
Accountable Storage

Giuseppe Ateniese1, Michael T. Goodrich2, Vassilios Lekakis3,
Charalampos Papamanthou5, Evripidis Paraskevas5(B),

and Roberto Tamassia4

1 Department of Computer Science, Stevens Institute of Technology, Hoboken, USA
gatenies@stevens.edu

2 Department of Computer Science, University of California, Irvine, USA
goodrich@uci.edu

3 Department of Computer Science, University of Maryland, College Park, USA
lex@cs.umd.edu

4 Department of Computer Science, Brown University, Providence, USA
rt@cs.brown.edu

5 Department of Electrical and Computer Engineering, University of Maryland,
College Park, USA

cpap@umd.edu, evripar@terpmail.umd.edu

Abstract. We introduce Accountable Storage (AS), a framework ena-
bling a client to outsource n file blocks to a server while being able
(any time after outsourcing) to provably compute how many bits were
discarded or corrupted by the server. Existing techniques (e.g., proofs of
data possession or storage) can address the accountable storage problem,
with linear server computation and bandwidth. Instead, our optimized
protocols achieve O(δ log n) complexity (where δ is the maximum num-
ber of corrupted blocks that can be tolerated) through the novel use of
invertible Bloom filters and a new primitive called proofs of partial stor-
age. With accountable storage, a client can be compensated with a dollar
amount proportional to the number d of corrupted bits (that he can now
provably compute). We integrate our protocol with Bitcoin, supporting
automatic such compensations. Our implementation is open-source and
shows our protocols perform well in practice.

1 Introduction

Cloud computing is revolutionizing our digital world, posing new security and
privacy challenges. E.g., businesses and individuals are reluctant to outsource
their databases for fear of having their data lost or damaged. Thus, they would
benefit from technologies that would allow them to manage their risk of data
loss, just like insurance allows them to manage their risk of physical or financial
losses, e.g., from fire or liability.

As a first step, a client needs a mechanism for verifying that a cloud provider
is storing her entire database intact, and fortunately, Provable Data Possession
(PDP) [3,11,13] and Proofs of Retrievability (POR) [10,19,26–28], have been
conceived as a solution to the integrity problem of remote databases. PDP and
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POR scheme can verify whether the server possesses the database originally
uploaded by the client by having the server generate a proof in response to a
challenge.

However, they leave unsettled several risk management issues. Arguably, an
important question is

What happens if a PDP or POR scheme shows that a client’s outsourced
database has been damaged?

The objective of this work is to design new efficient protocols for Accountable
Storage (AS) that enable the client to reliably and quickly assess the damage
and at the same time automatically get compensated using the Bitcoin protocol.

To be precise, suppose Alice outsources her file blocks b1, b2, . . . , bn to a
potentially malicious cloud storage provider, Bob. Since Alice does not trust Bob,
she wishes, at any point in time, to be able to compute the amount of damage,
if any, that her file blocks have undergone, by engaging in a simple challenge-
response protocol with Bob. For instance, she wishes to provably compute the
value of a damage metric, such as

d =
n∑

i=1

wi · ||bi ⊕ b′
i||, (1)

where b′
i is the file currently stored by Bob at the time of the challenge, ||.||

denotes Hamming distance and wi is a weight corresponding to file bi. If d = 0,
Alice is entitled to no dollar credit. Bob can easily prove to Alice that this is the
case through existing protocols, as noted above. If d > 0, however, then Alice
should receive a compensation proportional to the damage d, which should be
provided automatically.1

Naive Approaches for AS. A PDP protocol [3,4,11,13,29] enables a server
to prove to a client that all of the client’s data is stored intact. One could design
an AS protocol by using a PDP protocol only for the portion of storage that the
server possesses. This could determine the damage, d (e.g., when all weights wi

are equal to 1). However this approach requires using of PDP at the bit level,
and in particular computing one 2048-bit tag for each bit of our file collection
which is very storage-inefficient.

To overcome the above problem, one could use PDP at the block level, but at
the same time keep some redundancy locally. Specifically, before outsourcing the
n blocks at the server, the client could store δ extra check blocks locally (e.g.,
computed with an error-correcting code). The client could then verify through
PDP that a set of at most δ blocks have gone missing and retrieve the lost blocks
by executing the decoding algorithm on the remote intact n− δ data blocks and

1 We highlight that such fine-grained compensation models, which work at the bit
level as opposed to at the file block level, allow Alice to better manage her risk for
damage even within the same file. For example, compensation for an unusable movie
stored by Bob could be larger than that for a usable movie whose resolution has
deteriorated by just 5%.
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the δ local check blocks (then the recovered blocks can be used to compute d).
This procedure has O(n) communication, since the n − δ blocks at the server
must be sent to the client. IRIS [28] is a system along these lines, requiring the
whole file system be streamed over to the client for recovery.

Finally we note here that while PDP techniques combined with redundant
blocks stored at the client can be used to solve the accountable storage problem
(even inefficiently, as shown above), POR techniques cannot. This is because
POR techniques (e.g., [26]) cannot provide proofs of retrievability for a certain
portion of the file (as is the case with PDP), but only for the whole file—this is
partly due to the fact that error-correcting codes are used on top of all the file
blocks.

Our AS Protocol. Our protocol for assessing damage d from Relation 1 is
based on recovering the actual blocks b1, b2, . . . , bδ and XORing them with the
corrupted blocks b′

1, b
′
2, . . . , b

′
δ returned by the server. For recovery, we use the

invertible Bloom filter (IBF) data structure [12,15]. An IBF is an array of t
cells and can store O(t) elements. Unlike a Bloom filter [7], its elements can be
enumerated with high probability.

