Tinit nell 1Zinit

where MY is the bounded MEC quotient of M and [, u.

Algorithm 3 shows the on-demand VI. The implementation maintains a par-
tial model of the MDP and M"*, which contains only the states explored by the
runs. It interleaves two concepts: (i) naive VI is used to provide upper and lower
bounds on the value of discovered end components, (ii) the method of [BCC+14]
is used to compute the reachability on the collapsed MDP.

In lines 6-10 a random run is sampled following the “most promising” actions,
i.e. the ones with maximal upper bound. The run terminates once it reaches
S4,S— or s7, which only happens if stay was one of the most promising actions.
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Procedure 4. ONTHEFLYEC
1: for (T}, A;) € MEC(M"*) do
2: Collapse (T3, A;) to §; in MY
for s € Tj,a € Av(s) \ A; do
u(8s, (s,a)) — u(s,a)
1(8:,(s,a)) < I(s,a)
Add the stay action according to Definition 5.

A likely arrival to s, reflects a high difference between the upper and lower
bound and, if the run ends up in s-, this indicates that the upper and lower
bounds of the MEC probably have to be refined. Therefore, in lines 11-15 the
algorithm resumes VI on the corresponding MEC to get a more precise result.
This decreases the gap between the upper and lower bound for the corresponding
collapsed state, thus decreasing the probability of reaching s, again.

The algorithm uses the function Appear(s,w) = |{i € N| s = w[i]}| to count
the number of occurrences of the state s on the path w. Whenever we encounter
the same state k times (where k is given as a parameter), this indicates that
the run may have got stuck in an end component. In such a case, the algorithm
calls ONTHEFLYEC [BCC+14], presented in Procedure4, to detect and collapse
end components of the partial model. By calling ONTHEFLYEC we compute the
bounded quotient of the MDP on the fly. Without collapsing the end components,
our reachability method could remain forever in an end component, and thus
never reach s;, s_ or s;. Finally, in lines 18-22 we back-propagate the upper
and lower bounds along the states of the simulation run.

Theorem 4. For every MDP M, € > 0 and k > 2, Algorithm 3 terminates
almost surely and is correct, i.e. returns a value w, s.t. |w — v(Simat)| < €.

4 TImplementation and Experimental Results

In this section, we compare the runtime of our presented approaches to estab-
lished tools. All benchmarks have been run on a 4.4.3-gentoo x64 virtual machine
with 3.0 GHz per core, a time limit of one hour and memory limit of 8GB. The
precision requirement for all approximative methods is ¢ = 1076, We imple-
mented our constructions as a package in the PRISM Model Checker [KNP11].
We used the 64-bit Oracle JDK version 1.8.0-102-b14 as Java runtime for all
executions. All measurements are given in seconds, measuring the total user
CPU time of the PRISM process using the UNIX tool time.

4.1 Models

First, we briefly explain the examples used for evaluation. virus [KNPV09] mod-
els a virus spreading through a network. We reward each attack carried out
by an infected machine. Note that in this model, no machine can “purge” the
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virus, hence eventually all machines will be infected. cs_nfail [KPC12] mod-
els a client-server mutual exclusion protocol with probabilistic failures of the
clients. A reward is given for each successfully handled connection. investor
[MMO07,MMO02] models an investor operating in a stock market. The investor
can decide to sell his stocks and keep their value as a reward or hold them
and wait to see how the market evolves. The rewards correspond to the value
of the stocks when the investor decides to sell them, so maximizing the aver-
age reward corresponds to maximizing the expected selling value of the stocks.
phil_nofair [DFP04] represents the (randomised) dining philosophers without
fairness assumptions. We use two reward structures, one where a reward is
granted each time a philosopher “thinks” or “eats”, respectively. rabin [Rab82]
is a well-known mutual exclusion protocol, where multiple processes repeatedly
try to access a shared critical section. Each time a process successfully enters
the critical section, a reward is given. zeroconf [KNPS06] is a network protocol
designed to assign IP addresses to clients without the need of a central server
while still avoiding address conflicts. We explain the reward assignment in the
corresponding result section. sensor [KPC12] models a network of sensors send-
ing values to a central processor over a lossy connection. A reward is granted for
every work transition.

