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Abstract. Many statistical models are constructed using very basic
statistics: mean vectors, variances, and covariances. Gaussian mixture
models are such models. When a data set contains sensitive information
and cannot be directly released to users, such models can be easily con-
structed based on noise added query responses. The models nonetheless
provide preliminary results to users. Although the queried basic statistics
meet the differential privacy guarantee, the complex models constructed
using these statistics may not meet the differential privacy guarantee.
However it is up to the users to decide how to query a database and
how to further utilize the queried results. In this article, our goal is to
understand the impact of differential privacy mechanism on Gaussian
mixture models. Our approach involves querying basic statistics from a
database under differential privacy protection, and using the noise added
responses to build classifier and perform hypothesis tests. We discover
that adding Laplace noises may have a non-negligible effect on model
outputs. For example variance-covariance matrix after noise addition is
no longer positive definite. We propose a heuristic algorithm to repair
the noise added variance-covariance matrix. We then examine the classi-
fication error using the noise added responses, through experiments with
both simulated data and real life data, and demonstrate under which
conditions the impact of the added noises can be reduced. We compute
the exact type I and type II errors under differential privacy for one sam-
ple z test, one sample t test, and two sample t test with equal variances.
We then show under which condition a hypothesis test returns reliable
result given differentially private means, variances and covariances.
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1 Introduction

Building a model over a data set is often a straightforward task. However, when
the data set contains sensitive information, special care has to be taken. Instead
of having direct access to data, the users are provided with a sanitized view of
the database containing private information, either through perturbed individual
records or perturbed query responses.

From users’ perspective, knowing the responses to their queries are perturbed,
users may not want to directly query the output of a complex model. Many
statistical models are constructed using very basic statistics. Knowing the val-
ues of means, variances and covariances, or equivalently the sums, the sums of
squares and the sums of cross products, users can build least square regression
models, conduct principal component analysis, construct hypothesis tests, and
construct Bayesian classifiers under Gaussian mixture models, etc. Although the
basic statistics (e.g., means, variances and covariances) satisfy differential pri-
vacy guarantee, the complex models constructed using these basic statistics may
no longer meet the differential privacy guarantee.

We notice it is up to the users to decide how to query a database and how
to further utilize the queried results. Building statistical models using the per-
turbed basic statistics provides quick initial estimates. If the results based on
the perturbed query responses are promising, users can then proceed to improve
the accuracy of the results.

In this article, our goal is to understand the impact of differential privacy
mechanism for the mixture of Gaussian models. Gaussian mixture models refer
to the case where each model follows multivariate Gaussian distribution. Hence
users only need to obtain the mean vector and the variance-covariance matrix for
each class. Out of all the statistical techniques that can be applied to Gaussian
mixture models without further querying the database, we focus on building
a classifier or performing a hypothesis test with the noisy responses. Through
extensive experiments and theoretical discussions, we show when the classifiers
and tests work reliably under privacy protection mechanism, in particular, dif-
ferential privacy.

k-anonymity [17,18,20] and differential privacy [5] are two major privacy
preserving models. Under k-anonymity model the perturbed individual records
are released to the users, while under differential privacy model the perturbed
query responses are released to the users. Recent work pointed out the two
privacy preserving models are complimentary [3]. Main contributions of this
article could be summarized as follows:

1. We provide theoretical results on the type I and type II errors under differ-
ential privacy for several hypothesis tests. We also show when a hypothesis
test returns reliable result under differential privacy mechanism.

2. We propose a heuristic algorithm to repair the noise added variance-
covariance matrix, which is no longer positive definite and cannot be directly
used in building a Bayesian classifier.
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3. We examine the classification error for the multivariate Gaussian case through
experiments. The experiments demonstrate when the impact of the added
noise can be reduced.

The rest of the paper is organized as follows. Section 1.1 provides a brief
overview of differential privacy mechanism. Related work is discussed in Sect. 2.
Section 3 provides theoretical results for hypothesis tests under differential pri-
vacy. In Sect. 4 we provide an algorithm to repair the noise added variance-
covariance matrix, and study the classification error through extensive experi-
ments. Section 5 concludes our discussion.

1.1 Differential Privacy

Let D = {X1, · · · ,Xd} be a d-dimensional database with n observations, where
the domain of each attribute Xi is continuous and bounded. We are interested in
building Gaussian mixture models over database D. One only needs to compute
the expected values of each attribute Xi and the variance-covariance matrix,
Σij = cov(Xi,Xj) = E[(Xi − μi)(Xj − μj)], where μi = E(Xi). More details
follow in Sect. 4. Users obtain the values of μis and Σijs by querying the database
D. The query results are perturbed according to differential privacy mechanism.
Next we briefly review differential privacy.

Given a set of queries Q = {Q1, ..., Qq}, Laplace mechanism for differential
privacy adds Laplace noise with parameter λ to the actual value. λ is deter-
mined by privacy parameter ε and sensitivity S(Q). Here, ε is a pre-determined
parameter, selected by the database curator, while sensitivity S(Q) is a func-
tion of the query Q. Hence differential privacy mechanism minimizes the risk of
identifying individual records from a database containing sensitive information.

Sensitivity is defined over sibling databases, which differ in only one obser-
vation.

