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Abstract Climate change adds to the existing challenges in improving crop pro-
ductivity and welfare for smallholder agricultural households by affecting the mean 
and variability of weather conditions and the frequency of extreme weather events. 
In the face of such growing uncertainty, agricultural practices of small landholders 
need to be adapted to better manage the changing risk structures. Since government 
risk management programs may complement or substitute for farmer adaptation, 
this chapter examines how a range of institutional interventions might assist, 
obstruct, channel, or change smallholder agricultural adaptation to climate change. 
Taken together, our results underscore the importance of the informational role of 
the agriculture extension, suggest that insurance can lead to significant changes in 
farmer planting and land management decisions, and show how information about 
changing conditions and insurance can be complimentary in driving changes in 
farmer behavior.

1  Introduction

Climate change adds to the existing challenges in improving crop productivity and 
welfare for smallholder agricultural households by affecting the mean and variabil-
ity of weather conditions and the frequency of extreme weather events. In the face 
of such growing uncertainty, agricultural practices of small landholders need to be 
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adapted to better manage the changing risk structures. Since government risk man-
agement programs may complement or substitute for farmer adaptation (Anton 
et al. 2013), this chapter examines how a range of institutional interventions might 
assist, obstruct, channel, or change smallholder agricultural adaptation to climate 
change.

Our analysis begins with a stylized conceptual model from which we build a 
series of simulations based on empirical data from smallholder agriculture house-
holds in Malawi. We proceed by analysing three climate change scenarios, looking 
at the spectrum of farmer responses as a function of extension information provi-
sion, weather index insurance, and the interaction of the two institutions.

Our approach grapples with three distinct dimensions of uncertainty central to 
understanding how the policies of an institutional actor might affect smallholder 
agricultural adaptation to climate change. First, uncertainty about farmers’  perceived 
risks and their degree and direction of adaptation response to climate change is 
addressed through the implementation of an empirically founded expected- utility- 
optimization framework which accounts for farmer risk preferences and the role of 
weather conditions and yield variability in adaptation decisions. Second, we address 
uncertainty about the quantitative impacts of climate change on the variability of 
yields and production risks through a regression analysis linking weather conditions 
and yields across a range of crops and conservation techniques. Finally the wide 
range of possible policy options is narrowed through a focus on the effects of two 
program types: information provision regarding likely changes in weather condi-
tions under climate change and weather indexed insurance coverage.

The basis of the analysis in this chapter is that climate change affects the distri-
bution of weather conditions during the growing season, which in turn impacts 
yields under a given set of management practices.1 Changes in yield distributions 
ultimately alter expected farmer incomes, and thus planting and management deci-
sions. In our simulations, farmers can adopt adaptation strategies along two distinct 
dimensions. First, farmers can change cropping decisions between staple and cash 
crops and amongst crop types within these categories. Second, farmers can make 
changes in land management practices through the adoption of Climate Smart 
Agricultural (CSA) techniques (e.g. Kassie et al. 2008; Rosenzweig and Binswanger 
1993; Heltberg and Tarp 2002; Deressa and Hassan 2010). CSA practices that are 
considered in the simulations include intercropping of staple (maize) and cash 
(legumes) crops, as well as the improvement of soil water-holding capacity by add-
ing crop residues or manure, and/or by adopting conservation tillage in response to 
changes in water availability (Smith and Olesen 2010). Investments in soil-water 
holding capacity (SWC) may be a particularly important adaptive response in light 
of recent research that finds a positive correlation between rainfall variability and 
the selection of SWC type practices (Arslan et al. 2013).

1 A necessary limitation of our simulations is that they rely upon data from the 2009-2010 growing 
season and thus cannot attend to new seed varieties or cultivation practices that may arise in the 
face of climate change.
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This chapter focuses on how smallholder adaptation to changing conditions 
under climate change might be affected by government risk management interven-
tions. While Mendelsohn (2010) finds that farmers without insurance have a strong 
incentive to adapt to climate change, Skees et al. (1999) show that the assumption 
of risk by farmers may stymie farmer investment in certain adaptation strategies. 
Collier et al. (2009) underscore the importance of specific policy design features in 
impacting behaviour. For example, traditional agricultural insurance (which makes 
an indemnity payment when the farm incurs a verifiable production loss) can help 
to manage production risk but may diminish incentives to adapt to climate change. 
Conversely, area-yield insurance and weather index insurance (as we examine in 
this chapter) approaches can minimize these moral hazard concerns since indemni-
ties are paid independently of the actual loss incurred by a policyholder. Of course, 
all risk management policies will change the framework under which farmers make 
production decisions. Deepening our understanding of how institutional policies 
impact farmer decisions under climate change is of critical importance for well- 
designed climate adaptation strategies now and in the future.

The following questions anchor our analyses as we build on previous work 
examining risk management under climate change (Collier et  al. 2009; Heltberg 
et al. 2009, Anton et al. 2013).

 1. Can policy makers assist in risk management without steering farmers away 
from beneficial adaptation?

 2. How do insurance and information programs impact farmer behaviours and 
might these two policy approaches interact in their effects on farmer decisions?

 3. How can policy makers decide between interventions when the information 
about how various instruments would perform under an increasingly variable 
climate is very limited?

The contribution of this chapter is to address  – in the context of smallholder 
agriculture in Malawi – the risk and the uncertainties introduced by climate change 
and the role of perceptions regarding this uncertainty in shaping farmer decisions 
and the appropriate risk management instruments to improve smallholder welfare.

2  Conceptual Model

In this section, we develop a basic model of smallholder agricultural management 
when yields are stochastic and farmers are risk averse. We begin with the assump-
tion that farmers are growing a single staple crop on a fixed plot of land. Farmers 
maximize their expected utility from profits by choosing agricultural inputs, x, and 
techniques, ϕ. The vector x will include a range of purchased agricultural inputs, 
such as fertilizer, pesticides, herbicides, and seed. The variable ϕ will correspond to 
the labour requirements of the dominant agricultural technique used to cultivate the 
crop. In this model, possible techniques include a variety of CSA practices as well 
as more chemically-intensive ones. The key distinction between inputs and 
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technique is that the former is assumed to impact expected yield while the latter is 
assumed to impact the volatility of yield.2 Without loss of generality, we define ϕ as 
the intensivity with which the chosen technique reduces yield volatility.

In particular, agricultural yield on land of given quality is equal to f(x) + 2(1 − g(ϕ))
θ, where θ is a stochastic weather variable with an expected value of zero and vari-
ance σ2 (Just and Pope 1978).3 Expected yield f is assumed to be increasing in inputs 
at a decreasing rate, i.e. f’(x) > 0, f”(x) < 0. The function g can be thought of as a 
measure of protection against weather volatility, such that 1-g is a measure of 
weather sensitivity (Graff-Zivin and Lipper 2008). Protection is assumed to be 
increasing in technique at a decreasing rate, i.e. g’(ϕ) > 0, g”( ϕ) < 0. Let p represent 
the market price per unit of agricultural output. For simplicity, we will also assume 
that this price represents the per unit value of agricultural output consumed by the 
farmer, which is tantamount to assuming that all farmers have market access and 
that food production levels always exceed the subsistence demands of the 
household.

