
An Enhanced Binary Characteristic Set
Algorithm and Its Applications to Algebraic

Cryptanalysis

Sze Ling Yeo1, Zhen Li1(B), Khoongming Khoo2, and Yu Bin Low2

1 Infocomm Security Department, Institute for Infocomm Research,
1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore

slyeo@i2r.a-star.edu.sg, lizh0019@gmail.com
2 DSO National Laboratories, 20 Science Park Drive, Singapore 118230, Singapore

{kkhoongm,lyubin}@dso.org.sg

Abstract. Efficient methods to solve boolean polynomial systems
underly the effectiveness of algebraic attacks on cryptographic ciphers
and the security of multi-variate cryptosystems. Amongst various poly-
nomial solving algorithms, the binary characteristic set algorithm was
recently proposed to solve boolean polynomial systems including those
arising from ciphers. In this paper, we propose some novel techniques
to enhance the existing characteristic set solver. Specifically, we incor-
porate the ElimLin procedure and apply basic statistical learning tech-
niques to improve the performance of the characteristic set algorithm.
Our experiments show that our enhanced solver EBCSA performs bet-
ter than existing algebraic methods on some ciphers, including CANFIL
and PRESENT ciphers. We also perform the first algebraic cryptanalysis
on the PRINCE cipher and an algebraic attack on Toyocrypt in a more
practical/realistic setting as compared to previous attacks.

Keywords: Characteristic set algorithm · Algebraic cryptanalysis ·
ElimLin · Statistical learning

1 Introduction

1.1 Background

In the search for possible cryptographic algorithms in the post-quantum era,
multi-variate cryptography has emerged as one of the potential candidates. This
branch of cryptography comprises schemes based on the difficulty to solve multi-
variate polynomials over finite fields. While solving generic multi-variate poly-
nomial systems is known to be NP-hard, a number of polynomial systems aris-
ing from cryptographic constructions have been efficiently solved. A well-known
example is the polynomial system from the HFE cryptosystem [1]. As such, it
is important to have a better understanding of the existing methods to solve
multi-variate polynomial systems constructed from cryptosystems.

c© Springer International Publishing AG 2017
D. Gollmann et al. (Eds.): ACNS 2017, LNCS 10355, pp. 518–536, 2017.
DOI: 10.1007/978-3-319-61204-1 26



An Enhanced Binary Characteristic Set Algorithm and Its Applications 519

Various methods to solve multivariate polynomial systems exist. The most
common approach to solve generic polynomial systems over finite fields is
Gröbner basis algorithms [2–4]. Typically, a Gröbner basis with respect to the
degree reverse lexicographical ordering is first computed via algorithms F4 or F5

[3,4]. It is then converted to a Gröbner basis with respect to the lexicographical
ordering by algorithms such as the FGLM algorithm [5] which contains equa-
tions where variables are eliminated. This enables the variables to be solved one
at a time. See [6] for more details.

Another approach to solve multivariate polynomial systems is the XL algo-
rithm and its variants [7–10]. This class of algorithms performs well when the
system under consideration is overdetermined, that is, the number of equations
far exceeds the number of variables. Briefly, this method works by considering
multiples of the generating polynomials bounded by some degree for which the
number of independent equations exceeds the number of monomials. Common
linear algebra techniques can then be applied to solve this resulting system.

In both the Gröbner basis and XL type approaches, new polynomials are
gradually added with degrees larger than the degree of the generating poly-
nomials. This often causes the number of monomials to increase very rapidly,
thereby resulting in excessive memory requirements. The ElimLin algorithm was
first proposed by Courtois to attack DES [11,12]. Essentially, the ElimLin algo-
rithm seeks to successively find linear equations in the vector space generated
by the original equations and subsequently, eliminating variables using these
linear equations. Observe that his process constructs new polynomial systems
with fewer variables without an increase in the degree. In fact, the “ElimLin”
subroutine is incorporated into most Gröbner basis implementations.

All the above methods have been exploited in algebraic cryptanalysis of
ciphers to solve for the unknown key variables in the polynomial system rep-
resenting the ciphers. In general, block ciphers are less vulnerable to algebraic
cryptanalysis as the polynomials usually have very high degrees or involve a
large number of variables. Nonetheless, some block ciphers had been broken by
algebraic attacks, including Keeloq [13]. As another example, ElimLin was used
in [14] to solve 5 rounds of Present with half of the keybits fixed and 5 known
plaintext/ciphertext pairs.

1.2 The Characteristic Set Algorithm

The characteristic set algorithm (or CSA for short) had been well-established
to analyze algebraic properties of polynomial systems over algebraically-closed
fields of characteristic 0, see [15,16]. In [17,18], the authors adapted this app-
roach to solve polynomial systems over any finite field. Specifically, CSA seeks
to decompose a polynomial system into monic triangular sets of polynomials
with disjoint solution sets. Thus, the problem now boils down to solving a monic
triangular set of polynomials which can be easily accomplished. In the case of a
binary field, they further refined the decomposition algorithm so that the degrees
of newly generated polynomials do not increase. The authors of [17] provided
some experimental evidence which demonstrated that CSA seems to be more



520 S.L. Yeo et al.

effective on sparse polynomial systems, particularly those exhibiting a block tri-
angular structure. Examples of such systems include polynomials arising from
linear feedback shift registers with nonlinear combining functions used in stream
ciphers.

1.3 Our Contributions

In this paper, we propose some novel techniques to further enhance the binary
CSA. The main features can be summarized as follows:

– we incorporate ElimLin into the binary CSA.
– we apply some statistical learning techniques to choose the next “splitting

polynomial”.
– we also adaptively choose the next polynomial set to process.
– we propose a preprocessing phase where the variables can be sorted.
– we allow for some flexibility in choosing the combination of features suitable

for each polynomial system.

We call our enhanced version the enhanced binary characteristic set algorithm
(EBCSA for short). In this paper, we present our experimental results on the
block ciphers Present and Prince, as well as the stream ciphers Canfil and Toy-
ocrypt. First, we benchmark EBCSA against prior versions of the characteris-
tic set algorithms on Canfil ciphers. For Present cipher, we show that EBCSA
outperforms previous algebraic methods as 5 rounds can be solved with fewer
fixed keybits and known plaintext/ciphertext pairs. Moreover, we provide the
first algebraic attack on 6 rounds of Present. As for the block cipher Prince,
we carried out the first algebraic attack and our results showed that EBCSA is
more effective than brute force search for 6 rounds of Prince-core (i.e. without
whitening). Finally, we show that the stream cipher Toyocrypt can be solved by
EBCSA in a more realistic setting compared to previous attacks, namely, using
re-synchronization with sufficient random IV’s for a small number of keystream
bits.