S(Q) = max
∀ sibling databases D1,D2

q∑

i=1

|QD1
i − QD2

i | (1)

That is, sensitivity of Q is the maximum difference in the L1 norm of the query
response caused by a single record update. Sensitivities for standard queries,
such as sum, mean, variance-covariance are well established [6].

Once ε and S(Q) are known, λ is set such that λ ≥ S(Q)/ε. Then for
each query Q, the database first computes the actual value QD in D, then
adds Laplace noise to obtain the noisy response RD, and return RD to users:
RD = QD + r, where r ∼ Laplace(λ). There have been many work on sensitiv-
ity analysis. For querying mean, variance and covariance, we use the sensitivity
results as in [22] in this article. Later in the experimental studies, the Laplace
noises are added according to the results in [22]. Although there are other tech-
niques to satisfy differential privacy (e.g., exponential mechanism [16]), for the
three basic queries needed to build Gaussian mixture models, we leverage the
Laplace mechanism discussed above.
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2 Related Work

Gaussian mixture models are widely used in practice [4,9]. Differential privacy
mechanism [5] models the database as a statistical database. Random noises
are added to the responses to user queries. The magnitude of random noise is
proportional to the privacy parameter ε and the sensitivity of the query set.
Different formulations of differential privacy have been proposed. One definition
of sensitivity consider sibling data sets that have the same size but differ in
one record [5,7]. Other studies have sibling data sets through insertion of a new
record sets [6]. We follow the formulation in [5] in this article.

Classification under differential privacy has received some attention. In [8],
Friedman et al. built a decision tree, a method of ID3 classification, through
recursive queries retrieving the information gain. Jagannathan et al. [10] built
multiple random decision trees using sum queries. [1] proposed perturbing the
objective function before optimization for empirical risk minimization. The lower
bounds of the noisy versions of convex optimization algorithms were studied.
Privacy preserving optimization is an important component in some classifiers,
such as regularized logistic regression and support vector machine (SVM). [12]
extended the results in [1], and also proposed differentially private optimiza-
tion algorithms for convex empirical risk minimization. [19] proposed a privacy
preserving mechanism for SVM.

In [14] every component in a mixture population follows a Gaussian mixture
distribution. A perturbation matrix was generated based on a gamma distrib-
ution. Gamma perturbations were included in the objective function as multi-
pliers, and a classifier was learned through maximizing the perturbed objective
function. On the other hand, we consider classifiers that can be constructed using
very basic statistics, i.e., means, variances and covariances, and show how their
performance is affected by the added noises. In this article, we present Bayes
classifiers based on Gaussian mixture models by querying the mean vector and
the variance-covariance matrix for each class.

[2] proposed an algorithm using a Markov Chain Monte Carlo procedure
to produce principal components that satisfy differential privacy. It is a dif-
ferentially private lower rank approximation to a semi-positive definite matrix.
Typically the rank k is much smaller than the dimension d. [11] also proposed an
algorithm to produce differentially private low rank approximation to a positive
definite matrix. [15] focused on producing recommendations under differential
privacy. In [15], the true ratings were perturbed. A variance-covariance matrix
was computed using the perturbed ratings; noises were added to the resulting
matrix; then a low rank approximation to the noise added matrix was computed.
Compared to the existing work, we focus on the scenario where all the variables
are used to learn a variance-covariance matrix and the subsequent classifier and
dimension reduction is not needed.

[13] proposed the differentially private M-estimators, such as sample quan-
tiles, maximum likelihood estimator, based on the perturbed histogram. Our
work has a different focus. We examine the classifiers and hypothesis tests con-
structed using the differentially private sample means, variances and covariances.
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[21] derived rules for how to adjust sample sizes to achieve a pre-specified power
for Pearson’s χ2 test of independence and the test of sample proportion. For
the second test, when sample size is reasonably large, the sample proportion
is approximately normally distributed. [21] developed sample size adjustment
results based on the approximate normal distribution. Our work provides theo-
retical results to compute the exact type I and type II errors for one sample z
test, one sample t test, and two sample t test. Both type I and type II errors are
functions of ε and n. Hence with a known ε value users can obtain a minimum
sample size required to achieve a pre-specified power while the exact type I error
is controlled by a certain upper bound.

3 Hypothesis Tests Under Differential Privacy

Differential privacy mechanism has a big impact on hypothesis tests because the
test statistic is now created using the noise added query results, and hypothesis
tests often apply to data with smaller sample size than classification. Next we
provide the distributions for the noise added test statistic under the null value
and an alternative value.

Only when we know the true λs for the Laplace noises, we can numerically
compute the exact p-value given a noise added test statistic. The true λs are
unknown to the users querying a database. Hence in this section we examine a
more realistic scenario: A rejection region is constructed using the critical values
from a Gaussian distribution or a t distribution as usual, users compute a test
statistic using the noise added mean and variance, and make a decision. The
exact type I and type II errors can be computed numerically for likely ε values,
which provide a reliability check of the test for users. Here we show for what
sample size the exact type I and type II errors are close to those without the
added noises. We consider the most commonly used hypothesis tests: the one
sample z test, the one sample t test, the two sample t test with equal variance.

For the two sample t test with unequal variances, the degrees of freedom for
the standard test is also affected by the added Laplace noises. To construct a
rejection region and compute the exact type I and type II errors merits more
effort in this case. It is part of our future work.