Let B = {b1, b2, . . . , bn} be the set of outsourced blocks and let δ be the
maximum number of corrupted blocks that can be tolerated. In preprocessing,
the client computes an IBF TB with O(δ) cells, on the blocks b1, . . . , bn. TB is
stored locally. Computing TB is similar to computing a Bloom filter: every cell
of TB is mapped to a XOR over a set of at most n blocks, thus the local storage
is O(δ). To outsource the blocks, the client computes homomorphic tags, Ti (as
in [3]), for each block bi. The client then stores (bi, Ti) with the cloud and deletes
b1, b2, . . . , bn from local storage. In the challenge phase, the client asks the server
to construct an IBF TK of O(δ) cells on the set of blocks K the server currently
has—this is the “proof” the server sends to the client. Then the client takes the
“difference” TL = subtract(TB ,TK) and recovers the elements of the difference
B − K (since |B − K| ≤ δ and TL has O(δ) cells). Recovering blocks in B − K
enables the client to compute d using Relation 1. Clearly, the bandwidth of this
protocol is proportional to δ (due to the size of the IBFs), and not to the total
number of outsourced blocks n. Our optimized construction in Sect. 5 achieves
sublinear server and client complexities as well.

Fairness Through Integration with Bitcoin. The above protocol assures
that Bob (the server) cannot succeed in persuading Alice that the damage of
her file blocks is d′ < d. After Alice is persuaded, compensation proportional
to d must be sent to her. But Bob could try to cheat again. Specifically, Bob
could try to give Alice a smaller compensation or even worse, disappear. To
deal with this problem, we develop a modified version of the recently-introduced
timed commitment in Bitcoin [2]. At the beginning of the AS protocol, Bob
deposits a large amount, A, of bitcoins, where A is contractually agreed on and
is typically higher than the maximum possible damage to Alice’s file blocks.
The Bitcoin-integrated AS protocol of Sect. 6 ensures that unless Bob fully and
timely compensates Alice for damage d, then A bitcoins are automatically and
irrevocably transferred to Alice. At the same time, if Alice tries to cheat (e.g.,
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by asking for compensation higher than the contracted amount), our protocol
ensures that she gets no compensation at all while Bob gets back all A of his
bitcoins.

Structure of the Paper. Section 2 presents background on IBFs and Bitcoin,
Sect. 3 gives definitions, and Sects. 4 and 5 present our constructions. We present
our Bitcoin protocol in Sect. 6, our evaluation in Sect. 7 and conclude in Sect. 8.

2 Preliminaries

Let τ denote the security parameter, δ denote an upper bound on the number
of corrupted blocks that can be tolerated, n denote the number of file blocks,
and b1, b2, . . . , bn denote the file blocks. Each block bi has λ bits. The first log n
bits of each block bi are used for storing the index i of the block, which can be
retrieved through function index(). Namely i = index(bi). Let also h1, h2, . . . , hk

be k hash functions chosen at random from a universal family of functions H [9]
such that hi : {0, 1}λ → {1, 2, . . . , t} for some parameter t.

Invertible Bloom Filters. An Invertible Bloom Filter (IBF ) [12,15] can be
used to compactly store a set of blocks {b1, b2, . . . , bn}: It uses a table (array) T
of t = (k + 1)δ cells. Each cell of the IBF’s table T contains the following two
fields2: (1) dataSum: XOR of blocks bi mapped to this cell; (2) hashSum: XOR of
cryptographic tags (to be defined later) Ti for all blocks bi mapped to this cell.
As in Bloom filters, we use functions h1, . . . , hk to decide which blocks map to
which cells.

An IBF supports simple algorithms for insertion and deletion via algorithm
update in Fig. 1. For B ⊆ A, one can also take the difference of IBFs TA and
TB, to produce an IBF TD ← subtract(TA,TB) representing the difference set
D = A−B. Finally, given TD, we can enumerate its contents by using algorithm
listDiff from [12]:

Lemma 1 (Adjusted from Eppstein et al. [12]). Let B ⊆ A be two sets
having ≤ δ blocks in their difference A − B, let TA and TB be their IBFs
constructed using k hash functions and let TD ← subtract(TA,TB). All IBFs
have t = (k + 1)δ cells and their hashSum field is computed using a function
mapping blocks to at least k log δ bits. Then there is an algorithm listDiff(TD)
that recovers A − B with probability 1 − O(δ−k).

Bitcoin Basics. Bitcoin [23] is a decentralized digital currency system where
transactions are recorded on a public ledger (the blockchain) and are verified
through the collective effort of miners. A bitcoin address is the hash of an
ECDSA public key. Let A and B be two bitcoin addresses. A standard trans-
action contains a signature from A and mandates a certain amount of bitcoins
be transferred from A to B. If A’s signature is valid, the transaction is inserted
into a block which is then stored in the blockchain.
2 Note that we do not use the count field, as in [12,15].
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Fig. 1. Update and subtraction algorithms in IBFs.

Bitcoin allows for more complicated transactions (as we are using here),
whose validation requires more than just a signature. In particular, each
transaction can specify a locktime containing a timestamp t at which the
transaction is locked (before time t, even if a valid signature is pro-
vided, the transaction is not final). Slightly changing the notation from [2],
a Bitcoin transaction Tx can be represented as the table below, where

Prev :
InputsToPrev :
Conditions :
Amount :
Locktime :

Prev is the transaction (say Ty) that Tx is redeeming,
InputsToPrev are inputs that Tx is sending to Ty so that Ty’s
redeeming can take place, Conditions is a program written in
the Bitcoin scripting language (outputting a boolean) con-
trolling whether Tx can be redeemed or not (given inputs
from another transaction), Amount is the value in bitcoins,
and Locktime is the locktime. For standard transactions,
InputsToPrev is a signature with the sender’s secret key, and Conditions imple-
ments a signature verification with the recipient’s public key. Also, standard
transactions have locktime set to 0, meaning they are locked and final.