1.4 Organization of This Paper

This paper is organized as follows. In Sect. 2, we set out the notations and
terminologies. We then provide a general description of the binary characteristic
set algorithm [17] and its variant [18]. In Sect. 3, we describe our new techniques
and present our enhanced binary characteristic set algorithm. Our experimental
results are then provided in Sect. 4. Finally, we wrap up with some concluding
remarks and suggestions for future research.

2 A Description of the Characteristic Set Algorithm

2.1 Notations and the Set-Up

Let F = F2 denote the binary field. For a positive integer n, let R =
F [x0, x1, . . . , xn−1] be the multivariate polynomial ring in n variables. Since



An Enhanced Binary Characteristic Set Algorithm and Its Applications 521

x2 = x for all x ∈ F , we are interested in the quotient ring R = R/{x2
i + xi :

i = 0, 1, . . . , n − 1}. In particular, every polynomial in R is equivalent to a rep-
resentative p ∈ R such that the degree of each variable in p is at most 1. In the
following, we will represent all the polynomials in this form.

Definition 1. Fix σ to be a permutation on {0, 1, . . . , n − 1}. Let P be a poly-
nomial in R. We define the class of P with respect to σ to be the smallest i such
that xσ(i) occurs in P . We denote the class of P by clsσ(P ). If σ is clear in the
context, we will simply denote it by cls(P ).

Remark 1. – For a constant polynomial P = 0 or 1, we define cls(P ) = −∞.
– Let σ be the identity permutation, that is, σ(i) = i for i = 0, 1, . . . , n − 1.

Then clsσ(P ) is the smallest i such that xi occurs in P . On the other hand,
suppose that σ(i) = n−1−i for i = 0, 1, . . . , n−1. Then clsσ(P ) is the largest
i such that xi occurs in P . This coincides with the definition in [17].

For a polynomial P ∈ R, let c be its class with respect to a permutation σ.
Then P can be expressed as P = Ixσ(c) +U , where xσ(c) does not occur in both
I and U . We term I and U as the left child and right child of P , respectively. By
the definition of c, it follows that both clsσ(I) and clsσ(U) are strictly greater
than c. Note that a monic polynomial is one in which I = 1.

Definition 2. Let A be a finite set of polynomials in R. A is called triangular
if the classes of the polynomials in A are all distinct. Moreover, A is monic
triangular if every polynomial in A is monic.

The Main Problem: Let P be a finite set of boolean polynomials from R. We
wish to find the zero set of P, that is, to find Z(P) = {(x0, x1, . . . , xn−1) ∈ Fn :
P (x0, x1, . . . , xn−1) = 0 for all P ∈ P}.

2.2 The Basic Structure of Binary CSA

In this section, we describe the main principles underlying binary CSA to help
solve the main problem stated above. Our description is more generic than that
in [17] in the sense that we allow for a variable ordering on the variables. Note
that we will focus on the multiplication-free CSA or MFCS presented in [17]
as it was already shown to result in the best performance for the binary case.
As such, CSA will refer to MFCS from now on. Throughout this section, we
fix a permutation σ and simply write cls(P ) for the class of P . Essentially, the
approach of binary CSA is a result of the following lemma.

Lemma 1. Let P be a polynomial of R with class c and write P = Ixσ(c) + U .
Then Z({P}) can be split into Z({P}) = Z(P1) ∪ Z(P2) such that: (1) Z(P1)
and Z(P2) are disjoint; (2) One of P1 or P2 contains a monic polynomial with
class c.

Proof. As we are in the binary setting, the left child of P , namely I, can only
take values 0 or 1 and Z({I}) and Z({I + 1}) are disjoint. When I = 0, we



522 S.L. Yeo et al.

have U = P + Ixσ(c) = 0. On the other hand, if I = 1, we have xσ(c) + U =
Ixσ(c) + U = P = 0. Let P1 = {I, U} and P2 = {I + 1, xσ(c) + U}. The lemma
now follows.

Suppose that A is a monic triangular set of polynomials. Clearly, A cannot
contain more than n polynomials. Suppose that 0 ≤ c1 < c2 < . . . < ct ≤
n − 1 are the classes of the polynomials in A. Then, A contains the polynomials
Pi = xσ(ci) + Ui, i = 1, 2, · · · , t, where U1, U2, . . . , Ut represents the right child
of P1, . . . , Pt, respectively. Observe that since c1 < c2 < . . . < ct, Ut does not
contain the variables xσ(c1), . . . , xσ(ct). It follows that as long as the variables
of Ut are fixed to some values, xσ(ct) is determined. Similarly, Ut−1 does not
contain the variables xσ(c1), . . . xσ(ct−1) which allows one to compute xσ(ct−1). In
this way, we can determine the zeroes of A by letting xi, i �∈ {σ(c1), . . . , σ(ct)}
take values 0 or 1 and computing the corresponding values of xσ(c1), . . . , xσ(ct)

from the polynomials in A.
In view of the above, the main goal of binary CSA is to decompose Z(P)

into disjoint sets based on Lemma 1. Specifically, we have the following theorem:

Theorem 1. [17, Theorems 4.1, 4.2] Let P be a finite set of boolean polynomials
of R. The binary CSA decomposes Z(P), in a finite number of steps, into a
disjoint union of zero sets, namely,

Z(P) =
s⋃

j=1

Z(Aj),

where A1, . . . ,As are all monic triangular sets of boolean polynomials.

The main structure of CSA is described in Algorithm 1 in the Appendix. In
order to achieve the goal of Theorem 1, the main function of binary CSA is the
triset algorithm which takes in as input a finite set of boolean polynomials and
outputs a monic triangular set A (possibly empty) as well as a set P∗ of sets of
boolean polynomials.

Remark 2. Beginning with the set P, the whole CSA can be thought of as build-
ing a binary tree of sets (P∗) by adding Q∗ as a branch to the corresponding
input set to the triset function. The process stops when all the sets in the tree
are processed and the result is a set A∗ of monic triangular sets. Since the poly-
nomial splits by letting I = 0 or 1, the binary CSA is essentially a generalization
of brute force search where we split by letting the variables take 0 or 1.