3.1 One Sample z Test

Assume n samples Y1, Y2, ..., Yn i.i.d ∼ N(μ, σ2), where σ2 is known. The null
hypothesis is H0 : μ = μ0. We consider the common two-sided alternative
hypothesis Ha : μ �= μ0 or the one-sided Ha : μ > μ0 and Ha : μ < μ0.

The test statistic is based on the noise added sample mean. Ȳ a = Ȳ + r,
where r ∼ Laplace(λ). The test statistic under differential privacy is

Z =
Ȳ a − μ0

σ/
√

n
.
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Ȳ a follows a Gaussian-Laplace mixture distribution, GL(μ, σ2, n, λ). It has
the cumulative distribution function (CDF) Fa(y|μ) as follows.

Fa(y|μ) = Φ

(
y − μ

σ/
√

n

)
+

1
2

exp{y − μ

λ
+

σ2

2nλ2
}Φ

(
− y − μ

σ/
√

n
− σ

λ
√

n

)

− 1
2

exp{−y + μ

λ
+

σ2

2nλ2
}Φ

(
y − μ

σ/
√

n
− σ

λ
√

n

)
, (2)

where Φ(·) is the CDF of the unit Gaussian distribution.
We can easily derive the distribution of the test statistic under the null value

and an alternative value by re-scaling Ȳ a. However for the one sample z test
the computation of the exact type I and type II errors can be done in a simpler
fashion. Here and for the rest of this section we show the exact type I and type
II errors for the two-sided alternative Ha : μ �= μ0. The results for the one-sided
alternatives can be derived similarly.

Let α be the significance level of the test. Let zα
2

be the (1 − α
2 ) quantile of

the unit Gaussian distribution (i.e., the upper quantile). α and β are the type I
and type II errors for the standard test, without the added Laplace noise. For
the test under differential privacy, we have the exact type I error, αa, and type
II error, βa, as follows.

αa = P

(∣∣∣∣ Ȳ
a − μ0

σ/
√

n

∣∣∣∣ > z α
2

|H0

)
= 1 − Fa

(
μ0 + z α

2

σ√
n

| μ0

)
+ Fa

(
μ0 − z α

2

σ√
n

| μ0

)

= α + e

−z α
2

σ

λ
√

n
+ σ2

2nλ2 Φ

(
z α

2
− σ

λ
√

n

)
− e

z α
2

σ

λ
√

n
+ σ2

2nλ2 Φ

(
−z α

2
− σ

λ
√

n

)
,

βa = P

(∣∣∣∣ Ȳ
a − μ0

σ/
√

n

∣∣∣∣ < z α
2

|Ha

)
= Fa

(
μ0 + z α

2

σ√
n

| μa

)
− Fa

(
μ0 − z α

2

σ√
n

| μa

)

= β +
1

2
exp{

−z α
2

σ

λ
√

n
+

μ0 − μa

λ
+

σ2

2nλ2
} × Φ

(
−z α

2
+

μ0 − μa

σ/
√

n
+

σ

λ
√

n

)

+
1

2
exp{

z α
2

σ

λ
√

n
− μ0 − μa

λ
+

σ2

2nλ2
} × Φ

(
−z α

2
+

μ0 − μa

σ/
√

n
− σ

λ
√

n

)

− 1

2
exp{ σ2

2nλ2
+

μ0 − μa

λ
−

z α
2

σ

λ
√

n
} +

1

2
exp{ σ2

2nλ2
+

μ0 − μa

λ
+

z α
2

σ

λ
√

n
}

− 1

2
exp{

z α
2

σ

λ
√

n
+

μ0 − μa

λ
+

σ2

2nλ2
} × Φ

(
z α

2
+

μ0 − μa

σ/
√

n
+

σ

λ
√

n

)

− 1

2
exp{

−z α
2

σ

λ
√

n
− μ0 − μa

λ
+

σ2

2nλ2
} × Φ

(
z α

2
+

μ0 − μa

σ/
√

n
− σ

λ
√

n

)
.

3.2 One Sample t Test

Assume n samples Y1, Y2, ..., Yn i.i.d ∼ N(μ, σ2), where σ2 is unknown. The null
hypothesis is H0 : μ = μ0. The common alternative hypotheses are Ha : μ �= μ0,
Ha : μ > μ0, or Ha : μ < μ0. Suppose users query the sample mean and
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the sample variance. Then the test statistic involves two noise added sample
statistics,

T a =
Ȳ a − μ0

Sa/
√

n
,

where Y a = Ȳ + r1 with r1 ∼ Laplace(λ1), and Sa =
√

S2 + r2 with r2 ∼
Laplace(λ2).

To obtain the distribution of the test statistic under either the null value or
an alternative value, we re-write the test statistic as

T a =
Za

Xa
, where Za =

Ȳ a − μ

σ/
√

n
+

μ − μ0

σ/
√

n
and Xa =

√
(Sa)2/σ2.

We obtain the distribution of Za by rescaling a Gaussian-Laplace mixture distri-
bution. Similarly we obtain the distribution of Xa based on a Chi-Square-Laplace
mixture distribution. Let FZ(z) be the CDF of Za and fX(x) be the PDF of
Xa.