Revenue can thus be expressed as R = pf(x) − 2p(1 − g(ϕ))σ2. Taking a second- 
order Taylor-Series approximation of EU(R) yields the following expression:

 
EU R pf x rp g( ) ≈ ( ) − − ( )( )1 2φ σ ,

 
(1)

where r is the Arrow-Pratt measure of risk aversion. Utility from agricultural reve-
nues is increasing in average yield and decreasing in the variability of yields. This 
type of utility function is frequently used in finance (Markowitz 1987) and can be 
viewed as a special case of the more general class of mean-variance utility func-
tions. The properties of these utility functions and their consistency with expected 
utility theory are discussed in great detail elsewhere (Meyer 1987).

Turning to costs, several differences between inputs and technique are worth 
highlighting. First, inputs require market purchases early in the growing season that 
only pay dividends at harvest. As such, limited savings and the imperfect credit 
markets that are commonplace in developing countries may play an important role 
in input purchases. On the other hand, technique will generally be ‘purchased’ with 
household labor. Since technique does not require an initial cash outlay, credit con-
straints should be immaterial. In particular, we let λ represent the costs of credit, 
which can be viewed as the shadow value on a credit constraint. A larger λ repre-
sents dearer credit and thus raises the effective costs of input purchases while leav-
ing the costs of technique unaffected.

Second, the nature of costs for the x and ϕ choice variables also differ, indepen-
dent of cash flow concerns. While the costs of inputs are based on market prices net 
of any subsidies, the costs of technique are a bit more complicated. This complica-
tion arises because we would like to allow for the possibility that technique can be 

2 As will be made clear below, technique can potentially impact long-term expected yields. Since 
these benefits will accrue with a considerable delay, they are best reflected in an appropriately 
discounted cost function.
3 The assumption of additive risk can be relaxed during simulations.
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mean yield augmenting in the long-run. For example, several studies suggest that 
conservation agriculture can increase expected yield after a 3–5 year period of eco-
system disequilibrium (see Graff, Zivin and Lipper 2008). Rather than model this as 
part of f(), which would require more explicit assumptions regarding the timing of 
those benefits, we include them in the ‘effective’ costs of technique. In particular, 
we assume that the costs of technique will include the direct costs of its application 
net of the present discounted value of any future yield benefits. As such, the per-unit 
costs of technique will be a function of discount rates δ.

We denote the costs of inputs as cx and the costs of technique as cφ(δ), with the 
usual assumption regarding the convexity of costs, such that the cost of technique 
are increasing in discount rates at an increasing rate, e.g. cφ’  >  0 and cφ”  >  0. 
Moreover, we introduce the terms (1−sx) and (1−sφ) to denote targeted government 
subsidies for inputs and technique, respectively. Suppressing the expected utility 
notation, the objective of the farmer is to maximize the expected utility of profits, 
which can be expressed as follows:

 
π φ σ λ δ φφ φ= ( ) − − ( )( ) − −( ) − −( ) ( )pf x p g r s c x s cx x1 1 12

 
(2)

The first order conditions imply:

 
p

f

x
s cx x

∂
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− −( ) =1 0λ
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σ δφ φ
2 1 0.

 
(4)

Inputs and technique will be chosen such that the marginal benefits from each 
will be equal to its marginal cost, net of subsidies. In the case of inputs, these costs 
will also depend on borrowing costs as measured by λ. The marginal benefits from 
inputs are due to expected yield augmentation. The marginal benefits from tech-
nique are due to protection from yield volatility.

2.1  Inputs, Technique, Insurance, and Diversification

This basic framework can be generalized to expand the portfolio of farmer invest-
ment options by introducing the possibility of insurance coverage, ψ, and crop 
diversification, D. Insurance could play an important role in this setting going for-
ward, as climate change is expected to increase yield volatility considerably. Since 
credible documentation of individual farmer yield losses is likely prohibitively 
expensive and/or infeasible in the developing country context, we assume that insur-
ance contracts are written based on ‘local’ realizations of weather. Of course, yield 
volatility depends on weather, among other things, so one can view this insurance 
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contract as one that partially indemnifies households against agricultural risk. 
Moreover, since it is based on weather rather than experienced yields that will also 
depend on a host of farmer behaviors, it eliminates very practical concerns about 
moral hazard.

In particular, we view insurance as a state-contingent contract, where farmers 
receive a payment Z that depends on the probability of a given weather realization 
and thus the variance of weather, and the amount of insurance coverage purchased. 
This insurance is distinct from the type of ‘insurance’ purchased through the use of 
technique since insurance shrinks downside risk while technique decreases both 
downside and upside risk by compressing volatility. More formally, Z(ψ, σ2), where 
the payout Z is increasing in coverage and volatility at a decreasing rate. Similar to 
agricultural inputs, this contract is purchased at the beginning of the growing season 
in return for protection in the future, so the costs of credit will play a role in the 
purchase decision. Insurance costs are increasing and convex with the volatility of 
weather, reflecting the additional costs of provision by insurers.

It is interesting to note that while the value of insurance (or for that matter tech-
nique) to farmers depends on perceived volatility, the premiums are expected to 
depend on actual volatility as understood by insurers.4 To formalize the notion of 
this wedge between perceptions and actual, we introduce the term m such that the 
true volatility σ σT m2 2 2= / , with 0 < m <1. When m = 0 farmers believe weather to 
be non-stochastic. When m = 1 they have a perfect estimate of volatility. All cases in 
between correspond to the case where farmers underestimate the realization of 
weather by a fixed proportion equal to m. As with inputs and technique, we allow 
the government to subsidize the purchase of insurance, such that the ‘effective’ cost 
of purchase can be expressed as: (1 − sψ)λcψ(σ2/m2).5

Our approach to modelling diversification is highly stylized to maintain a focus 
on the core tradeoffs associated with pursuing this strategy rather than the specifics 
of alternative crops. In particular, we assume that diversification helps protect farm-
ers against revenue volatility in much the same way as technique, i.e. we assume g 
is increasing in diversification at a decreasing rate. The costs of diversification 
depend on the net expected revenue reductions associated with planting it instead of 
the staple crop; simply denoted by cD. Since these costs are only realized at harvest 
time, credit is not a concern for this strategy. Allowing subsidies for diversification 
strategies, denoted sD, we can rewrite the farmers expected profit function as 
follows:

 
π φ σ ψ σ λ= ( ) − − ( )( ) + ( ) − −( )pf x p g D r Z s c xx x1 12 2, ,

 