Remark 3. Notice that we iteratively split polynomials to obtain sets with dis-
joint solutions. In this basic version of the triset function, we work on polynomials
according to their class, namely, we pick the polynomial with the smallest class.
In addition, the next input set to be fed into the triset function is generally taken
to be the last generated set in P∗.



An Enhanced Binary Characteristic Set Algorithm and Its Applications 523

2.3 BCSA

In [18], the authors proposed some additional features to improve the efficiency
of the binary CSA in [17]. We call it BCSA and briefly describe the techniques
here.

Linearization. The authors claimed that this technique was already imple-
mented in the experiments of [17] but it was not explicitly mentioned. This
technique applies to the triset function. Suppose that at a certain step, the poly-
nomial xσ(c) + L is generated, where deg(L) ≤ 1. Then we substitute xσ(c) with
L in the remaining polynomials and add xσ(c) +L to A. Observe that this forms
part of the ElimLin process (only the substitution part).

The Choose Function. As discussed in Remark 2, we continue to pick poly-
nomials to split until a monic triangular set is obtained or an inconsistency
is reached. In the triset function of CSA, we simply pick the next polynomial
to be one with the smallest class in the set. To improve efficiency, it was sug-
gested in [18] to sort the polynomials according to some complexity metric and
to choose the “simplest” polynomial among the remaining polynomials to split.
The rationale is to seek for more linear polynomials which will help to sim-
plify other polynomials by linearization described above. The complexity met-
ric proposed in BCSA orders the polynomials as follows: A polynomial P is
simpler than a polynomial P ′ if (deg(P ),#I(P ),#U(P ), n − 1 − clsσ(P )) <
(deg(P ′),#I(P ′),#U(P ′), n − 1 − clsσ(P ′)) in a lexicographical manner, where
I(P ) (resp. U(P )) and I(P ′) (resp. U(P ′)) represent the left child (resp. right
child) of P and P ′ respectively. Note that the description of the choose function
in [18] with respect to the class of the polynomials is in a reverse order due to
the difference in the definition of the class of a polynomial.

The Threshold Value. By Lemma (1), whenever we split a polynomial, we
obtain a monic polynomial with the same class. In the triset function of CSA,
we first split all the polynomials of the same class c to obtain all the monic
polynomials with class c. We choose one of the monic polynomials P0 to be in
A and then add P0 to all the monic polynomials to eliminate the class c from
the remaining polynomials (the adding step).

Since BCSA splits polynomials in order of their complexity instead of their
classes, it is not efficient to first obtain all the monic polynomials before adding
them. As such, the authors of [18] introduced a threshold value t such that
whenever t monic polynomials of the same class are obtained, the adding process
will be executed to eliminate the class from t − 1 of these polynomials.

3 The Enhanced Binary CSA

In this paper, we propose additional techniques to enhance BCSA. Our version
will be called EBCSA. Like BCSA, we keep the core of the structure, namely,
EBCSA comprises the EBCSA-triset function and the main EBCS function, as
shown in Fig. 1, where the new features introduced in EBCSA are marked in
bold. Its basic structure is described in Algorithm2 in the appendix. In the
subsequent sections, we will describe the main features of EBCSA.



524 S.L. Yeo et al.

p0

p1

...

pk1

p0

p1

...

pk2

...

p0

p1

...

pkm

P* : All Polynomial Sets

EBCSA-TriSet

Splitting

ElimLin

updated Polynomial Set

Append Add to new Polynomial Set

by set selection

new Polynomial set

P1 P2 Pm

Sorting by
Complexity

ElimLin

Polynomial Set P

ElimLin

monic?

No

Yes
Solution

p0

p1

...

pkm+1

EBCS

Fig. 1. Principles of the enhanced binary characteristic set algorithm

3.1 The ElimLin Technique

The first main feature of EBCSA is to integrate ElimLin into EBCSA-triset
[11,12]. Specifically, whenever a new polynomial is generated in P, we perform
the following as long as the generated set contains a linear polynomial. First,
order the monomials in decreasing order of degrees (for example, the Grevlex
ordering). With respect to this monomial ordering, represent each polynomial
as a vector of coefficients. Next, perform Gaussian elimination on the matrix of
these vectors. If 1 is obtained, one can terminate EBCSA-triset with A = ∅ and
P∗. Otherwise, obtain all the linear polynomials xi + Li and substitute xi with
Li in the remaining polynomials of P for all such i’s.

A key merit of this process is that it allows us to detect all the linear polyno-
mials in the vector space spanned by the polynomials [12], thereby simplifying
the remaining polynomials more quickly. At the same time, it detects an incon-
sistent set more rapidly. However, the main drawback is that it generally requires
more memory to construct the matrix and may not be feasible when our poly-
nomial set contains too many polynomials.

3.2 An Improved Complexity Metric

In BCSA, a complexity metric was introduced in order to sort the polynomials.
With respect to this metric, the next simplest polynomial will be picked to
perform the splitting. Their metric compares the degree of the polynomials, the



An Enhanced Binary Characteristic Set Algorithm and Its Applications 525

number of terms in the left child and the right child of the polynomials as well
as the classes of the polynomials in a linear manner. We propose a better metric
based on the Sigmoid function.

For a child p of a polynomial P, we define its complexity as

complex (x1, x2) = x1 + Sigmoid (x2,K) = x1 +
1 − e

x2
K

1 + e
x2
K

(1)

where x1 = deg (p) determines the overall complexity and x2 = #(p) counts the
number of terms in p and it is normalized by the Sigmoid function to the interval
(0, 1). Here K = −100 is a scaling parameter which is optimized experimentally.
Then the complexity of the polynomial P = I · xσ(c) + U is defined as

Complex(P) = Complex(I) + α (P) ·Complex(U) (2)

and

α (P) = ca·deg(P)−b = 103·deg(P)−8 (3)

where Complex(p) = complex(deg (p) ,#(p)), and a, b and c are set to be 3,
8 and 10, respectively. p is taken as either I or U. Note that as the degree of
the polynomial system increases, the complexity of the child U tends to be more
emphasized. Thus the coefficient α (P) is defined as an exponential function of
the degree. For instance, when deg (P) is 2, 3 and 4, the weighting coefficient
α (P) is 0.01, 10 and 10000, respectively.