FZ(z|μ) = Φ (z − δ) +
1
2

exp{σ(z − δ)
λ1

√
n

+
σ2

2nλ2
1

} × Φ

(
−(z − δ) − σ

λ1
√

n

)

− 1
2

exp{−σ(z − δ)
λ1

√
n

+
σ2

2nλ2
1

} × Φ

(
(z − δ) − σ

λ1
√

n

)
, (3)

where δ = μ0−μ
σ/

√
n
. δ equals to 0 under the null and does not equal to 0 under the

alternative. The distribution of Xa does not depend on the mean.

fX(x) = [ 2xfg(x
2|n − 1

2
, θ0) +

σ2x

λ2
e
− σ2x2

λ2 (
θ1

θ0
)

n−1
2 Fg(x

2|n − 1

2
, θ1)

− xe
− σ2x2

λ2 (
θ1

θ0
)

n−1
2 fg(x

2|n − 1

2
, θ1) +

σ2x

λ2
e

σ2x2
λ2 (

θ2

θ0
)

n−1
2 (1 − Fg(x

2|n − 1

2
, θ2))

− xe
σ2x2

λ2 (
θ2

θ0
)

n−1
2 fg(x

2|n − 1

2
, θ2) ] / [1 − 1

2
(
θ2

θ0
)

n−1
2 ] (4)

where θ0 = 2
n−1 , θ1 = 2

n−1−2σ2/λ2
, θ2 = 2

n−1+2σ2/λ2
, and Fg and fg are the CDF

and PDF of a gamma distribution respectively.
The distribution of the test statistic T a given mean μ is

FT (t|μ) =
{∫ ∞

0
FZ(tx|μ)fX(x) dx t ≥ 0∫ ∞

0
(1 − FZ(tx|μ)) fX(x) dx t < 0 (5)

Let tα
2 ,n−1 be the (1 − α

2 ) quantile of a t distribution with n − 1 degrees
of freedom. The exact type I and type II errors can be computed numerically.
Again we just show αa and βa under the two sided alternative. Similarly we can
obtain the revised errors for the one sided alternatives.

αa = P
(|T a| > tα

2 ,n−1

∣∣μ = μ0

)
= 1 − FT (tα

2 ,n−1|μ0) + FT (−tα
2 ,n−1|μ0),

βa = P
(|T a| < tα

2 ,n−1

∣∣μ = μa

)
= FT

(
tα

2 ,n−1|μa

) − FT

(−tα
2 ,n−1|μa

)
.
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3.3 Two Sample t Test with Equal Variance

Assume n1 samples Y 1
1 , Y 1

2 , ..., Y 1
n1

i.i.d ∼ N(μ1, σ
2), n2 samples Y 2

1 , Y 2
2 , ..., Y 2

n2

i.i.d ∼ N(μ2, σ
2), where σ2 is unknown. The null hypothesis is H0 : μ1 −μ2 = 0.

The common alternative hypotheses are Ha : μ1 − μ2 �= 0, Ha : μ1 − μ2 > 0, or
Ha : μ1 − μ2 < 0.

Suppose users query the sample means and the sample variances. Then the
test statistic involves multiple noise added sample statistics.

T a =
Ȳ a
1 − Ȳ a

2

Sa
√

1
n1

+ 1
n2

,

where Ȳ a
1 = Ȳ1+r1, Ȳ a

2 = Ȳ2+r2, and Sa =
√

(n1−1)(S2
1+r3)+(n2−1)(S2

2+r4)
n1+n2−2 , with

ri ∼ Laplace(λi), i = 1 ∼ 4. We re-write the test statistic as

T a =
Za

Xa
, where Za =

Ȳ a
1 − Ȳ a

2 − (μ1 − μ2)

σ
√

1
n1

+ 1
n2

+
(μ1 − μ2)

σ
√

1
n1

+ 1
n2

and Xa =
Sa

σ
.

Since the Laplace noises are added independently, we can then obtain the distri-
bution of the numerator by convoluting Gaussian and Laplace distributions. The
distribution of Xa is based on convolution of chi-square and Laplace distribu-
tions. The distributions of Za and Xa depend on the Laplace noise parameters
λi, i = 1 ∼ 4. We obtain their distributions under two separate cases. Let
υ = n1 + n2 − 2. Let δ = μ1−μ2

σ
√

1
n1

+ 1
n2

. δ equals to 0 under H0 and is non-zero

under Ha.

Distribution of Za, λ1 �= λ2: We have the CDF

FZ(z|μ1 − μ2) = Φ (z − δ) − λ2
2

2(λ2
1 − λ2

2)
eτ2(z−δ)+

τ2
2
2 (1 − Φ(z − δ + τ2))

+
λ2
2

2(λ2
1 − λ2

2)
e

τ2
2
2 −τ2(z−δ)Φ(z − δ − τ2) +

λ2
1

2(λ2
1 − λ2

2)
e

τ2
1
2 +τ1(z−δ)(1 − Φ(z − δ + τ1))

− λ2
1

2(λ2
1 − λ2

2)
e

τ2
1
2 −τ1(z−δ)Φ(z − δ − τ1) (6)

where τ1 = σ
√

1
n1

+ 1
n2

/λ1, and τ2 = σ
√

1
n1

+ 1
n2

/λ2.