4 One notable exception is the case where insurance markets are not competitive, since insurers will 
be able to set prices, at least partly, based on farmer perceptions as embodied in their willingness 
to pay for insurance.
5 We also note that government safety nets can be viewed as a special case of insurance that is 
offered at fixed coverage levels with zero direct cost to the farmer.
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This yields the following FOCS:
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Here again we see that investments are made such that the marginal benefit of 
those investments is equal to the marginal costs of those investments. Since the role 
played by agricultural inputs is independent of the other investment activities – it 
only affects expected yield – optimal input usage is identical to that found in our 
simpler case. The introduction of diversification, which competes with technique to 
shape effective risk exposure, makes the role of policy levers more complicated. 
Since insurance contracts are written on weather rather than agricultural yield, opti-
mal coverage is orthogonal to the other risk management strategies. Although our 
simulations do not address credit constraints, it is worth noting that input usage and 
insurance purchases will depend upon the state of credit markets, while technique 
and diversification eschew such concerns.6

2.2  The Impacts of Climate Changes: Weather Volatility 
and Extension

As noted earlier, uncertainty about weather and attendant yield volatility are 
expected to increase under climate change. While volatility has no impact on input 
usage, its impacts on technique and diversification are straightforward. Greater vol-
atility leads to greater perceived volatility (except in the special case where m = 0) 
and thus increases the returns to protection from yield risk. How much additional 
investment is made in each will depend on the curvature of the risk protection func-
tion g in technique and diversification spaces.

6 If investments can be differentially collateralized or credit is targeted toward particular actions, 
credit constraints can differ for each type of expenditure.
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In contrast, the impact of uncertainty on the purchase of insurance is ambiguous. 
The net effect will depend on the relative curvatures of the payout and cost function. 
It will also depend on the wedge between actual and perceived uncertainty since 
expected benefits are based on farmer perceptions but the price of insurance will be 
driven by the true underlying risk. The more farmers underestimate the risk (as m 
approaches zero) the larger the first term in brackets and the more likely insurance 
will be decreasing in risk. Put another way, the more farmers misjudge risk the more 
they will undervalue insurance relative to its costs and the less likely they are to 
purchase it.
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While we have not yet formally modeled policies to expand agricultural exten-
sion, nearly all of the comparative statics described above could be influenced by it. 
If, for example, an increase in extension efforts helps farmers understand that appro-
priate fertilizer applications can increase their yields, then this is tantamount to a 
change in the function f to the farmer. Similarly, if extension provides farmers with 
new information about diversification opportunities or new agricultural techniques, 
this translates into a change in the function g from the farmer’s perspective. Since f 
and g feature prominently in all expressions above, extension of this sort will influ-
ence optimal decision making as well as the responsiveness of optimal decision 
making to changes in other policies and parameters.7

One such parameter that deserves particular attention is misperceptions regard-
ing weather volatility. In particular, it is possible that extension could make targeted 
efforts to help farmers better understand weather and help them update their heuris-
tics under a changing climate. This is, in fact, one of the risk management interven-
tions we will examine via simulation in later sections.

7 The impacts of extension could also be linearly approximated by modeling them as changes in the 
‘effective’ costs of inputs, technique, insurance, and diversification. In this case, the impacts of 
extension will be entirely analogous to the earlier analysis on subsidies. Whether such an approxi-
mation is a reasonable one remains an empirical question.
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Formally, we can view extension efforts to increase farmer understanding of 
weather conditions as an effort to increase the parameter m. In this case, it is straight-
forward to show that all of the risk reducing activities – technique, diversification, 
and insurance – are increasing in m and thus increasing in extension (or other infor-
mational) activities that move farmer priors closer to ‘actual’ distributions under a 
changing a climate. Letting σT

2  denote true weather volatility (as opposed to per-
ceived volatility) the specific relationships are as follows:
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(17)

The impacts of these policy instruments on farmer welfare can be obtained by 
plugging the relevant relationships back into the expected profit function, defined 
in (5). Heterogeneity with respect to time or risk preferences can be similarly 
explored.

Of particular note are the predictions of Eqs. 15 and 17, which suggest that better 
information regarding higher weather volatility ought to lead to increased use of 
CSA techniques and diversification crops. These are outcomes that will be exam-
ined directly as part of the simulations in the following sections.

3  The Simulation Framework

While the conceptual model highlights a number of policy tools that can be used 
to influence farmer choices under climate change, we will limit our empirical 
attention to those policies that are most directly tied to the increased weather 
volatility that is expected under climate change. In particular, we simulate the 
impacts of insurance and extension policies on cropping patterns and farmer wel-
fare under zero, modest, and more severe climate change scenarios. Simulated 
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crop choices are based on estimated agricultural production functions for small-
holder farmers in Malawi as well as assumed constraints regarding the cultivation 
of staple crops for subsistence purposes. Following a brief description of the 
Malawian agricultural context, we will explain the simulation approach, assump-
tions, and results.

3.1  Institutional Context in Malawi Relevant to the Empirical 
Application

There are a number of institutions that serve farmers in Malawi, including extension 
and other sources of agricultural information, credit sources, input and output mar-
kets, farmers unions, and social safety net programs. The density and quality of 
these institutions should increase farm productivity and the ability of farm house-
hold members to manage shocks to income, contributing to greater and more stable 
livelihoods.

• In this context, access to credit, extension services, and safety nets are of par-
ticular relevance to this paper since these three institutional avenues are central 
to managing agricultural risk. In terms of access to credit, in the 2010 LSMS- 
ISA household survey, just 16% of all households accessed some form of credit, 
from both formal and informal sources, indicating that access to credit is quite 
constrained. This is further supported by the fact that among those accessing 
credit, 57% of loans came from neighbors/relatives/friends.

• In terms of extension services, despite a relatively large numbers of communi-
ties with agriculture extension officers, in 2010, information from the household 
survey indicates that just 21% of households received any extension advice in the 
Northern region, followed by 18% and 12% in Central and Southern regions, 
respectively. Beyond the limited reach of extension, Nkonya et al. (2015) also 
report that in Sub-Saharan Africa when extension advice is received it fails to 
provide advice on adaptation to climate change.

• Finally, concerning the Malawi Social Action Fund (MASAF), which provides a 
safety net to vulnerable households, in the 2010 survey 28% of villages sur-
veyed had a MASAF program.

Without going into the detail of the functioning of these institutions, the picture 
that emerges from these statistics is one that highlights the limited access to infor-
mation, credit, and safety nets for Malawian farmers. The challenges of managing 
risk faced by agricultural households are therefore numerous. The application pre-
sented here tries to provide new insights that would allow focusing potential efforts 
by policymakers interested in addressing agricultural risk management issues in 
Malawi.