4.2 Tools

We will compare several different variants of our implementations, which are
described in the following.

— Naive value iteration (NVI) runs the value iteration on the whole MDP as
in Algorithm 1 of Sect. 3.1 together with the stopping criterion (SC2) conjec-
tured by [Put94, Sect.9.4.2]. As the stopping criterion is incorrect, we will
not only include the runtime until the stopping criterion is fulfilled, but also
until the computed value is e-close to the known solution.

— Our MEC decomposition approach presented in Algorithm 2 of Sect. 3.2 is
denoted by MEC-reach, where reach identifies one of the following reachabil-
ity solver used on the quotient MDP.

e PRISM’s value iteration (VI), which iterates until none of the values
change by more than 10~8. While this method is theoretically imprecise,
we did not observe this behaviour in our examples.?

e An exact reachability solver based on linear programming (LP) [Girl4].

e The BRTDP solver with guaranteed precision of [BCC+14] (BRTDP). This
solver is highly configurable. Among others, one can specify the heuristic
which is used to resolve probabilistic transitions in the simulation. This
can happen according to transition probability (PR), round-robin (RR) or
maximal difference (MD). Due to space constraints, we only compare to
the MD exploration heuristic here. Results on the other heuristics can be
found in [ACD+17, Appendix E]

2 PRISM contains several other methods to solve reachability, which all are imprecise
and behaved comparably in our tests.
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— 0DV is the implementation of the on-demand value iteration as in Algorithm 3
of Sect.3.3. Analogously to the above, we only provide results on the MD
heuristic here. The results on 0DV together with the other heuristics can also
be found in [ACD+17, Appendix E].

Furthermore, we will compare our methods to the state-of-the-art tool Multi-
Gain, version 1.0.2 [BCFK15] abbreviated by MG. MultiGain uses linear pro-
gramming to exactly solve mean payoff objectives among others. We use the
commercial LP solver Gurobi 7.0.1 as backend?®. We also instantiated reach by
an implementation of the interval iteration algorithm presented in [HM14]. This
variant performed comparable to MEC-VI and therefore we omitted it.

Table 1. Runtime comparison of our approaches to MultiGain on various, reasonably
sized models. Timeouts (1h) are denoted by TO. Strongly connected models are denoted
by “scon” in the MEC column. The best result in each row is marked in bold, excluding
NVI due to its imprecisions. For NVI, we list both the time until the stopping criterion
is satisfied and until the values actually converged.

Model States | MECs | MG NVI MEC-VI | MEC-LP | MEC-BRTDP | ODV

virus 809 1 3.76 |3.50/3.71|4.09 4.41 4.40 TO

cs_nfaild 960 | 176 4.86 110.2/TO [4.38 |TO 9.39 16.0

investor 6688 | 837 16.75|4.23/TO | 8.83 TO 64.5 18.7

phil-nofair5 | 93068 |scon |TO |23.5/30.3|70 70 70 TO

rabind 668836 |scon |TO |87.8/164 | 820 820 820 TO
4.3 Results

The experiments outlined in Table 1 show that our methods outperform Multi-
Gain significantly on most of the tested models. Furthermore, we want to high-
light the investor model to demonstrate the advantage of MEC-VI over MEC-LP.
With higher number of MECs in the initial MDP, which is linked to the size of
the reachability LP, the runtime of MEC-LP tends to increase drastically, while
MEC-VI performs quite well. Additionally, we see that NVI fails to obtain correct
results on any of these examples.