In our model, the Sigmoid function is chosen as a candidate because it has
good properties, namely, it is a bounded differentiable real-valued function in
(0, 1) that is defined for all real input values and has a positive derivative at
each value. The standard Sigmoid model is Sigmoid (x) = 1

1+e
x−x0

K

, and we are

using a modified version Sigmoid (x) = 1−e
x
K

1+e
x
K

. The complexity model in Eq. 2 is

a combination of linear model and the modified Sigmoid model, and it preserves
the good properties of the standard model. Similar logistic functions have been
effectively used in population growth modelling, artificial neural networks and
distance measure.

To select the best model mentioned above, we have tried many possible para-
meters for each model. Preliminary experimental results show that the modified

Sigmoid model Sigmoid (x) = 1−e
x
K

1+e
x
K

exhibits the best overall performance on

our training sets. The training sets include 120 randomly selected polynomial
sets from more than 300 available polynomial sets generated from many differ-
ent ciphers with degrees ranging from 2 to 4, and the rest of the sets are the
testing sets. To determine the optimal parameters of each model, a 10-fold cross-
validation [19] is applied. Hence, the parameters are dependent on the specific
cipher as well as the selected features (degree and number of terms).

In order to reduce the computational cost when selecting the optimal parame-
ters, the parameters are confined to a limited range by preliminary observations.



526 S.L. Yeo et al.

Then the parameter setting (K, a, b, c) in Eqs. 1, 2 and 3 is determined by the
cross-validation procedure as follows: we split the training sets into 10 equal
sized parts; using 9 parts we fit the parameters, that is, record the parameter
setting that produces the best performance; calculate its performance on the
remaining 1 part as the validation set. We repeat these steps by using every part
as the validation set. We repeat the whole procedure 3 times. Finally we get an
average of the 3 solving times which corresponds to each parameter setting. We
choose the setting which corresponds to the minimum solving time. For each of
the models mentioned above, we repeat this procedure. As a result, the optimal
parameter setting is determined as (K, a, b, c) = (−100, 3, 8, 10). The parameters
are not very sensitive, that is, when they are modified by around 10%, the solv-
ing time remains within a 10% change. This parameter setting is not guaranteed
to be effective for all individual polynomial sets, but is optimal in the sense of
overall performance.

By contrast, the choose function in BCSA uses a layered linear model with
respect to the essential parameters. This model suffers from the following draw-
backs. (1) There are no parameters to control, limiting the possibility to optimize
the performance; (2) The “layered” comparison sometimes cannot get reasonable
results, e.g. a polynomial with a higher degree but very few terms is not necessar-
ily more complex than a polynomial with a lower degree but the number of terms
is huge. As such, the proposed EBCSA complexity model has more flexibility to
produce better performance by optimization over a number of polynomial sets.
Indeed, we have carried out extensive experiments using different functions and
the above function works well in general. We present our experimental results
for solving Canfil functions as comparison between using the modified Sigmoid
function and the choose function of BCSA in Subsect. 4.1.

3.3 The Set Metric

We introduce a set metric on the sets in the binary tree P∗ to help us find a
set with a solution more quickly. Hence, this feature is particularly useful if the
system admits a known number of solutions, as well as the case where only a
fixed number of solutions is required.

Observe that polynomial sets in the same branch may contain many identical
polynomials. Roughly speaking, once many sets in a certain branch terminate
without a solution, we like to choose sets from a different branch to increase
the chances of a solution. In other words, we will look for a set which is most
dissimilar to the previous terminated sets.

For the purpose of practical implementations, we propose the following sta-
tistical feature for a set P of polynomials: SP = (m1, s1,m2, s2), where m1,m2

(respectively s1, s2) represent the mean (respectively the standard deviation) of
the degrees and number of terms of the polynomials in P respectively. Suppose
that P1,P2, . . . ,Pl are inconsistent, that is, terminate without any solution. Let
a(P1, . . . ,Pl) = sP1+...+sPl

l , the average of the statistical features of the termi-
nated sets. Then we choose a set P such that the Euclidean distance between
sP and a(P1, . . . ,Pl) is the largest on the fly.



An Enhanced Binary Characteristic Set Algorithm and Its Applications 527

3.4 Sorting the Variables

In our description of binary CSA, we have introduced the permutation σ to allow
for the variables to be rearranged. In general, CSA tends to be more efficient if
σ is chosen so that the variables xσ(0), . . . , xσ(xn−1) occur in an increasing order
of frequency in the polynomial system. The underlying reasons are as follows:
recall that when performing linearization, we substitute a variable xi with a
linear polynomial Li. While this reduces the number of variables, it may result
in the polynomial system becoming more complex, particularly when L contains
many terms. Hence, it is more advisable to substitute those xi which do not occur
too frequently. In terms of implementation, we simply rename the variables so
that x0, x1, . . . , xn−1 occur in an ascending order of frequency in the polynomial
system.

3.5 Combining the Various Features

We observe from our experiments that not all polynomial systems behave equally
well with the same set of features. According to experimental results, some sets
may be more efficient with linearization alone while others perform much better
with the ElimLin technique. In addition, the set selection may not be necessary
if the system has many solutions and we seek to find all of them. In view of
the above, EBCSA allows for different combinations of features to yield the best
performance. In our current implementation of EBCSA, the following choices
are provided: (1) Linearization or ElimLin; (2) Set selection based on statistical
feature or set index; and (3) Terminate with one solution or all solutions.

Remark 4. Observe that unlike BCSA, we do not need a threshold value here as
whenever we obtain two monic polynomials with the same class, we add them
and choose the simpler polynomial according to our complexity metric to be in
the set A. In addition, in case the ElimLin option is turned on, polynomials with
the same leading term will automatically be added.

4 Experimental Results

We tested EBCSA with many different polynomial systems, specifically those
from block and stream ciphers. Our experiments show significant improvements
over existing algebraic methods. In this paper, we present three such exper-
iments, namely, the block ciphers Present and Prince as well as the stream
cipher Toyocrypt. Experiments on Canfil ciphers were also carried out to com-
pare the efficiency of EBCSA against CSA and BCSA. Since our goal is to find
the unknown key which is likely unique, we use the following configurations of
EBCSA for all the experiments: Linearization/ElimLin, set selection, and termi-
nation when one solution is obtained.

