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Abstract Aims and objectives of the study are described; state-of-the-art tech-
niques in the study area are outlined. Several effective approaches proposed in the
study and targeted at robustness improvement in complex acoustic environments
are described. They are multichannel alignment algorithm, vector Taylor
series-based features compensation with phase-term modeling, and environment
adaptation method based on GMM-derived features. Experimental results analysis
and comparison to state of the art are presented.
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Introduction

The past decade has seen a rapid development of speech recognition technology,
which has led to significant improvements in the recognition accuracy for all sce-
narios of its usage and the large introduction of recognition technologies into many
spheres of human activity. The reasons for this development are primarily related to
the widespread adoption of multilayer (deep) neural networks for acoustic model-
ing. In several tasks, this made it possible to closely approach to (or even exceed)
the human level of recognition accuracy. However, under strong noises and
acoustic distortions, especially nonstationary, automatic speech recognition
(ASR) algorithms are still noticeably inferior to human abilities. Accuracy of the
acoustic models which are almost error-free in recognition of clean speech,
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generally deteriorates when they are used in complex acoustic environments (strong
noises, distant microphone, reverberation, etc.), i.e., even state-of-the-art ASR
systems are mostly not sufficiently robust. This paper is devoted to research and
development of new approaches to improve the robustness of ASR algorithms with
the emphasis on using of neural network acoustic models.

Aims and Objectives

The aims of this study were to design new methods and software/engineering solu-
tions for real-time automatic continuous speech recognition in complex acoustic
environments. The designed methods should provide: noise suppression in the
processed speech signal with a minimal distortion of its spectrum and as a conse-
quence, its intelligibility improvement; voice activity detector (VAD) reliability
improvement; accounting and compensation of the influence of noisy conditions on
the recognition accuracy; speech recognition improvement in acoustic conditions
different from those used for acoustic models training.

The relevance of research directions is confirmed by the fact that still there is no
commercially successful speech recognition product, which would provide
human-comparable recognition accuracy in the complex acoustic environment.

State of the Art in Study Area

Research in improving the robustness of ASR algorithms have a long history, first
significant studies date back to 1970s, see for example [1]. At that time the main
direction of increasing speech recognition accuracy was to preprocess speech signal
itself to remove or at least suppress a noise component strongly in order to improve
speech quality and intelligibility. This direction is still being actively developed,
although conventional denoising techniques based on signal processing methods
are gradually superseded with more sophisticated approaches which use
non-negative matrix factorization (NMF) [2], filtering based on spectral masks
generated by neural networks [3], missed data restoration techniques [4], and so on.
The special place in this direction belongs to the processing of signals from several
microphones (microphone array) [5]. Such approaches make it possible to take into
account geometric features of relative positions of microphones and speaker and to
“beamform” microphone array in such a way to amplify speech signal from a target
direction and to suppress interference and noise from all other directions.
Development of such processing methods is especially important for the applica-
tions like “smart home” when microphones are located in several parts of the room
and both location and orientation of speaker’s head are unknown in advance. In
order to promote the development of multi-microphone approaches in robust speech
recognition, several international competitions like CHiME (Computational
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Hearing in Multisource Environments) Challenge [6-9] have been organized in
recent years.

One more direction in improving ASR system robustness is using robust
acoustic features, i.e., those whose distribution is distorted only slightly on changes
of acoustic conditions (and which still keep good abilities to discriminate speech
phones). In developing such features, researchers often refer to human auditory
system which is able to recognize speech even in very adverse conditions. The
examples of robust acoustic features based on auditory system processing are
PNCC (Power-Normalized Cepstral Coefficients) [10] or gammatone filterbanks
energies [11].

A similar problem of features variability reduction is also solved by various
normalization methods like CMVN (Cepstral Mean and Variance Normalization)
[12] or more general histogram equalization [13].

Besides, a large group of developed approaches are aimed at not in increasing
features resistance to different distortions but instead try to explicitly remove the
influence of these distortions—these are feature compensation methods. The most
noticeable techniques among them are SPLICE (stereo-piecewise linear compen-
sation for environment) [14], which uses statistics of joint speech and noisy features
distribution to construct piecewise linear transform from noisy to clean speech
features, and VTS (Vector Taylor Series) [15] which uses approximate linearization
of nonlinear model of speech distortion by noise and channel to construct similar
transform.