3 Accountable Storage Definitions

We now define an AS scheme. An AS scheme does not allow the client to compute
damage d directly. Instead, it allows the client to use the server’s proof to retrieve
the blocks L that are not stored by the server any more (or are stored corrupted).
By having the server send the current blocks he stores in the position of blocks
in L (in addition to the proof), computing the damage d is straightforward.

Definition 1 (δ-AS scheme). A δ-AS scheme P is the collection of four PPT
algorithms:

1. {pk, sk, state, T1, . . . , Tn} ← Setup(b1, . . . , bn, δ, 1τ ) takes as inputs file blocks
b1, . . . , bn, a parameter δ and the security parameter τ and returns a public
key pk, a secret key sk, tags T1, . . . , Tn and a client state state.

2. chal ← GenChal(1τ ) generates a challenge for the server;
3. V ← GenProof(pk, βi1 , . . . , βim , Ti1 , . . . , Tim , chal) takes as inputs a public key

pk, a collection of m ≤ n blocks and their corresponding tags. It returns a
proof of accountability V;

4. {reject,L} ← CheckProof(pk, state,V, chal) takes as inputs a public key pk
and a proof of accountability V. It returns a list of blocks L or reject.
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Relation to Proofs of Storage. A δ-AS scheme is a generalization of proof-of-
storage (PoS) schemes, such as [3,19]. In particular, a 0-AS scheme (i.e., where
we set δ = 0) is equivalent to PoS protocols, where there is no tolerance for
corrupted/lost blocks.

Definition 2 (δ-AS scheme correctness). Let P be a δ-AS scheme. Let
{pk, sk, state, T1 , . . . , Tn} ← Setup(b1, . . . , bn, δ, 1τ ) for some set of blocks B =
{b1, . . . , bn}. Let now L ⊆ B such that |L| ≤ δ, chal ← GenChal(1τ ) and
V ← GenProof(pk, B − L, T(B − L), chal), where T(B − L) denotes the tags cor-
responding to the blocks in B − L. A δ-AS scheme is correct if the probability
that L ← CheckProof(pk, state,V, chal) is at least 1 − neg(τ).3

To define the security of a δ-AS scheme, the adversary adaptively asks for
tags on a set of blocks B = {b1, b2, . . . , bn} that he chooses. After the adversary
gets access to the tags, his goal is to output a proof V, so that if L is output by
algorithm CheckProof, where |L| ≤ δ, then (a) either L is not a subset of the
original set of blocks B; (b) or the adversary does not store all remaining blocks
in B − L intact.

Such a proof is invalid since it would allow the verifier to either recover the
wrong set of blocks (e.g., a set of blocks whose Hamming distance from the
corrupted blocks is a lot smaller) or to accept a corruption of more than δ file
blocks.

Definition 3 (δ-AS security). Let P be a δ-AS scheme as in Definition 1 and
A be a PPT adversary. We define security using the following steps.

1. Setup. A chooses δ ∈ [0, n), blocks B = {b1, b2, . . . , bn} and
is given T1, . . . , Tn and pk output by {pk, sk, state, T1, . . . , Tn} ←
Setup(b1, . . . , bn, δ, 1τ ).4

2. Forge. A is given chal ← GenChal(1τ ) and outputs a proof of accountability
V.

Suppose L ← CheckProof(pk, state,V, chal). We say that the δ-AS scheme P is
secure if, with probability at least 1 − neg(τ): (i) L ⊆ B; and (ii) there exists
a PPT knowledge extractor E that can extract all the remaining file blocks in
B − L.

Note here that if the set L is empty, then the above definition is equivalent to
the original PDP security definition [3]. Also note that the notion of a knowledge
extractor is similar to the standard one, introduced in the context of proofs
of knowledge [5]. If the adversary can output an accepting proof, then he can
execute GenProof repeatedly until it extracts the selected blocks.

3 Function λ : N → R is neg(τ) iff ∀ nonzero polynomials p(τ) there exists N so that
∀τ > N it is λ(τ) < 1/p(τ).

4 A could also choose blocks adaptively, after seeing tags for already requested blocks.
Our proof of security handles that.
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4 Our Basic Construction

We now give an overview of our basic construction: On input blocks B =
{b1, . . . , bn} in local storage, the client decides on a parameter δ (meaning that
he can tolerate up to δ corrupted files) and computes the local state, tags, public
and secret key by running {pk, sk, state, T1, . . . , Tn} ← Setup(b1, . . . , bn, δ, 1τ ). In
our construction the tag Ti is set to (h(i)gbi)d mod N , as in [3], where h(.) is
a collision-resistant hash function, N is an RSA modulus and (e, d) denote an
RSA public/private key pair. The client then sends blocks b1, . . . , bn and tags
T1, . . . , Tn to the server and locally stores the state state, which is an IBF of the
blocks b1, b2, . . . , bn.

At challenge phase, the client runs chal ← GenChal(1τ ) that picks a random
challenge s and sends it to the server. To generate a proof of accountability (see
Fig. 2-left) with GenProof, the server computes an IBF TK on the set of blocks
that he (believes he) stores, along with a proof of data possession [3] on the
same set of blocks. The indices of these blocks are stored in a set Kept. For the
computation of the PDP proof, the server uses randomness derived from the
challenge s.