The platform for testing is a personal computer (Ubuntu 14.04, Intel Xeon
CPU E5640 2.67 GHz, 24 GB RAM). Only single-core CPU is used. In the follow-
ing, we further classify EBCSA into EBCSA and EBCSA-GE (short for EBCSA
with Gaussian Elimination), where the former refers to EBCSA with lineariza-
tion and the latter representing EBCSA with the ElimLin feature switched on.



528 S.L. Yeo et al.

4.1 Experiments on Our Complexity and Set Metrics

In order to benchmark EBCSA against BCSA and CSA, we performed experi-
ments on the Canfil functions similar to those carried out in [17,18]. The Canfil
polynomial sets are boolean polynomial systems arising from linear feedback
functions with nonlinear Canfil functions. In [17, Table 4], comparisons were
made between CSA and the Gröbner basis algorithm for 8 such functions and
the results showed that CSA outperformed the Gröbner basis method for these
polynomial sets. In [18, Table 2], the authors recorded the number of splits (or
branches) resulting from both CSA and BCSA for these same functions and
concluded that BCSA was more effective on these sets.

In this paper, we carry out the same experiments using EBCSA and the
number of splits (number of new non-terminating sets produced) for each of the
8 Canfil functions is recorded in Table 1. In addition, the timing on the Canfil
functions using the approach of EBCSA with set selection is also listed.

Table 1. Comparison between EBCSA and BCSA in terms of the number of splits

#Splits\system Canfil1 Canfil2 Canfil3 Canfil4 Canfil5 Canfil6 Canfil7 Canfil8

CSA 13719 23881 7251 1657 1086 3331 1551 180710

BCSA 11958 16074 3267 1316 574 671 1852 35547

EBCSA w.o set
selection

5218 24616 5402 782 408 400 3970 90040

EBCSA w. set
selection

5772 17299 3865 343 100 209 1046 35565

EBCSA time (s) 82.9 629.5 669.7 8.8 56.4 41.7 57.5 501.3

Observe that EBCSA performs better than BCSA in 5 out of the 8 Can-
fil experiments with significant improvements for Canfil1, Canfil4, Canfil5 and
Canfil6. For Canfil7, CSA outperforms BCSA but is less effective than EBCSA
(with set selection). Note that we have used a random key in our experiments
and it was not stated if a random or a specific key was used in the experiments
in [17,18].

The improvements of EBCSA suggest that our choice of a combined con-
tinuous Sigmoid function for polynomial complexity is more effective than the
layered linear model used in BCSA. In addition, the use of set selection results
in finding the unique solution more efficiently.

4.2 Experiments on Present Cipher

Present is a 31-round lightweight block cipher designed by Bogdanov et al.
announced in CHES 2007 [20]. It has a block length of 64-bits and key lengths
of either 80-bits or 128-bits. It is based on a permutation-substitution network
with 16 4-bit S-boxes in each round. In [14], algebraic cryptanalysis was applied



An Enhanced Binary Characteristic Set Algorithm and Its Applications 529

to Present with the 80-bit master key. This involves representing the interme-
diate text by variables and each S-box by 21 quadratic equations. The authors
claimed that with 5 known plaintext/ciphertext (KP) pairs, 40 key bits can be
recovered by the method of ElimLin.

In the report of [21], results on algebraic attacks on Present with ElimLin
and the Polybori Gröbner basis implementation were presented. Even though
ElimLin was implemented as a sub-routine in Polybori implementation, it was
demonstrated that the stand-alone ElimLin implementation was more effective
to solve Present. In addition, it was reported that 6 rounds of Present remained
resistant to algebraic cryptanalysis using either ElimLin or Polybori.

As EBCSA-GE incorporates ElimLin into EBCSA, we perform experiments
on round-reduced Present with EBCSA-GE. Once again, we consider the implicit
representation of each s-box with 21 quadratic equations. Note that we place all
the text variables as the front variables while the 80 key variables are placed
behind. We perform our experiments with either 1 or 2 KP. We considered r
rounds of Present for r = 5 and r = 6. For experiments with one KP, we
did some pre-processing on the polynomial systems before running them on
EBCSA-GE. Specifically, we rename the variables so that the text variables
and the key variables are sorted in an ascending order of frequency. In each of
the experiments, we fix xn−c−1, xn−c, . . . , xn−1, (that is, c most frequent key
variables) and record the time taken as well as the number of splits as c varies.

Table 2. 5-round and 6-round present with 1 KP on EBCSA-GE

r #FixedBits 64 60 56 54 52 50 48 44 40 38 36 34

5 Time (s) <1 <1 <1 <1 <1 3.89 5.46 58.6 237.3 161.8 2148.7 >4 h

5 #Splits 0 0 0 0 0 3 16 174 710 556 6200 –

6 Time (s) 7.1 81.0 378.9 1979.2 1489.0 >4 h >4 h >4 h >4 h >4 h >4 h >4 h

6 #Splits 24 216 1234 6163 2172 – – – – – – –

Table 3. 5-round present with 2 KP on EBCSA-GE

#FixedBits 40 36 34 32 30 28 26

Time (s) 9.5 300.1 282.9 1562.9 888.4 2120.8 >4 h

#Splits 6 191 172 974 563 1362 –

One sees that EBCSA-GE outperforms both ElimLin and the Polybori imple-
mentation of [21] in the following sense. From Table 4 with 40 keybits fixed,
EBCSA-GE requires only 1 KP to solve in 4 min, which is of comparable mag-
nitude to the timings of ElimLin and Polybori based on 5 KP’s. With just 2
KP’s, EBCSA-GE already outperforms ElimLin and Polybori, with a solving
time of 9.5s. Next with 36 keybits fixed, EBCSA-GE can solve the system in a
few minutes based on just 2 KP’s while ElimLin and Polybori both take longer
to solve (3 to 4 h) and need more plaintexts (16 KP’s). From Table 3 with 2



530 S.L. Yeo et al.

Table 4. A comparison of algebraic attacks on 5-round present

Polybori [22] Elimlin [22] EBCSA-GE

#FixedBits 40 36 40 36 40 40 36 36

#KP 5 16 5 16 1 2 1 2

Time (s) 241.2 >4 h 154.8 12.2 237.3 9.5 2148.7 300.1

KP, EBCSA-GE can solve up to 52 keybits (28 fixed keybits) for 5 rounds of
Present, which is more keybits than what ElimLin and Polybori can solve from
[21]. Finally from Table 2, EBCSA-GE can solve 6 rounds of Present with 1 KP
and 52 fixed keybits, while the ElimLin and Polybori experiments from [21] are
only conducted up to 5 rounds.