The idea of VTS is also applied in other groups of approaches for robustness
improving, namely in adaptation of acoustic models to acoustic environment
changes, i.e., adjusting models trained for clean speech recognition to the acoustic
features distortions. The same linearized distortion model is used to modify features
distribution parameterized as a GMMs (Gaussian Mixture Model). A number of
other successful approaches to adapt GMM-based acoustic models were also
developed such as MLLR, CMLLR (fMLLR) [16], MAP [17], PMC [18], and some
their combinations.

However, in the past years, GMM-HMM acoustic models were almost every-
where superseded by acoustic models based on deep neural networks (DNNs),
which provide much better accuracy in the vast majority of tasks. DNNs need
completely different ways of adaptation, development of which was in a very initial
stage when our study started. In order to keep the network architecture most of the
methods developed till that moment modified weights of a trained neural net by
fine-tuning them on adaptation data with a backpropagation algorithm. This is
rather computationally demanding and needs to create a copy of initial network
(which has millions of parameters) for each new acoustic conditions.

During this study, new approaches were developed within three of
above-mentioned robustness improvement directions. The architecture and pro-
gramming implementation of experimental software were also developed, where
these approaches were integrated into single speech processing and recognition
pipeline for complex acoustic environments. In the following sections, these
approaches and results of their application are considered in more detail.



14 M.L. Korenevsky et al.

Multichannel Alignment (MCA)

This algorithm first described in [19] is an adaptive microphone array
(MA) beamforming method using an output of well-known Delay-and-Sum
beamforming method [5] as a “reference” signal. The algorithm computes adaptive
transfer functions for each microphone channel signals by means of «align-
ing» their spectra relative to that of the reference signal. Signals passed through the
transfer functions are then averaged to provide the resulting speech signal. This
approach makes the width of the MA’s directivity pattern main lobe narrower (i.e.,
improves spatial directivity) and significantly reduces the level of sidelobes (i.e.,
suppresses noises and interferences received on them). The scheme of MCA pro-
cessing (for the case of 4 microphones) is depicted in Fig. 1. It is worth noting that
the reference signal may be presumably obtained from any other beamforming
algorithm as well, and better the reference more noticeable the effect of MCA
should be.

STFT and IFT stand for Short-Time Fourier Transform and Inverse Fourier
Transform respectively, D,(f) are channels’ delays (steering) vectors.

MCA algorithm was successfully applied in our submission to the CHiME
Challenge 2015 where it has demonstrated competitive results compared to several
well-known beamforming algorithms [20]. The important characteristics of MCA
include the implementation simplicity, low computational complexity and resis-
tance to target direction errors.
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Fig. 1 Multichannel alignment algorithm
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VTS Feature Compensation with a Phase-Term Modeling

VTS-based methods comprise an extremely important class of approaches to ASR
robustness improvement: they are applied for features distortion compensation,
adaptation and adaptive training acoustic models as well as for dealing with
uncertainty remained after feature compensation during speech decoding. As it was
already mentioned, VTS-based adaptation is applicable to only GMM-HMM
acoustic models, therefore under widely used DNN-HMM framework its direct
application is not possible. Thus, VTS-based acoustic features compensation
(cleaning) becomes more important now.

The most widely used speech distortion model by noise and channel has the
following form:

y(t) = x(¢) * h+n(t), where x(t), y(z), n(z), and k denote clean speech, noisy
speech, and noise signals as well as channel impulse response, respectively, and
denotes convolution. When computing the most widespread MFCC (mel-frequency
cepstral coefficients) features the signal is processed with several linear and non-
linear transformations. This results in the following relation between the features of
the above signals:

y =x+g(x,h,n,0) =x+h+C log (1 4 Pmxh) 4 oy g eD(n—xfh)/z) 7

where x,y, n, h denote vectors of MFCC:s for clean speech, noisy speech, noise and
channel response, a is a “phase” vector, C and D—are the matrices of direct and
inverse discrete cosine transform (DCT) and, finally, e is an elementwise
(Hadamard) product of vectors. This model involves nonlinear vector-function g
and its presence makes estimation of the clean speech features from noisy speech
features extremely difficult. The essence of VTS method is a linearization of this
nonlinearity by means of Vector Taylor expansion up to the first-order terms around
some set of points:

¥y ~X + g(Xo, ho, o, o) + Vg’ (X — X0) + Vg (h — hy)
+ Vag" (n —ng) + Vg (a0 — atp).