To verify the proof, the client takes the difference TL = subtract(TB,TK)
and executes algorithm recover from Fig. 2-right, which is a modified version of
listDiff from [12]. Algorithm recover adds blocks whose tags verify to the set of
lost blocks L. Then it checks the PDP proof for those block indices corresponding
to blocks that were not output by recover. If this PDP proof does not reject, then
the client is persuaded that the server stores everything except for blocks in L.
To make sure recover does not fail with a noticeable probability, our construction
sets the parameters according to the following corollary. The detailed algorithms
of our construction are in Fig. 3.

Corollary 1. Let τ be the security parameter and B and K be two sets such
that K ⊆ B and |B −K| ≤ δ. Let TB and TK be IBFs constructed by algorithm

Fig. 2. (Left) On input b1, b2, . . . , b9, the client outputs an IBF TB of three cells
using two hash functions. The server loses blocks b1 and b9. TK is computed on blocks
b2, b3, . . . , b8 and TL contains the lost blocks b1 and b9. (Right) The algorithm for
recovering the lost blocks.
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Fig. 3. Our δ-AS scheme construction.

update of Fig. 1 using τ/ log δ hash functions. The IBFs TB and TK have t =
(τ/ log δ + 1)δ cells and employ tags in the hashSum field that map blocks to τ
bits. Then with probability at least 1−2−τ , algorithm recover(subtract(TB ,TK))
will output L = B − K.

Our detailed proof of security is given in the Appendix. The local state that
the client must keep is an IBF of t = (k +1)δ cells, therefore the asymptotic size
of the state is O(δ). For the size of the proof V, the tag T has size O(1), the sum
S has size O(log n + λ) and the IBF TK has size O(δ). Overall, the size of V is
O(δ+log n). For the proof computation, note that algorithm GenProof must first
access at least n−δ blocks in order to compute the PDP proof and then compute
an IBF of δ cells over the same blocks, therefore the time is O(n + δ). Likewise,
the verification algorithm needs to verify a PDP proof for a linear number of
blocks and to process a proof of size O(δ + log n), thus its computation time is
again O(n + δ).
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Theorem 1 (δ-AS scheme). Let n be the number of blocks. For all δ ≤ n,
there exists a δ-AS scheme such that: (1) It is correct according to Definition 2;
(2) It is secure in the random oracle model based on the RSA assumption and
according to Definition 3; (3) The proof has size O(δ+log n) and its computation
at the server takes O(n + δ) time; (4) Verification at the client takes O(n + δ)
time and requires local state of size O(δ); (5) The space at the server is O(n).

We now make two observations related to our construction. First, note that
the server could potentially launch a DoS attack, by pretending it does not store
some of the blocks so that the client is forced to spend cycles retrieving these
blocks. This is not an issue, since as we will see later, the server will be penalized
for that, so it is not in its best interest. Second, note that the tags that the
client initially uploads are publicly verifiable so anyone can check their validity—
therefore the client cannot upload bogus tags and blame the server later for that.

Streaming and Appending Blocks. Our construction assumes the client has
all blocks available in the beginning. This is not necessary. Blocks bi could come
one at a time, and the client could easily update its local state with algorithm
update(bi,T, 1), compute the new tag Ti and send the pair (bi, Ti) to the server for
storage. This also means that our construction is partially-dynamic, supporting
append-only updates. Modifying a block is not so straightforward due to replay
attacks. However techniques from various fully-dynamic PDP schemes could be
potentially used for this problem (e.g., [13]).

5 Sublinear Construction Using Proofs of Partial Storage

In the previous construction, the server and client run in O(n + δ) time. In this
section we present optimizations that reduce the server and client performance
to O(δ log n). Recall that the proof generation in Fig. 3 has two distinct, linear-
time parts: First, proving that a subset of blocks is kept intact (in particular
the blocks with indices in Kept), and second, computing an IBF on this set of
blocks. We show here how to execute both these tasks in sublinear time using
(i) partial proofs of storage; (ii) a data structure based on segment trees that
the client must prepare during preprocessing.

Proofs of Partial Storage. In our original construction, we prove that a subset
of blocks is kept intact (in particular the blocks with indices in Kept) using
a PDP-style proof, as originally introduced by Ateniese et al. [3]. In our new
construction we will replace that part with a new primitive called proofs of
partial storage. To motivate proofs of partial storage, let us recall how proofs of
storage [26] work.

Proofs of storage provide the same guarantees with PDP-style proofs [3] but
are much more practical in terms of proof construction time. In particular, one
can construct a PoS proof in constant time as follows. Along with the origi-
nal blocks b1, b2, . . . , bn the client outsources an additional n redundant blocks
β1, β2, . . . , βn computed with an error-correcting code such as Reed-Solomon,
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such that any n out of the 2n blocks b1, b2, . . . , bn, β1, β2, . . . , βn can be used
to retrieve the original blocks b1, b2, . . . , bn. Also, the client outsources tags Ti

(as computed in Algorithm Setup in Fig. 3) for all 2n blocks. Now, during the
challenge phase, the client picks a constant-sized subset of random blocks to
challenge (out of the 2n blocks), say τ = 128 blocks. Because the subset is cho-
sen at random every time, the server, with probability at least 1−2−τ , will pass
the challenge (i.e., provide verifying tags for the challenged blocks) only if he
stores at least half of the blocks b1, b2, . . . , bn, β1, β2, . . . , βn—which means that
the original blocks b1, b2, . . . , bn are recoverable.

Unfortunately, we cannot use proofs of storage as described above directly,
since we want to prove that a subset of the blocks is stored intact, and the above
construction applies to the whole set of blocks. In the following we describe how
to fix this problem using a segment-tree-like data structure.