Recall that ElimLin essentially seeks to find linear polynomials in the space
spanned by the polynomials and then eliminating their leading variables from the
remaining polynomials via substitution. This method can only be successful if
there are sufficient linear polynomials in the spanning set. This implies that more
polynomials involving the key variables in the original set increases the chance
of finding enough linear polynomials and hence, leading to a greater number of
KPs as observed. In case there are insufficient linear polynomials, Gröbner basis
may not be effective as an increase in the degree of the polynomials with a large
number of variables will explode the memory. On the other hand, EBCSA-GE
executes the splitting process without a rapid increase in memory and continues
to find linear polynomials via ElimLin. By alternating between splitting and
ElimLin processes, one sees that EBCSA-GE is more effective for Present cipher.

4.3 Experiments on Prince Cipher

Prince is another lightweight block cipher published in Asiacrypt 2012 [22]. It is
a 12-round block cipher with a 64-bit block length and a 128-bit key length. It is
optimized with respect to latency for hardware implementations. Its construction
satisfies the reflection property and is symmetric about the middle layer. The
cryptanalysis of Prince has gained much attention, especially after a challenge
was posed by Ruhr-Universität Bochum [23] to find a practical attack for round-
reduced Prince. To date, it was shown that round-reduced Prince is vulnerable
to various attacks including Differential and Integral cryptanalysis as well as
time-memory trade-off and meet-in-the-middle attacks [24–28]. To the best of
our knowledge, no algebraic attack has been published on Prince.

We carry out the first algebraic attack on Prince. Specifically, we consider
Prince-core, that is, without whitening. Hence, only the key K1 is used. As in
all block ciphers, we consider the implicit representation of the s-boxes, thereby
resulting in 21 quadratic equations for each s-box. In addition, we introduce 64
intermediate variables for each round. Since whitening is not used, the variables
for the first round and the last two rounds can be omitted.



An Enhanced Binary Characteristic Set Algorithm and Its Applications 531

Now, consider the 6-round Prince-core. This system has 384 variables (320
text variables and 64 key variables) and 2016 quadratic equations. We place
the key variables behind (x320, . . . , x383). We generate 2 different systems using
different random keys. For each key, we fix some key bits and run the system
with our EBCSA solver. First, Table 5 records the results for Prince with both
EBCSA and EBCSA-GE.

Table 5. 6-round Prince-core: EBCSA vs EBCSA-GE

#Fixed bits 64 56 52 48 40

#Splits of EBCSA 53 533 11415 53147 –

EBCSA time (s) 4.3 54 1400 5900 >4 h

EBCSA-GE time (s) 2 266 784 >4 h >4 h

Observe that when more bits are fixed, both EBCSA and EBCSA-GE should
be executed in parallel to find the key as it is not certain which of the two versions
will be more efficient. However, when fewer bits are fixed, EBCSA-GE tends
to require much more memory to generate the large matrices, thereby slowing
down the process significantly. In the following tables, we show the results of
EBCSA for two random keys by varying the number of fixed keybits. By fitting
the results with a suitable graph, we extrapolate the results to estimate the
complexity without fixing any key bits. We conclude that the number of splits
of Prince-core is generally better than the brute force f = 2x, where x denotes
the number of unknown keybits, as shown in Fig. 2. The results are also listed in
Table 6, where the complexity of EBCSA is expected to provide an improvement
of more than half the key size over the brute force search. We remark that this
approach can be applied to test the complexity of other block ciphers as well.

Fig. 2. Splits of Prince-core. (a) f = 324.19 × 20.494x (b) f = 3287.44 × 20.337x



532 S.L. Yeo et al.

Table 6. Splits of Prince-core (a) f = 324.19 × 20.494x (b) f = 3287.44 × 20.337x

#Fixed bits 64 62 60 58 56 54 52 50 48 46

(a)

#Splits 45 105 167 301 1908 6415 17101 46994 74887 –

Linearization 3.51 6.89 11.66 21.44 138.27 471.83 1393.60 4010.22 5699.43 >4 h

(b)

#Splits 49 106 121 433 888 8012 11893 173878 133736 207162

Linearization 3.52 6.51 8.03 29.97 67.09 599.15 956.47 12309.5 10288.5 15156.6

The comparison with the existing attack on 6-round Prince core from [24] is
provided in Table 7. It is obvious that the proposed EBCSA algorithm is more
practical in terms of required number of chosen plaintext.

Table 7. Comparison of existing attacks on 6-round Prince-core

Source Data Time D × T Memory Attacks

FSE13 [24] 216 230 246 216 Integral

Proposed EBCSA 1 T × K ≈ 260 260 215 First algebraic attack
by EBCSA

Remark 5. Data: number of chosen plaintext; Time: equivalent Prince opera-
tions; complexity of attacks on Prince is measured by D × T < 2128; Memory:
Number of Prince 64-bit WORDs.

4.4 Experiments on the Stream Cipher Toyocrypt

The Toyocrypt [29] is a stream cipher comprising a 128-bit Galois linear feedback
shift register (GLFSR) passing through a nonlinear function f of degree 63.
Obviously, a naive application of algebraic cryptanalysis will not work due to
the high degree of f . In [30], the authors discovered that in fact, (x23 + 1)f
and (x42 + 1)f are cubic polynomials. Further, in [31], the authors showed that
with re-synchronization and 4 IV’s, the degrees of the equations can be further
reduced to 1. Note that in this case, the 4 IV’s must span a 2-D vector space.

Several algebraic attacks on Toyocrypt have been proposed. Table 8 summa-
rizes the assumptions and requirements needed to carry out existing algebraic
attacks on Toyocrypt.

The attack of [30] requires 218 keystream bits for one session, while the attack
of [31] requires 128 keystream bits from 4 chosen IV resynchronizations. These
attack scenarios may not be easy to achieve in practice. Here we consider a more
realistic scenario where only a few keystream bits can be deduced from some
known information about the plaintext. Besides, we allow the IV in different
sessions to be selected randomly. Finally, we apply our attack to Toyocrypt with
GLFSR as in the original specifications of the cipher unlike previous attacks
which only considered Toyocrypt with LFSR as a good approximation.



An Enhanced Binary Characteristic Set Algorithm and Its Applications 533

Table 8. Comparison of assumptions on algebraic attacks on Toyocrypt

Source Resynchronization
needed?