This, of course, introduces some error into the model, but greatly facilitates the
following inference.

The last nonlinearity term which contains phase vector a was first taken into
account in [21]," where it was demonstrated that this improves the model accuracy.
However, in both just cited paper and subsequent ones, which use such distortion
model phase vector was treated in some special ways: for example it was assumed
to have equal components, which is not physically adequate, or its distribution

"This term was always discarded in previous papers as presumable being close to zero.
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Table 1 Accuracy of the  gNR dB | No VTS without VTS with
VTS in clean training scenario VTS phase phase
for different SNR values
Clean 99.08 99.01 99.04
(>40)
20 94.32 98.22 98.47
15 84.65 96.67 97.49
10 64.07 92.57 94.52
5 36.46 82.47 86.79
16.18 56.71 64.58
-5 9.04 22.66 28.96

parameters were estimated from the trainset in advance and then considered as
known. We proposed a new variant of VTS-based on the same model, where phase
vector is treated as a multivariate Gaussian with the unknown parameters (as it is
usually done for noise features vector n), and these parameters are inferred based on
maximum likelihood principle and using EM-algorithm. This approach is not
limited to noises available in the training set and does not put tight constraints on
the phase vector structure. We derived EM expressions to update n,«, and h dis-
tributions parameters and formula for estimating clean speech features [22].

Experiments for assessing effectiveness of proposed VTS variant were per-
formed, inter alia, on the Aurora2 database [23], which contains utterances of
sequences of English digits distorted with different noises and channels. Obtained
results, part of which is shown in Table 1, clearly demonstrate that the proposed
method significantly improves the recognition accuracy compared to both VTS
without phase-term modeling and especially to unprocessed noisy speech
recognition.

Adaptation Based on GMM-Derived Features

It was already mentioned that well-designed adaptation methods for GMM-HMM
acoustic models appeared to be not applicable after the migration to neural network
acoustic models. Possibility of using GMM models for feature compensation gave
rise to the idea of using GMM for adaptation as well if the features for DNN are not
raw MFCCs but their GMM-based likelihoods of simple GMM-HMM acoustic
model.

This idea led to the proposed method of adaptation based on GMM-derived
features, designed in details in the papers [24-26]. The scheme of method appli-
cation in its original variant (for speaker adaptation®) is depicted on Fig. 2.

2Method can be easily applied to environment but not speaker adaptation.
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Fig. 2 Training and adaptation of DNN acoustic model based on GMM-derived features.
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As shown on the figure, speaker-independent (SI) GMM-HMM and DNN-HMM
models are first trained. In this stage, the dimensionality of GMM likelihoods is
reduced by PCA transform, and then features vector is extended by features from
the neighboring frames. On the adaptation stage only GMM-HMM model is
adapted (with MAP here) and then its (speaker adapted) outputs are fed into the
same pipeline as for SI. As a result, the main DNN-HMM acoustic model remains
unchanged. Number of experiments described in [24-26] show that although
SI-DNN-HMM on GMM-derived features works worse than on MFCCs, its
adaptation is extremely efficient. The illustration of the last statement (with appli-
cation to speaker adaptation) is shown on Fig. 3.
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Obviously, the described method may be also treated as a method of
GMM-derived features compensation performed by means of GMM-HMM adap-
tation. Another variant of such compensation may be implemented based on the
above-described VTS algorithm, where VTS-compensated MFCC features are fed
into original GMM-HMM acoustic model to infer compensated GMM-derived
features. We implemented the combination of both these approaches in the
developed experimental software and found that they work well together.

Interestingly, the similar approach which combines VTS and GMM-derived
features was recently considered in [27], however there VTS is used for direct
GMM-HMM adaptation, therefore the direct comparison of these approaches is
difficult.

Conclusions

Several different approaches which provide improvements of speech recognition
accuracy in complex acoustic environments were developed in this study. They
demonstrate competitive results on several well-known speech recognition bench-
marks and have some advantages compared to many state-of-the-art analogues. The
combination of the proposed methods is successfully implemented in the experi-
mental software, which may be used as a basis for deployment of new ASD systems
and devices, providing reliable speech recognition in adverse acoustic conditions.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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