Our New Construction: Using a Segment Tree. A segment tree T is a
binary search tree that stores the set B of n key-value pairs (i, bi) at the leaves
of the tree (ordered by the key). Let v be an internal node of the tree T . Denote
with cover(v) the set of blocks that are included in the leaves of the subtree
rooted on node v. Let also |v| = |cover(v)|. Every internal node v of T has a
label label(v) that stores:

1. All blocks b1, b2, . . . , b|v| contained in cover(v) along with respective tags Ti.
The tags are computed as in Algorithm Setup in Fig. 3;

2. Another |v| redundant blocks β1, β2, . . . , β|v| computed using Reed-Solomon
codes such that any |v| out of the 2|v| blocks b1, b2, . . . , b|v|, β1, β2, . . . , β|v|
are enough to retrieve the original blocks b1, b2, . . . , b|v|. Along with every
redundant block βi, we also store its tag Ti.

3. An IBF Tv on the blocks contained in cover(v);

By using the segment tree, one can compute functions on any subset of n− δ
blocks in O(δ log n) time (instead of taking O(n − δ) time): For example, if
i1, i2, . . . , iδ are the indices of the omitted δ blocks, the desired IBF TK can
be computed by combining (i.e., XORing the dataSum and hashSum fields and
adding the count fields):

– The IBF T1 corresponding to indices from 1 to i1 − 1;
– The IBF T2 corresponding to indices from i1 + 1 to i2 − 1;
– . . .
– The IBF Tδ+1 corresponding to indices from iδ + 1 to in.

Each one of the above IBFs can be computed in O(log n) time by combining
a logarithmic number of IBFs stored at internal nodes of the segment tree and
therefore the total complexity of computing the final IBF TK is O(δ log n). Sim-
ilarly, a partial proof of storage for the lost blocks with indices i1, i2, . . . , iδ can
be computed by returning.
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– A proof of storage corresponding to indices from 1 to i1 − 1;
– A proof of storage corresponding to indices from i1 + 1 to i2 − 1;
– . . .
– A proof of storage corresponding to indices from iδ + 1 to in.

Again, each one of the above proofs of storage can be computed by returning
O(log n) partial proofs of storage so in total, one needs to return O(δ log n) proofs
of storage. Note however that our segment tree increases our space to O(n log n)
and also setting it up requires O(n log n) time. Therefore we have the following:

Theorem 2 (Sublinear δ-AS scheme). Let n be the number of blocks. For
all δ ≤ n, there exists a δ-AS scheme such that: (1) It is correct according to
Definition 2; (2) It is secure in the random oracle model based on the RSA
assumption and according to Definition 3; (3) The proof has size O(δ log n) and
its computation at the server takes O(δ log n) time; (4) Verification at the client
takes O(δ log n) time and requires local state of size O(δ); (5) The space at the
server is O(n log n).

6 Bitcoin Integration

After the client computes the damage d using the AS protocol described in
the previous section, we would like to enable automatic compensation by the
server to the client in the amount of d bitcoins. The server initially makes a
“security deposit” of A bitcoins by means of a special bitcoin transaction that
automatically transfers A bitcoins to the client unless the server transfers d
bitcoins to the client before a given deadline. Here, the amount A is a parameter
that is contractually established by the client and server and is meant to be
larger than the maximum damage that can be incurred by the server.5

We have designed a variation of the AS protocol integrated with Bitcoin that,
upon termination, achieves one of the following outcomes within an established
deadline:

1. If both the server and the client follow the protocol, the client gets exactly d
bitcoins from the server and the server gets back his A bitcoins.

2. If the server does not follow the protocol (e.g., he tries to give fewer than d
bitcoins to the client, fails to respond in a timely manner, or tries to forge an
AS proof), the client gets A bitcoins from the server automatically.

3. If the client requests more than d bitcoins from the server by providing invalid
evidence, the server receives all A deposited bitcoins back and the client
receives nothing.

5 Of course, this is just a simple setting, a proof of concept. Clearly other technical
and financial instruments can be used to improve this approach if committing such
a large amount of A bitcoins is too demanding.
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Primitives Used in Our Protocol. Our protocol is using two primitives,
which we describe informally in the following.

– A trusted and tamper-resilient channel between the client and the server, e.g.,
a bulletin board. This can be easily implemented by requesting all messages
exchanged between the server and the client be posted on the blockchain
(note that it is easy for a party P to post arbitrary data D on the blockchain
by making a transaction to itself and by including D in the body of the
transaction). From now on, we will assume that all messages are posted to
the blockchain creating a history hist.

– A trusted bitcoin arbitrator BA. This is a trusted party that only intervenes
in case of disputes. BA will always examine the history of transactions hist
to assess the situation and determine whether to help the server. In all other
cases it can remain offline.

Bitcoin Transactions. Our protocol uses three non-standard bitcoin transac-
tions:

1. safeGuard(y): This transaction is posted by the server S and it effectively
“freezes” A bitcoins to a hash output y. It can be redeemed by a transaction
(called retBtcs) posted by the server S which provides the preimage x of
y = H(x) or by a transaction (called fuse(t)) signed by both the client and the
server. For the needs of our protocol, fuse(t) has a locktime t. The safeGuard
transaction is the following:

Prev : aTransaction

InputsToPrev : sigS([safeGuard])

Conditions : body, σ1, σ2, x :

H(x) = y ∧ verS(body, σ1)

∨
verS(body, σ1) ∧ verC(body, σ2)

Amount : A B

Locktime : 0

We note here that transaction safeGuard(y) is based on the timed commit-
ment over Bitcoin by Andrychowicz et al. [2], with an important difference: the
committed value x (where y = H(x)) is chosen by the verifier (client) and not
by the committer (server). The server just uses y.