No. of keystream-bits Remarks on
IV

EUROCRYPT 2003 [30],
CRYPTO 2004 [32]

No 218 1 session with
random IV

SAC 2004 [33] Yes 213 Chosen IVs

CANS 2009 [31] Yes 128 Chosen IVs

Proposed EBCSA Yes ≤6 Random IVs

To be more precise, we fix a GLFSR with feedback taps 0, 1, 2, 7, 128. For any
2 IV’s,it follows from [31, Theorem 1] that the sum of (x23 + 1)f (or (x42 + 1)f)
at these two IV’s result in equations of degree 2. Instead of choosing some fixed
IV’s, we randomly choose k IV’s and construct the corresponding equations for
(x23 + 1)f + z(x23 + 1) and (x42 + 1)f + z(x42 + 1), where z represents the
keystream bit. Notice that these are degree 3 equations but the sum of any two
of them will give a degree 2 equation.

We perform our experiments with at most 6 keystream bits using EBCSA-
GE and record the results of our experiments in Table 9. In the preprocessing
stage, we once again arranged the 128 variables ascendingly of their frequencies.

Table 9. Performance of Toyocrypt with EBCSA-GE

#Key
stream

2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 6

#IV 128 120 112 104 96 128 120 112 104 96 92 128 120 112 104 96 92 88 84 80 80

#Poly 512 480 448 416 384 768 720 672 624 576 552 1024 960 896 832 768 736 704 672 640 960

#Splits 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 2 2 2

#Elim
Lin

6 9 8 7 11 4 8 8 6 8 7 4 6 5 8 5 9 9 13 13 11

Time
(s)

7.1 41.0 318.5 24.1 32.7 4.7 19.4 17.1 178.7 59.4 516.4 7.4 134.0 413.0 76.1 79.7 71.1 97.0 542.1 669.3 187.4

5 Conclusions and Future Work

In this paper, we enhanced the binary characteristic set algorithm to work more
effectively on both block ciphers and stream ciphers. Using EBCSA, we improve
algebraic attacks on various well-known ciphers including Prince, Present and
Toyocrypt. EBCSA uses CSA as its core and incorporates ElimLin and some
statistical features to improve its performance. In our current version, we can
turn ElimLin on or off for each input polynomial system. For future research,
we will seek to identify some characteristics of the polynomial system to choose
between EBCSA-GE or EBCSA. We can further integrate the criteria into the
main algorithm so that ElimLin can be turned on or off for each individual set
produced by EBCSA.



534 S.L. Yeo et al.

Acknowledgements. We are grateful to Dr. Matt Henricksen, Dr. Yap Wun She,
Dr. Lee Hian Kiat and Ms. Ivana Thng for their helpful contributions throughout the
project.

Appendix: Pseudocodes for CSA and EBCSA

Next, we present the main structure of EBCSA in Algorithm2. Note that pre-
processing of the input set can be carried out to sort the variables in a desired
order, that is, we fix a permutation σ beforehand.

Algorithm 1. The CSA (or MFCS) algorithm [17]

– Set P∗ = ∅ and A∗ = ∅.
– CSA-triset function – Feed P into triset function and let Q∗ and A be outputs:

• Set Q∗ = ∅ and A = ∅.
• For c = 0 to n − 1 do:

∗ If 1 ∈ P, return A = ∅ and Q∗.
∗ Let Q = {P ∈ P : cls(P ) = c}, set P = P\Q, set Q1 = ∅.
∗ While Q �= ∅ do

· Pick P ∈ Q and set Q = Q\{P}.
Splitting step Write P = Ixσ(c) + U . Add P ∪ Q ∪ {I, U} to Q∗.

· Add I + 1 to P and add xσ(c) + U to Q1.
∗ Pick P ∈ Q1 and add P to A.

Adding step For every P ′ ∈ Q1, P
′ �= P , add P + P ′ to P.

– Set P∗ = P∗ ∪ Q∗ and add A to A∗.
– Repeat the whole procedure till P∗ is empty.

Algorithm 2. Algorithm EBCSA

– Input: a set of polynomials P = {p1, · · · , pk}.
– Outputs: A monic triangular set A and a super set P∗ for other potential solutions.
– EBCSA-triset function

• Begin with the simplest P , e.g. Pk = Ixck + U ∈ P.
• Let P

′ = P\ {Pk = Ixck + U}. Split Pk: P ← P
′ ∪ {I + 1}, A ← A ∪ {xck + U}

and Pnew ← P
′ ∪ I ∪ U , append Pnew to P

∗.
• Process each new generated Pnew or updated polynomial set P, and terminate

them as early as possible.
– Continue with every P until P is terminated or becomes the monic set A.
– Select a new set P from P

∗ to apply the above algorithm.



An Enhanced Binary Characteristic Set Algorithm and Its Applications 535

References

1. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials
(IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EURO-
CRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). doi:10.
1007/3-540-68339-9 4

2. Buchberger, B.: Ein algorithmus zum auffinden der basiselemente des restklassen-
rings nach einem nulldimensionalen polynomideal. Universitat Innsbruck, Austria,
Ph.D. thesis (1965)

3. Faugere, J.C.: A new efficient algorithm for computing gröbner bases (f4). J. Pure
Appl. Algebra 139(1), 61–88 (1999)

4. Faugere, J.C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: Proceedings of ISSAC, ACM, pp. 75–83 (2002)

5. Faugere, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–
344 (1993)

6. Cox, D., Little, J., O’shea, D.: Ideals, Varieties, and Algorithms, vol. 3. Springer,
New York (1992)

7. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by
relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999). doi:10.1007/3-540-48405-1 2

8. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000).
doi:10.1007/3-540-45539-6 27

9. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002). doi:10.1007/3-540-36178-2 17

10. Courtois, N.T., Patarin, J.: About the XL algorithm over GF (2). In: Joye, M. (ed.)
CT-RSA 2003. LNCS, vol. 2612, pp. 141–157. Springer, Heidelberg (2003). doi:10.
1007/3-540-36563-X 10

11. Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the data encryption stan-
dard. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS, vol. 4887,
pp. 152–169. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77272-9 10

12. Courtois, N.T., Sepehrdad, P., Sušil, P., Vaudenay, S.: ElimLin algorithm revis-
ited. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 306–325. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-34047-5 18

13. Indesteege, S., Keller, N., Dunkelman, O., Biham, E., Preneel, B.: A practical
attack on KeeLoq. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
1–18. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3 1