Concerning insurance, in 2005, the World Bank, in close collaboration with 
Malawi’s National Association of Small Farmers (NASFAM), developed an index- 
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based crop insurance program, which led to 892 groundnut farmers purchasing 
weather-based crop insurance policies. During the 2006/2007 cropping season, the 
pilot expanded to 1710 farmers, with the inclusion of coverage for maize. A positive 
effect of the program was that, as the crop insurance contracts mitigated the weather 
risk associated with lending, local banks came forward to offer loans to insured 
farmers. However, what emerged from this pilot was that index-based weather 
insurance is not a panacea, since farmers face a broad spectrum of risk beyond just 
weather risk (Bryla and Syroka 2009). Furthermore, to be effective index-based 
weather insurance contracts require reliable, timely, and high quality weather data 
with a long historical record. More importantly from an institutional perspective, an 
improved enabling legal and regulatory framework is necessary for the expansion of 
any weather index insurance in Malawi. These challenges, combined with the often 
limited understanding of insurance, can lead to low adoption of insurance. We are 
aware of these challenges, and here we discuss weather index insurance as one pos-
sible tool in a portfolio of risk management options, as indicated by the theoretical 
model presented in the previous section.

3.2  Background Information on Malawi for the Empirical 
Application

Agriculture is the mainstay of the economy of Malawi accounting for about 34% of 
GDP, 85% of the labour force and 83% of foreign exchange earnings (Mucavele 
2007). Smallholders account for 78% of the cultivated land and generate about 75% 
of Malawi’s total agricultural output, indicating the predominance of the small-
holder agricultural sector (Chirwa and Quinion 2005; Tchale 2009). Malawi is 
densely populated, with 84% of farmers practicing rainfed agriculture only, and 
more than 72% of the smallholder farms having an area of less than one hectare. 
Such conditions already make food self-sufficiency at the household level difficult, 
and the predicted impacts of climate change in Malawi are expected to primarily 
impact smallholder, rain dependent farmers (Denning et al. 2009).

The principal crops grown in Malawi are maize, tea, sugarcane, groundnut, cot-
ton, wheat, coffee, rice and pulses. A significant feature of Malawi’s agriculture is 
the dominance of maize in farming systems. It is estimated that more than 70% of 
the arable land is allocated to maize production (GoM 2006). According to Dorward 
et al. (2008), the share of farmers growing maize varies from 93% to 99% in the 
country’s main regions. Although agriculture and maize are clearly very important 
to the livelihoods of most Malawians, their overall productivity performance raises 
serious concerns about long-term viability. The factors that are commonly cited as 
underlying low crop productivity include weather variability, declining soil fertility, 
limited use of improved agricultural technologies and sustainable land management 
practices, low/poor agricultural extension services, market failures, and underdevel-
opment and poorly maintained infrastructure (World Bank 2010).
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Of relevance to agricultural risk management in Malawi, the yield of crops is lim-
ited to differing degrees by water availability and temperature depending on the agro-
ecological zone (see Fig.  1). A synthesis of climate data by the United Nations 
Development Program (McSweeney et al. 2012) indicated that in the period 1960 to 
2006, mean annual temperature in Malawi increased by 0.9 °C. This increase in tem-
perature has been concentrated during the rainy summer season (December  – 
February), and is expected to increase further. Long term rainfall trends are difficult to 
characterize due to the highly varied inter-annual rainfall pattern in Malawi, though 
such variability is expected to increase under climate change (McSweeney et al. 2012).

3.3  Data and Estimated Production Functions

We now turn our attention to simulations of smallholder Malawian farmer planting 
decisions and outcomes under a number of climate change and policy intervention 
scenarios. The relationships between input usage and yields for each crop and CSA 
technique, are estimated separately using multiple regressions with data from the 
Third Integrated Household Survey (IHS3 2012), which was conducted from March 
2010 to March 2011 and implemented by the Malawian National Statistical Office 
(NSO) in collaboration with the World Bank. From this dataset we rely on informa-
tion from ~7800 Malawian rural households covering ~18,500 individual plots cul-
tivated during the 2009–2010 agricultural season. While such estimates are made 
for all four agro-ecological zones (AEZs) in Malawi, this investigation focuses on 
Tropical Warm/Semiarid AEZ for which the most data are available (nearly 9000 
plot observations). Crop specific production functions are estimated by regressing 
logged plot level yields on logged input usages and weather conditions. The use of 
logged values of yields and inputs in a linear framework is equivalent to assuming a 
Cobb-Douglas production function with a translog structure. As weather variables 
enter linearly (i.e.- not logged), they are treated as TFP shifters. The resulting esti-
mated regression equations serve as the production functions for later simulation of 
farmer outcomes under various weather, price, information, and restriction scenar-
ios. Table  1 presents the coefficient estimates from the 2009–2010 data for the 
Tropical Warm/Semiarid AEZ. These coefficients define the production functions 
used in the simulation of farmer planting decisions and outcomes.

Crop specific functions for variation in yields are also estimated through linear 
regressions of the standard deviation of yields between plots within the 768 
Enumeration Areas on measures of the level and variation of rainfall and tempera-
tures during the 2009–2010 growing season. The resulting estimated equations (one 
for each crop type) serve to simulate the variation in yields under scenario specific 
conditions.

As outlined in Table 1, agricultural inputs included in the estimation of produc-
tion functions include seed quantity, fertilizer usage, days of labor, and land area of 
the plot. Weather conditions, which are used to estimate both the production and 
yield variation functions, include mean and standard deviation of temperatures and 
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Fig. 1 Malawi agro-ecological zones
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rainfall over 10-day periods during the growing season, and are observed for each 
enumeration area. The 2009–2010 rainy season therefore serves as the basis for 
defining the relationships between inputs, weather conditions, and yields. 
Additionally, the 2009–2010 growing season serves as the baseline period for 
weather conditions and all prices used in the simulations.

It is important to note also that the direct reliance of the model on data for the 
estimation of yield functions and input usages restricts the scope of crops and agri-
cultural techniques that are considered in the simulations to those that are in wide 
use during the 2009–2010 Malawian growing season and that, more in general, 
characterize Malawi agricultural production. In particular, neither crop varieties nor 
cultivation practices that are particularly adapted to varying conditions under 
climate change are considered in the simulations because no basis for modelling the 
relevant relationships between inputs and outputs exists in the data, nor information 

Table 1 Coefficient estimates for production function by crop  – dependent variable is logged 
yield

Maize 
local

Maize 
hybrid

Groundnut 
Chalimbana

Groundnut 
CG7 Beans

Pigeonpea 
(nandolo)

Seed 
Quantity – 
Logged
(kg)

0.0288 0.0403 0.0745 0.062 0.18 0.164
(0.02) (0.02) (0.03) (0.02) (0.06) (0.03)

Fertilizer 
Usage – 
Logged
(kg)

0.0411 0.0453 −0.0153 0.00131 −0.0265 0.00514
(0.00) (0.00) (0.01) (0.01) (0.02) (0.01)

Labor 
Days – Logged
(days)

0.161 0.0985 0.0715 0.175 0.0347 0.25
(0.04) (0.04) (0.06) (0.06) (0.14) (0.05)

Cultivated 
Area – Logged
(hectares)

0.491 0.436 0.296 0.55 0.263 0.196
(0.04) (0.04) (0.06) (0.06) (0.14) (0.06)

Mean 
Temperature
(10-day mean)

−0.0702 −0.17 −0.0151 0.0546 0.0837 0.246
(0.03) (0.03) (0.06) (0.06) (0.11) (0.07)