Distribution of Za, λ1 = λ2: We have the CDF

FZ(z|μ1 − μ2) = Φ (z − δ) −
(

1
2

+
τ(z − δ)

4
− τ2

4

)
e

τ2
2 −τ(z−δ)Φ (z − δ − τ)

− τ

4
√

2π
e

τ2
2 −τ(z−δ)− (z−δ−τ)2

2 +
τ

4
√

2π
e

τ2
2 +τ(z−δ)− (z−δ+τ)2

2

+ (
1
2

− τ(z − δ)
4

− τ2

4
)e

τ2
2 +τ(z−δ)(1 − Φ(z − δ + τ)) (7)
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where τ = σ
√

1
n1

+ 1
n2

/λ1.

Distribution of Xa, λ3 �= λ4: It does not depend on μ1 − μ2. Note υ =
n1 + n2 − 2. We have the PDF

fX(x) = [2xfG(x2;
υ

2
, θ0) +

b22
b22 − b21

e−b1x2
(b1x)(

θ1

θ0
)

υ
2 FG(x2;

υ

2
, θ1)

− b22x

b22 − b21
e−b1x2

(
θ1

θ0
)

υ
2 fG(x2;

υ

2
, θ1) − b21

b22 − b21
e−b2x2

(b2x)(
θ2

θ0
)

υ
2 FG(x2;

υ

2
, θ2)

+
b21x

b22 − b21
e−b2x2

(
θ2

θ0
)

υ
2 fG(x2;

υ

2
, θ2) +

b22
b22 − b21

eb1x2
(b1x)(

θ3

θ0
)

υ
2 (1 − FG(x2;

υ

2
, θ3))

− b22x

b22 − b21
eb1x2

(
θ3

θ0
)

υ
2 fG(x2;

υ

2
, θ3) − b21

b22 − b21
eb2x2

(b2x)(
θ4

θ0
)

υ
2 (1 − FG(x2;

υ

2
, θ4))

+
b21x

b22 − b21
eb2x2

(
θ4

θ0
)

υ
2 fG(x2;

υ

2
, θ4)]/[1 − b22

2(b22 − b21)
(
θ3

θ0
)

υ
2 +

b21
2(b22 − b21)

(
θ4

θ0
)

υ
2 ]

where τ1 = σ
√

1
n1

+ 1
n2

/λ1, τ2 = σ
√

1
n1

+ 1
n2

/λ2, b1 = (n1+n2−2)σ2

(n1−1)λ3
, b2 =

(n1+n2−2)σ2

(n2−1)λ4
, θ0 = 2

n1+n2−2 , θ1 = 2
n1+n2−2−2b1

, θ2 = 2
n1+n2−2−2b2

, θ3 =
2

n1+n2−2+2b1
, θ4 = 2

n1+n2−2+2b2
.
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Fig. 1. Exact type I errors for increasing sample size n and five εs: 0.2, 0.4, 0.6, 0.8,
and 1. Top left is one sample z test; top right is one sample t test; bottom left is two
sample t test with equal sample size and equal variance; bottom right is two sample t
test with unequal sample sizes and equal variance.
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Fig. 2. Red line X is for one sample z test; blue line o is for one sample t test; pink
line triangle is for two sample t test with equal sample size and equal variance; green
line + is for two sample t test with unequal sample size and equal variance. n = 50.
Left: ε = 0.2; Middle: ε = 0.6; Right: ε = 1. (Color figure online)
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Fig. 3. Red line X is for one sample z test; blue line o is for one sample t test; pink
line triangle is for two sample t test with equal sample size and equal variance; green
line + is for two sample t test with unequal sample size and equal variance. n = 100.
Left: ε = 0.2; Middle: ε = 0.6; Right: ε = 1. (Color figure online)

Distribution of Xa, λ3 = λ4: Again, it does not depend on μ1 − μ2. We have
the PDF
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where b = 2σ2/λ3, θ0 = 2
n1+n2−2 , θ1 = 2

n1+n2−2−b , and θ2 = 2
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Given the Laplace noise parameters λi, we select the CDF and PDF of Za

and Xa respectively. The distribution of the test statistic T a given the value of
μ1 − μ2 follows Eq. 5. Let tα

2 ,υ be the (1 − α
2 ) quantile of a t distribution with υ

degrees of freedom. The exact type I and type II errors again can be computed
numerically. We show αa and βa under the two sided alternative. Similarly we
can obtain the revised errors for the one sided alternatives. Let δ = μ1 − μ2.

αa = P
(|T a| > tα

2 ,υ | δ = 0
)

= 1 − FT (tα
2 ,υ | δ = 0) + FT (−tα

2 ,υ | δ = 0),

βa = P
(|T a| < tα

2 ,υ | δ �= 0
)

= FT (tα
2 ,υ | δ �= 0) − FT (−tα

2 ,υ | δ �= 0).