14. Nakahara Jr., J., Sepehrdad, P., Zhang, B., Wang, M.: Linear (Hull) and alge-
braic cryptanalysis of the block cipher PRESENT. In: Garay, J.A., Miyaji, A.,
Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 58–75. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-10433-6 5

15. Aubry, P., Lazard, D., Maza, M.M.: On the theories of triangular sets. J. Symb.
Comput. 28(1), 105–124 (1999)

16. Kalkbrener, M.: A generalized euclidean algorithm for computing triangular rep-
resentations of algebraic varieties. J. Symb. Comput. 15(2), 143–167 (1993)

17. Fengjuan, C., Xiao-Shan, G., Chunming, Y.: A characteristic set method for solving
boolean equations and applications in cryptanalysis of stream ciphers. J. Syst. Sci.
Complex. 21(2), 191–208 (2008)

http://dx.doi.org/10.1007/3-540-68339-9_4
http://dx.doi.org/10.1007/3-540-68339-9_4
http://dx.doi.org/10.1007/3-540-48405-1_2
http://dx.doi.org/10.1007/3-540-45539-6_27
http://dx.doi.org/10.1007/3-540-36178-2_17
http://dx.doi.org/10.1007/3-540-36563-X_10
http://dx.doi.org/10.1007/3-540-36563-X_10
http://dx.doi.org/10.1007/978-3-540-77272-9_10
http://dx.doi.org/10.1007/978-3-642-34047-5_18
http://dx.doi.org/10.1007/978-3-540-78967-3_1
http://dx.doi.org/10.1007/978-3-642-10433-6_5


536 S.L. Yeo et al.

18. Huang, Z., Sun, Y., Lin, D.: On the efficiency of solving Boolean polynomial sys-
tems with the characteristic set method. arXiv preprint (2014). arXiv:1405.4596

19. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. Int. Jt. Conf. Artif. Intell. 14(2), 1137–1145 (1995)

20. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74735-2 31

21. Sepehrdad, P.: Statistical and algebraic cryptanalysis of lightweight and ultra-
lightweight symmetric primitives. Ph.D. thesis, ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE (2012)

22. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE – a low-latency block cipher for pervasive computing
applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658,
pp. 208–225. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34961-4 14

23. Bochum, R.U.: The PRINCE Challenge. https://www.emsec.rub.de/research/
research startseite/prince-challenge/ (2014). Accessed 18 Jan 2017

24. Jean, J., Nikolić, I., Peyrin, T., Wang, L., Wu, S.: Security analysis of PRINCE.
In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 92–111. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-43933-3 6

25. Dinur, I.: Cryptanalytic time-memory-data tradeoffs for FX-constructions with
applications to PRINCE and PRIDE. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 231–253. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46800-5 10

26. Derbez, P., Perrin, L.: Meet-in-the-middle attacks and structural analysis of round-
reduced PRINCE. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 190–216.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48116-5 10

27. Canteaut, A., Fuhr, T., Gilbert, H., Naya-Plasencia, M., Reinhard, J.-R.: Multiple
differential cryptanalysis of round-reduced PRINCE. In: Cid, C., Rechberger, C.
(eds.) FSE 2014. LNCS, vol. 8540, pp. 591–610. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46706-0 30

28. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-middle: improved
MITM attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 222–240. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 13

29. Mihaljevic, M.J.: Cryptanalysis of toyocrypt-HS1 stream cipher. IEICE Trans. Fun-
dam. Electron. Commun. Comput. Sci. 85(1), 66–73 (2002)

30. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feed-
back. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 345–359.
Springer, Heidelberg (2003). doi:10.1007/3-540-39200-9 21

31. Zhang, A., Lim, C.-W., Khoo, K., Wei, L., Pieprzyk, J.: Extensions of the cube
attack based on low degree annihilators. In: Garay, J.A., Miyaji, A., Otsuka, A.
(eds.) CANS 2009. LNCS, vol. 5888, pp. 87–102. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-10433-6 7

32. Hawkes, P., Rose, G.G.: Rewriting variables: the complexity of fast algebraic
attacks on stream ciphers. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152,
pp. 390–406. Springer, Heidelberg (2004). doi:10.1007/978-3-540-28628-8 24

33. Armknecht, F., Lano, J., Preneel, B.: Extending the resynchronization attack.
In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 19–38.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30564-4 2

http://arxiv.org/abs/1405.4596
http://dx.doi.org/10.1007/978-3-540-74735-2_31
http://dx.doi.org/10.1007/978-3-642-34961-4_14
https://www.emsec.rub.de/research/research_startseite/prince-challenge/
https://www.emsec.rub.de/research/research_startseite/prince-challenge/
http://dx.doi.org/10.1007/978-3-662-43933-3_6
http://dx.doi.org/10.1007/978-3-662-46800-5_10
http://dx.doi.org/10.1007/978-3-662-46800-5_10
http://dx.doi.org/10.1007/978-3-662-48116-5_10
http://dx.doi.org/10.1007/978-3-662-46706-0_30
http://dx.doi.org/10.1007/978-3-662-46706-0_30
http://dx.doi.org/10.1007/978-3-642-40041-4_13
http://dx.doi.org/10.1007/3-540-39200-9_21
http://dx.doi.org/10.1007/978-3-642-10433-6_7
http://dx.doi.org/10.1007/978-3-540-28628-8_24
http://dx.doi.org/10.1007/978-3-540-30564-4_2

	An Enhanced Binary Characteristic Set Algorithm and Its Applications to Algebraic Cryptanalysis
	1 Introduction
	1.1 Background
	1.2 The Characteristic Set Algorithm
	1.3 Our Contributions
	1.4 Organization of This Paper

	2 A Description of the Characteristic Set Algorithm
	2.1 Notations and the Set-Up
	2.2 The Basic Structure of Binary CSA
	2.3 BCSA

	3 The Enhanced Binary CSA
	3.1 The ElimLin Technique
	3.2 An Improved Complexity Metric
	3.3 The Set Metric
	3.4 Sorting the Variables
	3.5 Combining the Various Features

	4 Experimental Results
	4.1 Experiments on Our Complexity and Set Metrics
	4.2 Experiments on Present Cipher
	4.3 Experiments on Prince Cipher
	4.4 Experiments on the Stream Cipher Toyocrypt

	5 Conclusions and Future Work
	References