SD Temperature −0.858 −0.243 −0.0946 −0.155 0.253 0.928
(0.20) (0.20) (0.32) (0.31) (0.90) (0.28)

Mean 
Precipitation 
(mm/10-day 
period)

0.0178 0.036 0.0383 0.0314 0.0771 −0.0511
(0.01) (0.01) (0.02) (0.01) (0.03) (0.01)

SD 
Precipitation

−0.0186 −0.0573 −0.0342 −0.0327 −0.0654 −0.0239
(0.01) (0.01) (0.02) (0.02) (0.03) (0.02)

Constant 8.386 10.68 4.816 4.068 0.806 −1.42
(0.91) (0.93) (1.55) (1.59) (2.15) (1.67)

Notes: Standard errors reported in parenthesis. Significance of estimates is not taken into account 
when applying estimates in the simulation.
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on crop varieties. Practically, this approach assumes that crop and technique avail-
ability doesn’t change in the simulated future and thus implicitly limits the scope of 
extension activities (when extension is considered) to the provision of information 
regarding growing conditions.8

3.4  Simulation Model Assumptions

Following the estimation of the production and yield variation functions using the 
2009–2010 data, the simulation of farmer decisions and resulting outcomes for a 
future growing season are undertaken in two distinct stages. In the first, a represen-
tative farmer is faced with a planting decision based on known input prices, antici-
pated weather conditions, and known relationships between inputs, weather, and 
yields.9 This information, along with anticipated output prices is used by the farmer 
to maximize expected utility through decisions about which crops to plant and what, 
if any, CSA techniques to use. In the second stage, farmer outcomes are simulated 
based on crop and CSA choices and scenario specific weather conditions. The 
degree to which farmer expectation of weather conditions align (or not) with real-
ized conditions serves as a measure of farmer information regarding climate change. 
Changes in the level of farmer “informedness” are the means through which exten-
sion informational programs can impact simulated farmer cropping choices and 
outcomes.

The representative farmer must choose between local and hybrid maize as a sta-
ple crop, and may also plant a cash crop for diversification purposes. The simulated 
diversification crops are all legumes and include Chalimbana Groundnuts, CG7 
Groundnuts, Beans, and Pigeon Peas. The farmer is restricted to planting a mini-
mum share of the chosen staple crop in order to ensure subsistence (which is not 
given an explicit utility or profit value in the simulations), and can choose up to one 
diversification crop to plant in addition to the staple (thus, planting 100% staple 
crop is always an option).

For any combination of staple and diversification crop, the farmer also selects 
whether and which CSA techniques to apply to the growing of the staple crop. 
Specifically, the farmer chooses between soil and water conservation (SWC) tech-
niques, legume intercropping, or both in these simulations. Each CSA technique 
modulates the impact of inputs and weather on yields of the staple (but not the 

8 It is worth noting that maize utilization in Malawi is largely linked to the fertilizers input subsidy 
program (FISP) which accounts for a limited range of varieties distributed but even accounting for 
varietal diversity the main distinction would still be linked to local versus hybrid maize 
utilization.
9 Input and output prices, as well as the production and yield variance functions are not altered in 
any of the scenarios considered in this chapter, but are instead held fixed as observed in the 2009-
2010 growing season.
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diversification crop, if any) in ways that are assumed to be understood (and thus 
taken account of) by the farmers.

As in our conceptual model, farmers are assumed to have a mean-variance utility 
function in net profits. They choose the crop mix (up to one staple and one diversi-
fication crop) and CSA technique usage by maximizing expected utility given antic-
ipated weather and price conditions. As noted, farmers are allowed at most one 
diversification crop and, for simplicity, we limit our analysis to crop shares in 10% 
increments. In the second stage of the simulation, net profits and total utility are 
calculated (using the same mean-variance utility function) using scenario-specific 
weather conditions.

Simulated utility levels – both for anticipated utility in stage 1 and realized utility 
in stage 2 – are simply the sum of the simulated net profit minus the simulated vari-
ance of revenues times the coefficient of absolute risk aversion. This mean-variance 
utility function is laid out explicitly below:

 U p yield p yield IP I= + − ⋅1 21 2
 

 

−  ( )+ ( ) +∗ARA p Var yield p Var yield p p yield yiel1
2

1 2
2

2 1 2 12  cov , dd2( )
Above we see the simulated yield levels for the staple, yield1

 , and diversification 

crop, yield2
 , multiplied by their respective output prices, p1 and p2. From this simu-

lated revenue, the dot product of the vectors of input prices, IP, and input usages, I, 
is subtracted to yield net profits. The second line of the equation is the variance 
portion of the utility function, discounted by the coefficient of absolute risk aver-
sion. The variance of revenues (equivalent to the variance of profits since input 
prices are non-stochastic) is simply the simulated variance of yields from the two 

crops, Var yield1( )  and Var yield2( ) , each multiplied by the square of their 
respective output prices, plus the covariance correction term 2 p1 p2 Cov(yield1, yiel
d2).10 The between-crop covariance term is estimated directly from yields in the 
2009–2010 data.

The representative farmer is simulated making planting decisions for a single 
average sized plot of 0.74 hectares and is assumed to apply mean input levels for 
each crop planted and CSA technique utilized. Labor costs for different crop choices 
and CSA usages are included in the cost calculation used by the farmer for planting 
decisions but are omitted from the simulation of realized utility, as most labor is 
provided without monetary cost (by family, friends, or for an in-kind payment). 
Finally, a coefficient of Absolute Risk Aversion of 0.00016 is assumed, which 
implies a coefficient of Relative Risk Aversion of approximately 1.5 for the repre-
sentative farmer. The modelled level of risk aversion is informed by the estimated 

10 This summing procedure is simply following the rules for adding variances, namely:

 
Var aX bY a Var X b Var Y ab X Y+( ) = ( ) + ( ) + ( )2 2 2 cov ,
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risk aversion parameters of De Brauw & Eozenou (2014) for Mozambican farmers, 
while taking into account the lower average incomes of Malawians.