3.4 Experimental Evaluation

To examine when the exact type I and II errors are less reliable, we run a set of
experiments and provide the results in the following tables and figures. For all
the experiments we set α = 0.05, increase sample size n from 50 to 400 by steps
of 25, and examine five ε values, 0.2, 0.4, 0.6, 0.8 and 1. λ = 1/(niε).
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Fig. 4. Red line X is for one sample z test; blue line o is for one sample t test; pink
line triangle is for two sample t test with equal sample size and equal variance; green
line + is for two sample t test with unequal sample size and equal variance. n = 200.
Left: ε = 0.2; Middle: ε = 0.6; Right: ε = 1. (Color figure online)

In Table 1, we show the exact type I errors for selected sample size n: 50,
100, 200, 300, and 400. Figure 1 shows the exact type I errors for the tests with
increasing sample size n. As sample size increases and ε becomes larger, the
exact type I errors is approaching α = 0.05. Considering the exact type I error
only, when users construct a test statistic with noise added mean and variance,
the sample size needs to 100 or larger to provide a reliable result for moderate
to small noise. For large noise, i.e. ε ≤ 0.2, the sample size needs to be 400 or
larger for a reliable test.

Figures 2, 3, 4 and 5 show the type II errors with noise added query results
for selected n: 50, 100, 200, 400 and ε: 0.2, 0.6, 1. Hypothesis tests often operate
with far less samples than classification, since the test is always significant for



134 X. Tong et al.

Different

Ty
pe

 II
 E

rro
r

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0
Different

Ty
pe

 II
 E

rro
r

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0
Different

Ty
pe

 II
 E

rro
r

0.0

0.2

0.4

0.6

0.8

1.0

−1.0 −0.5 0.0 0.5 1.0

Fig. 5. Red line X is for one sample z test; blue line o is for one sample t test; pink
line triangle is for two sample t test with equal sample size and equal variance; green
line + is for two sample t test with unequal sample size and equal variance. n = 400.
Left: ε = 0.2; Middle: ε = 0.6; Right: ε = 1. (Color figure online)

large dataset. For the tests considered in this article, the type I errors based on
noise added query results decrease sharply as sample size increases. Type II error
depends on the difference between the true value and the hypothesized value.
The type II error under differential privacy also improves significantly as sample
size increases and ε becomes larger.

Notice users cannot know how much noises are added to the query results.
Small noises can cause major distortion to the test results. We must apply dif-
ferential privacy query results with caution in hypothesis tests. Often users have
only a handful or a few dozen samples in a test, the direct noise addition makes
the test result unreliable. With very small datasets, users need the clean query
results or direct access to the raw data for a reliable output.

4 Differentially Private Bayesian Classifier for Gaussian
Mixture Models

Let database D = {X1, . . . , Xd,W}, where W is a binary class label, Dom(W ) =
{w1, w2}, and each Xi, 1 ≤ i ≤ d is a continuous attribute. A Bayesian classifier
has the following decision rule:

Assign a record x to w1 if P (w1|x) > P (w2|x) ; otherwise assign it to w2.

The probabilities P (wi|x) can be calculated as: P (wi|x) = p(x|wi)P (wi)/p(x).
If p(x|wi) follows multivariate Gaussian distribution, it is known as the Gaussian
mixture model [4]. For each class wi, its mean μi and the variance-covariance
matrix Σi of p(x|wi) ∼ N(μi, Σi) are estimated from the data set D. For binary
case, the Bayes error (i.e., the classification error) is calculated as [4]:

Bayes Error =
∫

R1

p(x|w2)P (w2)dx +
∫

R2

p(x|w1)P (w1)dx.
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Table 1. (a) Z test type I error with added noises. σ = 0.5. (b) One sample t test
type I error with added noises. σ = 0.4. (c) Two sample t test with equal sample size
type I error with added noises. σ1 = σ2 = 0.35. n1 = n2 = n. (d) Two sample t test
with unequal sample size type I error with added noises. σ1 = σ2 = 0.2. n1 = n and
n2 = 1.1n.

n ε = 0.2 ε = 0.4 ε = 0.6 ε = 0.8 ε = 1 n ε = 0.2 ε = 0.4 ε = 0.6 ε = 0.8 ε = 1

a b

50 0.3177 0.1542 0.1011 0.0794 0.0689 50 0.3805 0.2109 0.1373 0.1023 0.0841

100 0.2251 0.1070 0.0762 0.0647 0.0594 100 0.2953 0.1415 0.0935 0.0746 0.0657

200 0.1542 0.0794 0.0631 0.0573 0.0546 200 0.2035 0.0968 0.0711 0.0618 0.0575

300 0.1239 0.0697 0.0587 0.0548 0.0531 300 0.1606 0.0813 0.0639 0.0578 0.0549

400 0.1070 0.0647 0.0565 0.0536 0.0523 400 0.1363 0.0734 0.0603 0.0559 0.0537

c d

50 0.4645 0.2576 0.1612 0.1157 0.0924 50 0.4977 0.3748 0.2726 0.1975 0.1518

100 0.3609 0.1673 0.1057 0.0815 0.0701 100 0.4944 0.2920 0.1844 0.1319 0.1039

200 0.2472 0.1108 0.0774 0.0653 0.0597 200 0.4066 0.1976 0.1236 0.0922 0.0744

300 0.1936 0.0907 0.0681 0.0601 0.0564 300 0.3376 0.1557 0.1001 0.0714 0.0602

400 0.1627 0.0805 0.0634 0.0575 0.0542 400 0.2917 0.1320 0.0871 0.0613 0.0549

R1 is the region where records are labeled as class 1, and R2 is the region where
records are labeled as class 2.