2. retBtcs: Once the server gets a hold of value x, it can post the following
transaction to redeem safeGuard and retrieve his A bitcoins.
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Prev : safeGuard

InputsToPrev : [retBtcs], sigS([retBtcs]), ⊥, x

Conditions : body, σ :

verS(body, σ)

Amount : A B

Locktime : 0

3. safeGuard can also be redeemed by fuse(t), as mentioned before:

Prev : safeGuard

InputsToPrev : [fuse], sigS([fuse]), sigC([fuse]), ⊥
Conditions : body, σ :

verC(body, σ)

Amount : A B

Locktime : t

Protocol Details. We now describe our protocol in detail, as depicted in Fig. 4.
Let S denote the server and C the client. For each step i = 1, . . . , 10, there is a
deadline, ti, to complete the step, where timelock t of the fuse(t) transaction is
>> t10. We recall that, as mentioned in the beginning of this section, all messages
exchanged between the client and the server are recorded on the blockchain,
creating the history hist.

– Step 1: C picks a random secret x and sends the following items to S: (i)
a hash hash = H(TB) of the IBF of the original blocks he stores; (ii) an
encryption EncP(x) of x under BA’s public key, P; (iii) a cryptographic hash
of x, y = H(x); and (iv) a zero-knowledge proof, ZKP1, that H(x) and EncP(x)
encode the same secret x. If ZKP1 does not verify or is not sent within time
t1, S aborts the protocol.

– Step 2: S posts bitcoin transaction safeGuard(y) for A bitcoins. It also sends
to the client a signature of the Fuse(t) transaction, σS = sigS([fuse]). If this
transaction is not posted within time t2 or the signature is not valid or is not
sent within time t2, C aborts the protocol.

– Step 3: S and C run the AS protocol from the previous section. S returns
proof V = {T, S,TK} and blocks b′

1, b
′
2, . . . , b

′
δ for the current blocks he stores,

in the position of the original blocks b1, b2, . . . , bδ that he lost. The client C
computes now the damage d using CheckProof. If CheckProof rejects or S
delays it past time t3, C jumps to Step 9.

– Step 4: C notifies S that the damage is d and sends a zero-knowledge
proof, ZKP2, to S for that. If C fails to do so by t4 or ZKP2 fails to
verify, S jumps to Step 6. We note here that ZKP2 is for the statement
(hash,V, b′

1, b
′
2, . . . , b

′
δ, d, chal): ∃ secret TB such that
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Fig. 4. Integration of the AS protocol with Bitcoin. The dotted lines indicate what
happens when a party is trying to cheat. The rhomboid indicates the safeGuard(y)
transaction (at the bottom of the rhomboid we show the server signature σS on the
fuse(t) transaction) that is redeemed either by retBtcs (arrow 7) or by fuse (arrow 9),
depending on the flow of the protocol.

hash = H(TB)& {bi}δ
i=1 ← CheckProof(pk,TB ,V, chal)& d =

δ∑

i=1

||bi ⊕ b′
i||.

The zero-knowledge proof ZKP2 is needed here since the recovery algorithm
takes as input the sensitive state of the client TB, which we want to hide
from the server—otherwise the server can recover the original blocks himself
and claim that there was no damage.

– Step 5: S sends d bitcoins to C. If S has not done so by time t5, C jumps
to Step 9.

– Step 6: C sends secret x to S. If S has not received x by t6, S contacts BA
and asks the BA to examine the history hist up to that moment. BA checks
hist and if it is valid, BA sends x to S.

– Step 7: If S has secret x, S posts transaction retBtcs.
– Step 8: If transaction retBtcs is valid, S receives A bitcoins before timelock t.
– Step 9: C waits until time t, computes σC = sigS([fuse]) and posts transac-

tion fuse(t) using σC and σS .
– Step 10: If transaction fuse is valid, C receives A bitcoins.

It is easy to see that when the above protocol terminates, one of the three
outcomes described in the beginning of this section is achieved. We emphasize
that BA can determine whether C properly followed the protocol by analyzing
hist. If C has not done so and S reports it, BA will reveal x to S at any point
in time. Also, we note here that for the zero-knowledge proofs ZKP1 and ZKP2,
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we can use a SNARK with zero-knowledge [25], that was recently implemented
and shown to be practical.

Global safeGuard. The protocol above protects the client at each AS challenge.
But the cloud provider could stop interacting, simply disappear, and never be
reachable by the client. Instead of the client aborting, we can use a global safe-
guard transaction at the time the client and the server initiate their business
relationship (i.e., when the client uploads the original file blocks and they both
sign the SLA). This global transaction is meant to protect the client if the server
cannot be reached at all or refuses to collaborate, but creates a scalability prob-
lem given that the server has to escrow a large amount of bitcoins for every
client/customer. We do not address this problem technically but we expect it
can be mitigated through financial mechanisms (securities, commodities, credit,
etc.) typically deployed for traditional escrow accounts.

Removing the Bitcoin Arbitrator. Even though BA is only involved in case
of disputes, it is preferable to remove it completely. Unfortunately, this seems
impossible to achieve efficiently given the limitations of the Bitcoin scripting
language. We sketch in this section two possible approaches to remove the BA.
These will be further explored in future work.