3.5  Climate Scenarios

Three climate change scenarios are considered in these simulations. These include 
a “No Climate Change” scenario under which weather conditions remain at base-
line, that is as observed in the 2009–2010 rainy season, a “Mid-line Climate Change” 
scenario under which mean temperature, standard deviation of temperature and 
standard deviation of rainfall are all increased by 10% from baseline, and a “High 
Climate Change” scenario under which the levels of these three weather variables 
are increased by 20% from baseline. Due to the uncertainty of the effects of climate 
change on rainfall levels in Malawi, we do not simulate changes in mean rainfall as 
part of our climate change scenarios.11

Observed price levels in the 2009–2010 data are used for both inputs and outputs 
under all three climate change scenarios, thus the general equilibrium effects of 
climate change on market prices are not considered by this analysis.12

4  Simulation Results

As described earlier, we will simulate the impacts of insurance and extension under 
a variety of climate change scenarios. For the purposes of simulation, the function 
of the extension will be limited to providing farmers with information about chang-
ing weather conditions due to climate change. This is akin to extension activities 
only impacting m in the conceptual model. While it is likely that extension services 
would be much broader in practice, the simulation of such effects is left for later 
work. Since the effectiveness of these two policy instruments will be inter- connected 
when extension is influencing farmer perceptions about climate change and thus the 
returns to insurance acquisition, we also present some stylized simulations where 
both are implemented simultaneously. Throughout, we contemplate two distinct 
assumptions regarding constraints on staple crop cultivation for subsistence pur-
poses – a 50% and a 70% requirement – in part to illustrate the importance of crop 
diversification as a potential response to increased weather volatility and also to 

11 See McSweeney et al. (2012) for more information on the anticipated impacts of climate change 
on Malawi.
12 Given the high proportion of subsistence farmers in Malawi, increased output prices due to 
increased scarcity under climate change are likely to be detrimental on net, and thus farmer out-
comes simulated in a general equilibrium framework would likely be associated with lower levels 
of overall utility than those presented here.
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demonstrate the additional value of information for farmers that are less con-
strained – by subsistence requirements or otherwise – in their planting decisions.

4.1  Insurance

Insurance in this context is assumed to be rainfall index insurance with a predeter-
mined payout amount that is varied in certain simulations to model different levels 
of insurance coverage. Payouts are received if rainfall is below a pre-specified level, 
fixed in our simulations at the 30th percentile of the rainfall distribution at baseline. 
Universal participation in the rainfall insurance program is assumed when the pro-
gram is available, and premiums are assumed to be zero (or covered by the govern-
ment or other outside institution).13

We begin by looking at the impacts of insurance coverage on farmer decisions 
and outcomes. Panels a & b of Fig. 2 report the results of simulations in which the 
payout amount for rainfall insurance is varied between zero and 6000 MWK (which 
is slightly above 100% of expected net profits under baseline conditions) for each of 
the three climate change scenarios with a 70% staple requirement (Fig. 2a) and a 
50% staple requirement (Fig. 2b). As the level of payout increases we see the simu-
lated average total utility rise in all three climate change scenarios under both staple 
constraints. These simulations assume farmers are unaware of the changes to 
weather conditions under the climate change scenarios, and thus we observe no dif-
ferences in crop choice or CSA usage between scenarios. The changes in weather 
conditions do however affect farmer outcomes as illustrated by the lower utilities 
simulated under the Mid-line and High Climate Change scenarios. The greater the 
difference between farmer-anticipated and realized weather conditions, the larger 
the loss of utility to farmers.

It is worth noting that under more extreme climate change scenarios, the variance 
of rainfall (but not the mean) increases. This slightly increases the likelihood of 
payout at the 30th percentile of baseline rainfall (as well as at all other rainfall trig-
ger levels below the 50th percentile), but this change is not significant enough to be 
easily distinguished in the presented figures as the effects of climate change on 
production greatly outweigh the effects on the probability of insurance payout. 
Nonetheless, farmer outcomes improve slightly more under the Mid-line Climate 
Change scenario than under the No Climate Change scenario and under the High 
Climate Change scenario compared to the Mid-line Climate Change scenario 
because of the increase in likelihood of a payout.

Comparing outcomes under the more and less restrictive staple requirements, we 
see higher levels of diversification when the staple requirement is relaxed, but that 
greater diversification into a cash crop (in this case beans) opens the farmer up to 
greater harm under climate change.

13 Mapping this insurance policy and subsequent simulations into the conceptual model involves 
setting cψ = 0 and varying ψ exogenously.
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Fig. 2 (a) Simulated Utility by Insurance Payout, Unanticipated Climate Change – 70% Staple 
Requirement. Notes: Simulations are based on coefficient estimates and baseline parameter values 
from the Tropical Warm/Semiarid Agro-ecological Zone, which is the AEZ in Malawi for which 
the most data are available. Simulated profits under baseline conditions are equal to 5934 MWK, 
thus the maximum insurance payout simulated here amounts to a full replacement of baseline 
profits. All utility levels are normalized via the addition of 30,000 units. Crop Choice and CSA 
usage does not differ between scenarios because climate change is unanticipated. (b) Simulated 
Utility vs. Insurance Payout, Unanticipated Climate Change – 50% Staple Requirement. Notes: 
Simulations are based on coefficient estimates and baseline parameter values from the Tropical 
Warm/Semiarid Agro-ecological Zone, which is the AEZ in Malawi for which the most data are 
available. Simulated profits under baseline conditions are equal to 5152 MWK, thus the maximum 
insurance payout simulated here amounts to more than a full replacement of baseline profits. All 
utility levels are normalized via the addition of 30,000 units. Crop Choice and CSA usage does not 
differ between scenarios because climate change is unanticipated
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In Fig. 3, the payout amount of the rainfall trigger insurance is again varied (and 
the trigger level is still held fixed at the 30th percentile of baseline rainfall), only this 
time farmers are informed about the changes in weather conditions under the cli-
mate change scenarios and can adjust their planting decisions accordingly. This 
allows farmers to adopt additional CSA techniques in the face of harsher weather 
conditions, and also to switch diversification crop from Beans to Groundnut CG7 
(which is specifically noted for its drought tolerance, see Subrahmanyam et  al. 
2000). These adaptations on the part of the farmer lead to utility outcomes under 
climate change that are much more similar to the baseline outcomes than those 
achieved when changes in weather conditions were unanticipated. As weather varia-
tion increases, that is, as we move from the No Climate Change scenario to the 
Mid-line and on to the High Climate Change scenario, we see planting decisions 
moving toward greater adoption of CSA techniques, consistent with Eq. 11 in the 
conceptual model as well as the results of Arslan et al. (2013).14

Comparing Panels a & b in Figs. 2 and 3, we see again that the relaxation of 
staple requirements leads to further diversification and poorer outcomes under cli-
mate change. These results suggest that farmers that are currently somewhat better 
off (and thus are less constrained by subsistence requirements to plant a staple crop) 
are more susceptible to harm under unanticipated climate change. While informa-
tion regarding climate change (i.e.- when the changes in weather conditions are 
anticipated) improves outcomes for all farmers under the climate change scenarios, 
this improvement is most dramatic when staple requirements are less stringent, sug-
gesting a higher value of information for less constrained farmers. Put another way, 
without information on climate change, shifts in weather conditions have greater 
potential to harm farmers that are less constrained. Without good information on 
climate change, this effect would tend to increase subsistence constraints in succes-
sive years as farmers that began with more flexibility will tend to face greater harm 
from unanticipated changes in weather conditions. Finally, it is notable that better 
information regarding weather conditions (that is comparing Figs. 2 and 3) leads to 
additional uptake of CSA techniques, providing a concrete example of increased 
farmer adaptive behavior in the face of climate change following a risk management 
intervention.