In this article we examine Bayes error for Gaussian mixture models under
differential privacy protection. The database D only needs to return the following
for users to build a Bayesian classifier:

– The sample size in D, which has sensitivity 0,
– The proportions of the two classes, i.e., P (w1) and P (w2),
– For each category, mean μi and variance-covariance Σi of the multivariate

Gaussian distribution for p(x|wi).

Bounded variables fit well into differential privacy mechanism. With
unbounded variables one very large or small record can cause a significant
increase the sensitivity. Notice Gaussian distribution is unbounded. Hence
we work with truncated Gaussian distribution over interval [μ − 6σ, μ + 6σ],
a probability range of 0.999999998. Truncated Gaussian has density
I{μ−6σ≤x≤μ+6σ}(x) f(x)

Φ(6)−Φ(−6) .

4.1 Repair Noise Added Variance-Covariance Matrix

Let Σ̂ = (σ̂ij)d×d be the sample variance-covariance matrix. When users query
variances and covariances separately, independent Laplace noises are added to
every element of Σ̂. Let A = (rij)d×d be the matrix of independent Laplace
noises, where rij = rji. The returned query result is ΣQ = Σ̂ + A.

ΣQ is the noise added variance-covariance matrix, which is the results that
users can easily obtain to test their model. ΣQ is still symmetric but seize to be
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positive definite. In order to have a valid variance-covariance matrix, we repair
the noise added variance-covariance matrix, and obtain a positive definite matrix
Σ+ close to ΣQ, since Σ̂ is not disclosed to users under differential privacy.

Let (lj , ej), j = 1, ..., d be the eigenvalue and eigenvector pairs of ΣQ, where
the eigenvalues follow the decreasing order, l1 ≥ l2 ≥ ... ≥ ld. The last several
eigenvalues of ΣQ are negative. Let lk, ..., ld be the negative eigenvalues. The
positive definite matrix Σ+ has eigenvalue and eigenvector pairs as the following:
(l1, e1), ..., (lk−1, ek−1), (l+k , ek), ..., (l+d , ed). We keep the eigenvectors, and use
an optimization algorithm to search over positive eigenvalues to find a Σ+ that
minimizes the determinant of Σ+ − ΣQ.

(l+k , ..., l+d ) = argmin |Σ+ − ΣQ|.
Let Ej = eje

′
j , j = 1, ..., d. We have

Σ+ − ΣQ =
d∑

j=k

(l+j − lj)Ej .

Therefore we perform a fine grid search over wide intervals to obtain positive
eigenvalues that

(l+k , ..., l+d ) = argmin{wk>0,...,wd>0}|
d∑

j=k

(wj − lj)Ej |.

4.2 Experimental Evaluation

We have conducted extensive experiments in this section. We consider binary
classification scenario. To understand how differential privacy affects the Bayes
error, we do not want to introduce any other errors. Note Gaussian distribution
may not represent the underlying data accurately. To avoid additional errors
due to modeling real data distribution inaccurately, we generate data sets from
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Fig. 6. Small training sample LDA Bayes error. Left: 2 dimension; Middle: 5 dimension;
Right: 10 dimension.
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Right: 10 dimension.
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Fig. 9. Large training sample QDA Bayes error. Left: 2 dimension; Middle: 5 dimension;
Right: 10 dimension.

known Gaussian mixture parameters. The parameters are estimated from real
life data in two experiments, and synthetic in the rest.

In Eq. 4, if the two Gaussian distributions have the same variance-covariance
matrix, we perform a linear discriminant analysis (LDA). If the two Gaussian
distributions have different variance-covariance matrices, we perform a quadratic
discriminant analysis (QDA). Every experimental run has the following steps.
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1. Given the parameters of the Gaussian mixture models, we generate a training
set of n samples. We truncate the training samples to the μ ± 6σ interval,
throwing away samples that fall out of the interval.

2. Using the truncated training set which has less than n samples, given a pre-
specified ε, we compute the sensitivity values according to [22], sample means
and variance-covariance matrices. Then we add independent Laplace noises
to each Gaussian component.

3. We repair the noise added variance-covariance matrices, and obtain positive
definite matrices.

4. We generate a separate test data set of size 50,000 using the original parame-
ters without the noises, and report the effectiveness of the Gaussian mixture
models using the noise added sample means and the positive definite matrices
from the previous step. Test data set of size 50,000 is chosen to make sure
that the estimated Bayes errors are accurate.

Experiment 1. We set μ1 = 0.75 × 1d and μ2 = 0.25 × 1d, where 1d is a d-
dimensional vector with elements all equal to 1. The two d-dimensional Gaussian
distributions have the same variance-covariance matrix Σ, where σii = 0.82 and
σij = 0.5 × 0.82. The prior is p1 = p2 = 0.5. We pool the two classes to estimate
the sample variance-covariance matrix. We compute the sensitivity for variances
and covariances adjusted to the range of the pooled data. The sample means and
the sensitivity values for sample means are computed. We run the experiments in
2-dimension, 5-dimension, and 10-dimension, d = 2, 5, 10. We have four ε values,
ε = 0.05, 0.3, 0.6, 1. Meanwhile we gradually increase the training set size.