0DV does not perform too well in these tests, which is primarily due to the
significant overhead incurred by building the partial model dynamically. This is
especially noticeable for strongly connected models like phil-nofair and rabin.
For these models, every state has to be explored and 0DV does a lot of super-
fluous computations until the model has been explored fully. On virus, the bad
performance is due to the special topology of the model, which obstructs the
back-propagation of values.

3 MultiGain also supports usage of the LP solver 1p_solve 5.5 bundled with PRISM,
which consistently performed worse than the Gurobi backend.
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Moreover, on the two strongly connected models all MEC decomposition
based methods perform worse than naive value iteration as they have to obtain
the MEC decomposition first. Furthermore, all three of those methods need the
same amount of for these models, as the weighted MEC quotient only has a
single state (and the two special states), thus the reachability query is trivial.

In Table 2 we present results of some of our methods on zeroconf and sen-
sors, which both have a structure better suited towards 0DV. The zeroconf
model consists of a big transient part and a lot of “final” states, i.e. states which
only have a single self-loop. sensors contains a lot of small, often unlikely-to-
be-reached MECs.

Table 2. Runtime comparison of our on-demand VI method with the previous
approaches. All of those behaved comparable to MEC-VI or worse, and due to space
constraints we omit them. MO denotes a memory-out. Aside from runtime, we further-
more list the number of explored states and MECs of 0DV

Model States |MEC-VI | ODV | ODV States 0DV MECs
zeroconf(40,10) |3001911| MO |5.05 481 3
avoid 582 3
zeroconf(300,15) | 4730203 | MO | 16.6 873 3
avoid 5434 3
sensors(2) 7860 | 18.9 |20.1 3281 917
sensors(3) 77766 | 2293 | 37.2 10941 2301

On the zeroconf model, we evaluate the average reward problem with two
reward structures. In the default case, we assign a reward of 1 to every final state
and zero elsewhere. This effectively is solving the reachability question and thus
it is not surprising that our method gives similarly good results as the BRTDP
solver of [BCC+14]. The avoid evaluation has the reward values flipped, i.e. all
states except the final ones yield a payoff of 1. With this reward assignment, the
algorithm performed slightly slower, but still extremely fast given the size of the
model. We also tried assigning pseudo-random rewards to every non-final state,
which did not influence the speed of convergence noticeably. We want to highlight
that the mem-out of MEC-VI already occurred during the MEC-decomposition
phase. Hence, no variant of our decomposition approach can solve this problem.

Interestingly, the naive value iteration actually converges on zeroconf (40,10)
in roughly 20 min. Unfortunately, as in the previous experiments, the used incor-
rect stopping criterion was met a long time before that.

Further, when comparing sensors(2) to sensors(3), the runtime of 0DV only
doubled, while the number of states in the model increased by an order of mag-
nitude and the runtime of MEC-VI even increased by two orders of magnitude.

These results show that for some models, 0DV is able to obtain an e-optimal
estimate of the mean payoff while only exploring a tiny fraction of the state
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space. This allows us to solve many problems which previously were intractable
simply due to an enormous state space.

5 Conclusion

We have discussed the use of value iteration for computing long-run average
rewards in general MDPs. We have shown that the conjectured stopping criterion
from literature is not valid, designed two modified versions of the algorithm and
have shown guarantees on their results. The first one relies on decomposition
into VI for long-run average on separate MECs and VI for reachability on the
resulting quotient, achieving global error bounds from the two local stopping
criteria. The second one additionally is simulation-guided in the BRTDP style,
and is an anytime algorithm with a stopping criterion. The benchmarks show
that depending on the topology, one or the other may be more efficient, and
both outperform the existing linear programming on all larger models. For future
work, we pose the question of how to automatically fine-tune the parameters of
the algorithms to get the best performance. For instance, the precision increase
in each further call of VI on a MEC could be driven by the current values of VI
on the quotient, instead of just halving them. This may reduce the number of
unnecessary updates while still achieving an increase in precision useful for the
global result.
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