4.2  Extension and Information Provision

Given the results in Figs. 2 and 3, we now turn to a more direct examination of how 
more information about changing weather conditions under climate change might 
impact farmer choices and outcomes. Panels a and b of Fig.  4 demonstrate the 
results of bringing farmer expectations regarding weather conditions closer in line 

14 We do not however see increasing diversification in response to growing weather variability as 
predicted by Equation 13. Likely reasons for this are discussed in Section IV.B below in the context 
of better information regarding variability.
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Fig. 3 (a) Simulated Utility by Insurance Payout, Anticipated Climate Change  – 70% Staple 
Requirement. Notes: Simulations are based on coefficient estimates and baseline parameter values 
from the Tropical Warm/Semiarid Agro-ecological Zone, which is the AEZ in Malawi for which 
the most data are available. Simulated profits under baseline conditions are equal to 5934 MWK, 
thus the maximum insurance payout simulated here amounts to a full replacement of baseline 
profits. All utility levels are normalized via the addition of 30,000 units. (b) Simulated Utility by 
Insurance Payout, Anticipated Climate Change – 50% Staple Requirement. Notes: Simulations are 
based on coefficient estimates and baseline parameter values from the Tropical Warm/Semiarid 
Agro-ecological Zone, which is the AEZ in Malawi for which the most data are available. Simulated 
profits under baseline conditions are equal to 5152 MWK, thus the maximum insurance payout 
simulated here amounts to more than a full replacement of baseline profits. All utility levels are 
normalized via the addition of 30,000 units
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Fig. 4 (a) Simulated Utility by Informedness Regarding Climate Change  – 70% Staple 
Requirement. Notes: Simulations are based on coefficient estimates and baseline parameter values 
from the Tropical Warm/Semiarid Agro-ecological Zone, which is the AEZ in Malawi for which 
the most data are available. All utility levels are normalized via the addition of 30,000 units. Crop 
Choice and CSA usage does not change under the No Climate Change scenario because weather 
conditions conform to farmer’s expectations. (b) Simulated Utility by Informedness Regarding 
Climate Change – 50% Staple Requirement. Notes: Simulations are based on coefficient estimates 
and baseline parameter values from the Tropical Warm/Semiarid Agro-ecological Zone, which is 
the AEZ in Malawi for which the most data are available. All utility levels are normalized via the 
addition of 30,000  units. Crop Choice and CSA usage does not change under the No Climate 
Change scenario because weather conditions conform to farmer’s expectations
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with the scenario conditions that drive yields. Partial information may capture either 
incomplete penetration of information provision (i.e. some share of perfectly 
informed farmers make for a representative farmer that is partially informed), 
imperfect information regarding the climate change scenario that farmers are 
encountering, or some combination of the two. However, since we simulate out-
comes for a single “representative farmer”, rather than all farmers on average, the 
simulations reflect an improving quality of information, such that the information 
the farmer relies on increasingly reflects the true conditions of the climate scenario 
that will determine yield outcomes. Over time, the smooth evolution of farmer 
expectations toward conditions under climate change could arise from straightfor-
ward Bayesian updating.

Under the No Climate Change scenario in Panels a & b of Fig. 4, we see that 
increased information has no effect on planting decisions or outcomes because there 
is no deviation between farmers’ baseline expectations and realized conditions (in 
effect, farmers are fully informed at baseline). However, when conditions do deviate 
from past levels – as they do under the Mid-Line and High Climate Change sce-
narios – we see that more information does drive different crop and CSA usage 
decisions. That is to say that farmer decisions change when farmer expectations 
about conditions deviate from baseline to the degree that another crop choice/CSA 
combination yields higher total utility. Specifically, as informedness regarding 
changing weather conditions increases, we see the adoption of SWC techniques – in 
addition to legume intercropping – and the planting of CG7 Groundnuts, which are 
high yielding and better suited to the weather conditions under climate change than 
Beans. Importantly we see that farmer outcomes improve as they are provided with 
additional information, and that the value of information increases as realized 
weather conditions deviate further from baseline expectations (that is, under sce-
narios in which climate change is more extreme).

Bringing expectations regarding weather conditions in line with the new realities 
under climate change is akin to increasing m in the conceptual model. In response 
we see increased CSA usage as predicted by Eq. 15, but we generally see a fall in 
the level of the diversification crop planted. This apparent contradiction with the 
predictions of Eq. 17 is likely explained by better yields of local maize under cli-
mate change conditions relative to the cash crops. In our simplified conceptual 
model, diversification only reduces yield variability, but in our empirical context it 
can also lower the yields of cash crops relative to the staple, potentially increasing 
the level of staple planted.

Returning to the simulation results, we again see that the loosening of staple 
requirements weakly increases the usage of diversification crops under all  scenarios. 
Additionally, farmers move away from baseline planting behaviors and achieve 
higher profits/utility with less information when they have a wider range of crop 
combination possibilities under the less restrictive staple requirements. This illus-
trates that farmers are better able to make use of partial information on climate 
change when they are less constrained by subsistence requirements. This point is 
particularly important given that perfect information on future weather conditions 
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cannot be provided in the real world, so any information will necessarily be partial 
information.

4.3  Insurance and Extension

Tables 2 and 3 examine the potential impacts of insurance and information provided 
in concert on farmer decisions under the Mid-line and High Climate Change sce-
narios respectively. Results are not presented for the No Climate Change scenario as 
information regarding climate change is of no value in that case. Moreover, we only 
present results under the 50% staple requirement in order to focus attention on the 
effects of changes in information and insurance coverage rather than the staple con-
straint. Simulated utility levels are not presented in these tables, but utility levels 
weakly increase as the levels of information and insurance payout increase (that is 
as we move toward the bottom right of each table). It is worth noting that the top and 
bottom rows of Tables 2 and 3 correspond to the dashed and dotted lines in Figs. 2b 
and 3b, while the first columns of the tables correspond to the dashed and dotted 
lines respectively in Fig. 4b.

Tables 2 and 3 show, without exception, that the amount of land dedicated to cash 
crops weakly increases as the level of insurance coverage increases. This finding is 
consistent with the conclusions of Collier et  al. (2009), who argue that weather 
index insurance can, if appropriately designed, be used to facilitate farmer adapta-
tion to climate change. These results suggest that government or donor assistance 
could be justified, and it should focus on funding the start-up costs of developing 
weather insurance markets and addressing the catastrophic layer of risk.

Turning to the effects of increased information regarding climate change, we see 
consistent switching from Beans as a cash crop to Groundnut CG7 which is better 
adapted to the climate change impacted weather conditions. Similarly, we see the 
wider adoption of SWC techniques as better information on the extent of climate 
change is made available to the farmers. Both these characterizations hold across 
insurance coverage levels, and suggest greater adaptation in the face of greater 
anticipated change, no matter the level of insurance coverage.