Table 2. True LDA and QDA Bayes errors

2-D 5-D 10-D 2-D 5-D 10-D

LDA Bayes error 0.2351 0.2100 0.1996 QDA Bayes error 0.2105 0.1170 0.0589

Using the prespecified parameter values, we have the true LDA classifica-
tion rule, following Eq. 4. We generate 5 million samples using the prespecified
parameter values without truncation, using the true LDA classification rules to
estimate Bayes error. We take the average Bayes error of four such runs as the
actual LDA Bayes error, shown in Table 2.

Figures 6 and 7 show the Bayes error under differential privacy for LDA
experiment in increasing dimensions. For each combination (ε, n, d), we perform
five runs. The average Bayes error of five runs is shown on the figures.

When two classes have the same variance-covariance matrix, the LDA Bayes
error in general is not significantly affected by the noise added query results
used in the classifier. For ε from 0.3 to 1, several thousand training samples are
sufficient to return a preliminary Bayes error estimate which is very close to the
actual LDA Bayes error. For this special case, we can obtain a fairly accurate
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idea about how well the LDA classifier performs using the noise added query
results.

Experiment 2. We set μ1 = 0.75×1d and μ2 = 0.25×1d. We set Σ1 = Id, where
Id is a d-dimensional identity matrix, and set Σ2 as the one used in Experiment
1. We set the prior as p1 = p2 = 0.5. The sample means, variances, covariances,
and the sensitivity values are computed. Again, we run the experiments in 2-
dimension, 5-dimension, and 10-dimension, d = 2, 5, 10. We have four ε values,
ε = 0.05, 0.3, 0.6, 1. Meanwhile we gradually increase the training set size.

Using the prespecified parameter values, we have the true QDA classifica-
tion rule, following Eq. 4. We generate 5 million samples using the prespecified
parameter values without truncation, using the true QDA classification rules to
estimate Bayes error. We take the average Bayes error of four such runs as the
actual QDA Bayes error, shown in Table 1.

Figures 8 and 9 show the Bayes error rate for QDA experiment in increasing
dimensions. For each combination (ε, n, d), we perform five runs. The average
Bayes error of five runs is shown on the figures.

When two classes have different variance-covariance matrices, dimensionality
has a large impact on the Bayes error estimates obtained under differential pri-
vacy. For ε from 0.3 to 1, 2 dimensional experiment shows that three thousand
training samples is sufficient to return a reasonable estimate of the actual Bayes
error. 5 dimensional experiment needs 40,000 training samples to eliminate the
impact of the added noises. 10 dimensional experiment needs even more training
samples to return a reasonable estimate of the Bayes error under differential
privacy.

Experiment 3. We used the Parkinson data set from the UCI Machine learning
repository (https://archive.ics.uci.edu/ml/datasets/Parkinsons). We computed
the mean and variance-covariance matrix of each class in the Parkinson data and
used these parameters in our Gaussian mixture models. In all of the experiments,
we set ε = 0.6. For the Parkinson data, the majority class equals to 75.38% of
the total. There are 197 observations and 21 numerical variables besides the
class label. Without differential privacy mechanism, directly using the sample
estimates, the Bayes error is less than 0.01. On the other hand, the Gaussian mix-
ture models with increasing sample sizes under differential privacy have Bayes
error decreasing from 0.246 to 0.198. The Bayes error 0.198 is obtained from
50,000 training samples. The above results confirm that direct noise addition to
Gaussian mixture parameters could cause significant distortion in higher dimen-
sional space when two classes have different variance-covariance matrices. As
dimensionality increases, we need a very large number of training samples to
reduce the impact of the added noises.

Experiment 4. We also used the Adult data set from the UCI Machine learning
repository (https://archive.ics.uci.edu/ml/datasets/Adult). The Adult data is
much larger than the Parkinson data, with 32,561 observations. We used all
the numerical variables in this experiment, i.e., 6 variables. We computed the
mean and variance-covariance matrix of each class in the Adult data and used

https://archive.ics.uci.edu/ml/datasets/Parkinsons
https://archive.ics.uci.edu/ml/datasets/Adult
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these parameters in our Gaussian mixture models. Again we set ε = 0.6. For
the Adult data, the majority class equals to 75.92% of the total, similar to
the Parkinson data. Without differential privacy mechanism, directly using the
sample estimates, the Bayes error is 0.0309. With 50,000 training samples, the
Gaussian mixture model under differential privacy has the Bayes error equal to
0.0747. The impact of the added noises is less severe for this lower dimensional
data. Training sample size around 50,000 provides a reasonable result.

5 Summary

In this article we examine the performance of Bayesian classifier using the noise
added mean and variance-covariance matrices. We also study the exact type
I and type II errors under differential privacy for various hypothesis tests. In
the process we identify an interesting issue associated with random noise addi-
tion: The variance-covariance matrix without the added noise is positive definite.
However simply adding noise can only return a symmetric matrix, which is no
longer positive definite. Consequently the query result cannot be used to con-
struct a classifier. We implement a heuristic algorithm to repair the noise added
matrix.

This is a general issue for random noise addition. Users may simply assemble
basic query results without directly querying a complex statistic. Then adding
noises causes the assembled result to no longer satisfy certain constraints. The
query results need to be further modified in order to be used in subsequent
studies.
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