The first approach relies on a secure two-party computation protocol. In a
secure two-party computation protocol (2PC), party A inputs x and party B
inputs y and they want to compute fA(x, y) and fB(x, y) respectively, without
learning each other’s input other than what can be inferred from the output
of the two functions. Yao’s seminal result [31] showed that oblivious transfer
implies 2PC secure against honest-but-curious adversaries. This result can be
extended to generically deal with malicious adversaries through zero-knowledge
proofs or more efficiently via the cut-and-choose method [20] or LEGO and
MiniLEGO [14,24] (other efficient solutions were proposed in [18,30]).

To remove the BA, it is enough to create a symmetric version of our original
scheme where both parties create a safeGuard transaction and then exchange the
secrets of both commitments through a fair exchange protocol embedded into
a 2PC. The secrets must be verifiable in the sense that the fair exchange must
ensure the secrets open the initial commitments or fail (as in “committed 2PC”
by Jarecki and Shmatikov [18]). Unfortunately, generic techniques for 2PC results
in quite impractical schemes and this is the reason why we prefer a practical
solution with an arbiter. An efficient 2PC protocol with Bitcoin is proposed in
[22] but it does not provide fairness since the 2PC protocol can be interrupted
at any time by one of the parties. In the end, since this generic approach is too
expensive in practice, we will not elaborate on it any further in this paper.

Another promising approach to remove the BA is to adopt smart contracts.
Smart contracts are digital contracts that run through a blockchain. Ethereum [1]
is a new cryptocurrency system that provides a Turing-complete language to
write such contracts, which is expected to enable several decentralized appli-
cations without trusted entities. Smart contracts will enable our protocol to
be fully automated without any arbitrators or trusted parties in between. To
use a smart contract to run our protocol, the contract is expected to receive a
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deposit from the server, inputs from both parties, and then it will decide the
money flow accordingly based on the CheckProof result. The contract in that
case will maintain some properties to ensure fair execution, for example both
parties should be incentivized to follow the protocol, and if any party does not
follow the protocol (by aborting for example), there should be a mechanism
to end the protocol properly for the honest party. To make our protocol fit in
the smart contract model, we will need to address the fact that the CheckProof
computation would be too expensive to be performed by the contract, due to
its overhead. In Ethereum for example, the participants must pay for the cost
of running the contract, which is run by the miners.

In order to address the points above, zero knowledge SNARKs [6] could be
employed to help reduce miners’ overhead, and thus reduce the computational
cost of the verification algorithm running on the network, while preserving the
secrecy of the inputs.

7 Evaluation

We prototyped the proposed Accountable Storage (AS) scheme in Python 2.7.5.
Our implementation is open-source6 and consists of 4 K lines of source code. We
use the pycrypto library 2.6.1 [21] and an RSA modulus N of size 1024 bits. We
serialize the protocol messages using Google Protocol Buffers [16] and perform
all the modulo exponentation operations using GMPY2 [17], which is a C-coded
Python extension module that supports fast multiple precision arithmetic (the
use of GMPY2 gave us 60% speedup in exponentiations in comparison with the
regular python arithmetic library).

We divide the prototype in two major components. The first is responsible
for data pre-processing, issuing proof challenges and verifying proofs (including
recover process). The second produces proof every time it receives a challenge.
Both modules utilize the IBF data structure to produce and verify proofs. Our
prototype uses parallel computing via the Python multiprocessing module to
carry out many of the heavy, but independent, cryptographic operations simul-
taneously. We used a single-producer, many-consumers approach to divide the
available tasks in a pool of [8–12] processes-workers. The workers use message
passing to coordinate and update the results of their computations. This app-
roach significantly enhanced the performance of preprocessing as well as the
proof generation and checking phase of the protocol. Our parallel implementa-
tion provides an approximate 5x speedup over a sequential implementation.

Finally note that since it can be easily estimated, we have not evaluated
the Bitcoin part of our protocol which is dominated by the time it takes for
transactions to be part of the blockchain. Nowadays this latency is approximately
10 min.

Experimental Setup: Our experimental setup involves two nodes, one imple-
menting the server and another implementing the client functionality. The two

6 https://github.com/vlekakis/delta-AccountableStorage.

https://github.com/vlekakis/delta-AccountableStorage
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nodes communicate through a Local Area Network (LAN). The two machines
are equipped with an Intel 2.3 Ghz Core i7 processor and have 16 GB of RAM.

Our data are randomly generated filesystems. Every file-system includes dif-
ferent number of equally-sized blocks. The number of blocks ranges from 100 to
500000 and the different sizes of blocks used are 1 KB, 2 KB, 4 KB and 8 KB.
The total filesystem size varies from 100 KB to 4.1 GB. Our experiments consist
of 10 trials of challenge/proof exchanges between the client and the server for
different filesystems. Throughout the evaluation we report the average values
over these 10 trials. For some of the large filesystems consisting of 100000 and
500000 number of blocks, we have estimated the results based on the experiments
in lower filesystems due to computational power limitations.

In our experiments, we select the tolerance parameter δ, which indicates the
maximum amount of data blocks that can be lost, to be equal to log2(n). One
other possible choice of δ is to set it equal to

√
n. We select the logarithm of the

number of blocks as δ, because this provides a harder condition on how many
blocks can be lost or corrupted from the cloud server.

For the IBF construction, we have used the blocks and their generated tags.
The selected number of hash functions used for the IBF construction is k = 6.
This choice of hash functions leads to a very low probability of failure of the
recovery algorithm, which depends on the values of k and δ.

Preprocessing Overheads: We first examine the memory overhead of the pre-
processing phase, which is shown in Table 1. The first column describes the avail-
able number of blocks in a filesystem and the second represents the estimated
total size of the tags needed. The preprocessing memory overhead is proportional
to the number of blocks in a filesystem.