It is also worth noting that in a number of cases where insurance payouts are high 
and climate change expectations are moderate, hybrid maize will be planted rather 
than the local maize that is more typical. It would appear that these cases represent 
scenarios when the farmer, relieved of some downside risk by high insurance cover-
age, seeks to take advantage of the upside potential of hybrid maize. This response 
proves ex post problematic since hybrid maize is more sensitive to weather 
 variability. Once the full extent of the changes in weather conditions due to climate 
change are revealed, the farmer returns to more conservative cropping choices and 
the disincentivizing impacts of insurance coverage on adaptation disappear. These 
results, however, should be interpreted in light of the data limitation of the study as 
well as the characteristics of Malawian agriculture. As already pointed out, the IHS3 
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data used to model the relationships between input usage and maize yields do not 
allow to further distinguish between specific hybrid varieties including those that 
can be specifically adapted to climate change conditions. Moreover, Malawi in not 
a country of origin for the crop, which implies that genetic diversity is rather low 
compared to traditional maize domestication countries.15

5  Conclusions and Policy Implications

This chapter ventures into key support services that are explicitly addressed and 
contemplated in the Agriculture Sector Wide Approach (ASWAp) of Malawi- the 
national policy program of the country- namely: (1) technology generation and dis-
semination (whereby a key role is precisely identified for weather forecasting) and 
(2) institutional strengthening (including insurance) and capacity building.

The conceptual model built was also driven by results of an evidence base project 
that has been conducted in Malawi between 2012 and 2015 (FAO and GoM 2015). 
Results of the study indicate that:

 (a) weather variability is a key factor determining which strategies will work across 
different locations in Malawi for agricultural practices, types of crops and 
diversification strategies suggesting explicitly that “using weather data in plan-
ning any agricultural and food security intervention” would be highly 
advisable.

 (b) Improving communication of information and tailoring extension services to 
local conditions (including weather variability) is likely to increase adoption 
rates of different crops and agricultural practices as well as farm incomes across 
the country, therefore a stronger investment should be made to strengthen exten-
sion based service.

 (c) In terms of risk management instruments available to farmers, no insurance 
exists in the country and as such insurance schemes and simulations could be 
examined in more depth as part of the agricultural risk management portfolio of 
options provided by policymakers.

As a result, the chapter built an empirical model, which aimed at advancing the 
state of knowledge on the options and choices between diversification and land 
management practices, through the presence or absence of institutional support 
 provided by insurance and extension in the form of awareness of climate scenarios. 
Different potential welfare outcomes for agricultural households are, hence, inves-
tigated and examined as a result of the model. A third key institution, access to 
credit, is indirectly addressed through the implication of analysis conducted and 
results obtained.

15 We nevertheless recognize room for improvement in our analysis as additional information may 
become available from the new wave of the IHS (IHS4) that the World Bank is currently imple-
menting in Malawi.
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The conceptual model developed highlights that the interaction, in addressing 
risk, between diversification and land management complicates the role of policy 
levers and their impact. The model simulates the impacts of weather index insurance 
and extension under a range of climate change scenarios for two levels of staple 
requirements.

The empirical application, which presents results for farmers in the tropical 
warm/semi-arid AEZ of Malawi, builds on the conceptual model by estimating pro-
duction functions and yield variation functions for different crops, and then simulat-
ing the outcome of farmer decisions.

As a first result, the crucial role played by extension, although in this model sim-
ply limited to climatic scenarios, is confirmed by the simulations, indicating that 
more information on climatic variables and their impact on yields can drive farmers 
to choose different crops, as well as different and more sustainable land manage-
ment practices (SLM). It is interesting to note that among the SLM the main role is 
played by Soil and Water Conservation structures, confirming findings reported by 
FAO and GoM (2015), which suggested that “in areas where there is high and 
increasing variability of rainfall and higher aridity, the evidence indicates that sus-
tainable land management practices such as soil and water conservation, legume 
rotation or intercropping and agroforestry (fertilizer tree systems) are more produc-
tive than conventional practices”.

The important implication of this finding is that farmer welfare outcomes, driven 
by diversification of crop and adoption of SLM, improve as they are provided with 
additional information, and that the value of information increases as realized 
weather conditions deviate further from baseline expectations (that is, under sce-
narios in which climate change is more extreme). These results highlight how the 
value of information is higher for farmers that are less restricted in their planting 
choices, since they have a broader scope to adapt, suggesting important implications 
also with regard to access to other seed crops via credit.

Comparing outcomes under the more and less restrictive staple requirements, we 
see higher levels of diversification when the staple requirement is relaxed, but that 
greater diversification into a cash crop opens the farmer up to greater losses under 
climate change when this is not anticipated, suggesting that farmers that are cur-
rently somewhat better off (and thus are less constrained by subsistence require-
ments to plant a staple crop) are more susceptible to unanticipated climate change. 
While information regarding climate change (i.e. when the changes in weather con-
ditions are anticipated) improves outcomes for all farmers under the climate change 
scenarios, this improvement is most dramatic when staple requirements are less 
stringent.

Moving to the role of insurance, it is important to note that the insurance instru-
ment we analyzed is triggered by rainfall level and not by realized losses, as such 
the insurance parameters tend to not affect the cropping and land management prac-
tices adopted. This is important to avoid inhibiting adaptation measures. However, 
this may not always be the case in practice since diversification and management 
practices may differ from insurance in the way they affect a risk profile. Insurance 
will exclusively reduce downside risk whereas diversification and land management 
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practices may reduce both downside and upside risk. Indeed we observe that in the 
case where farmers anticipate climate change, as the insurance payout amount 
increases there is a switch in the level of diversification under the more pronounced 
climate change scenario. Interestingly this effect is in the direction of greater diver-
sification towards cash crops. This result is in line with literature that claims that a 
lack of access to insurance leads to a lower likelihood of farmers adopting new 
technologies (Feder et al. 1985; Antle and Crissman 1990). It is also confirmed by 
results from Asfaw et al. (2015), which suggest that policy interventions as well as 
insurance and credit scheme need to be prioritized taking households exposure to 
climatic risk into account and enabling farmers to pursue choices and diversify their 
portfolio of choices, for crop and income, so to reduce their vulnerability to poverty. 
This is suggested in our case, through the mechanism in play such that, as insurance 
reduces downside risk, farmers have an incentive to invest in higher risk and higher 
returns activities.

Last but not least, our simulations further suggest that extension and weather 
index insurance are complementary in the Malawian context, both leading to greater 
levels of adaptation and improved farmer welfare.

Farming is a risky enterprise and one that will only become riskier under climate 
change. While our analyses have highlighted the important role that extension and 
insurance can play in better managing that risk, limited financial resources will 
require governments to carefully weigh the costs and benefits of each strategy in the 
design of national or subnational policies. Although we did not explore it here, 
extension, in the form of information on climate change impacts, is likely to affect 
the budgetary outlays for any subsidized weather index insurance by helping in its 
design. The general conclusion is therefore that priority should be given to provid-
ing accurate and useful weather and climate information to farmers, as well as clear 
explanation of its implications in terms of adaptation options. Insurance, although 
not an adaptation strategy per se, can help in the adaptation process if appropriately 
designed to minimize the moral hazard that may attend insurance schemes that 
incentivize additional risk taking.
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