Figure 5 shows the CPU-time-related overheads of the preprocessing of the
protocol. These overheads are divided to tag generation and the creation of
the client state represented by the IBF TB . The tag generation time (Fig. 5a)
increases linearly with both the available number of blocks and the size of each
block. While this cost is significant for large file systems, it is an operation that
client performs only once at the setup phase. On the other hand, the cost of con-
struction of the IBF (Fig. 5b) is estimated to be negligible; the IBF construction
of our biggest filesystem is estimated to take around 42 s.

Table 1. Memory footprint of the AS scheme (KB)

n Tag size (KB) Proof size (KB)

1KB 2KB 4 KB 8 KB

102 32 353 692 1369 2722

103 236 528 1035 2048 4073

104 2644 762 1493 2593 5875

105 24895 937 1898 3526 7226

5 ∗ 105 118326 1077 2182 4054 8308
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Fig. 5. Preprocessing overheads

Fig. 6. Proof generation and proof check (including recover) time

Challenge-Proof Overheads: We now examine memory and CPU-related
overheads for the challenge-proof exchange and the recovery phase. The last
four columns of Table 1 show the proof sizes (in KB) for δ = log2(n), which
increase proportionally to the block size.

Every subgraph of Fig. 6 shows how different block sizes affect the perfor-
mance of the challenge-proof exchange for a given number of blocks. The left bar
in the figure shows the proof generation time and the right bar the proof check
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along that includes the time recover the lost blocks. We notice that larger block
sizes are estimated to increase the time-overhead of challenge-proof exchange. We
also notice that the proof check and in particular the recover process introduces
higher time overhead in comparison to proof generation for small size filesystems
(100 and 1000 number of blocks). This is expected, because the tag verification
(publicly verifiable) in the recover process (in Fig. 2) introduces significant time
overhead compared to proof generation (in Fig. 3) for a small number of blocks.
However, in higher size filesystems, we observe from Fig. 6 that the time over-
head of proof generation increases exponentially and overcomes the proof check
time (including recover process) overhead. This is also expected, because the
number of blocks (denoted by Kept set) used in the proof generation process is
much higher than the number of blocks used in the recover process.

8 Conclusions

In this paper we put forth the notion of accountability in cloud storage. Unlike
existing work such as proof-of-storage schemes and verifiable computation, we
design protocols that respond to a verification failure, enabling the client to
assess the damage that has occurred in a storage repository. We also present a
protocol that enables automatic compensation of the client, based on the amount
of damage, and is implemented over Bitcoin. Our implementation shows that our
system can be used in practice.
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agreement no. AFRL FA8750-15-2-0092. The views expressed are those of the authors
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Appendix

RSA Assumption

Definition 4. Let N = pq be an RSA modulus, where p and q are τ -bit primes.
Given N , e and g, where g is randomly chosen from Z

∗
N and e is a prime of

Θ(τ) bits, there is no PPT algorithm that can output y1/e mod N , except with
probability neg(τ).

Proof of Security of Construction in Fig. 3.

Setup. A chooses parameter δ ∈ [0, n), blocks B = {b1, b2, . . . , bn}
and is given pk and T1, . . . , Tn as output by {pk, sk, state, T1, . . . , Tn} ←
Setup(b1, . . . , bn, δ, 1τ ). The random oracle is programmed so that it returns
re
i g

−bi on input i for some random ri, i.e., h(i) = re
i g

−bi mod N .
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Forge. A is given chal ← GenChal(1τ ), computes proof of accountability V and
returns V. Suppose L ← CheckProof(pk, sk, state,V, chal). We must show that
with probability ≥ 1 − neg(τ) it is (i) L ⊆ B; and (ii) there exists a PPT
knowledge extractor E that can extract all the remaining file blocks in B − L.

1. Showing L ⊆ B. Note that all blocks in L are output by Algorithm recover
of Fig. 2. In this algorithm a block b′

i can enter L only if its tag verifies.
Suppose now b′

i /∈ B (namely b′
i �= bi) and tage/h(i) = gb′

i for some arbitrary
tag computed by the adversary. But since h(i) = re

i g
−bi , this can be written

as tage/re
i g

−bi = gb′
i which gives gb′

i−bi = (tag/ri)e. Since e is a prime and
bi − b′

i �= 0, there exist α and β such that (b′
i − bi) × α + e × β = 1, giving

g1/e = g−β(tag/ri)e×α, breaking the RSA assumption—see Definition 4.
2. Showing there exists a PPT knowledge extractor E that can extract

all the remaining file blocks in B − L. We now show how to build
an extractor that, after 	 = |B − L| interactions with the adversary, he
can extract the blocks {bi : i ∈ B − L}. The extractor will challenge
the adversary exactly 	 times, each time with different randomness. Let
S1, S2, . . . , S�, T(1), T(2), . . . , T(�) be the sums and tags he receives by A during
each challenge, as in Eq. (2). We have two cases:
(a) Sj =

∑
i∈B−L aijbi, for j ∈ B − L (aij denotes the randomness of the

j-th challenge corresponding to the i-th block). In this case, the extractor
can solve a system of 	 linear equations and retrieve the original blocks
{bi : i ∈ B − L}.

(b) Suppose there exists j ∈ B − L such that Sj �= ∑
i∈B−L aijbi = S.

For simplicity of notation, let’s set T(j) = T and Sj = S̄. Then by the
CheckProof algorithm we have

Te

∏
i∈B−L h(i)ai

= gS̄ .

But since h(i) = re
i g

−bi we have that

gS̄−S =
(

T∏
i∈B−L rai

i

)e

= Ze.

Therefore we have Ze = gS̄−S . Again, since e is prime and S �= S̄ we can
use the same trick as before, and break the RSA assumption. �
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