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Abstract. The administrators of a mission critical network usually have
to worry about non-traditional threats, e.g., how to live with known, but
unpatchable vulnerabilities, and how to improve the network’s resilience
against potentially unknown vulnerabilities. To this end, network hard-
ening is a well-knowfn preventive security solution that aims to improve
network security by taking proactive actions, namely, hardening options.
However, most existing network hardening approaches rely on a single
hardening option, such as disabling unnecessary services, which becomes
less effective when it comes to dealing with unknown and unpatchable
vulnerabilities. There lacks a heterogeneous approach that can combine
different hardening options in an optimal way to deal with both unknown
and unpatchable vulnerabilities. In this paper, we propose such an app-
roach by unifying multiple hardening options, such as firewall rule mod-
ification, disabling services, service diversification, and access control,
under the same model. We then apply security metrics designed for eval-
uating network resilience against unknown and unpatchable vulnerabili-
ties, and consequently derive optimal hardening solutions that maximize
security under given cost constraints.

1 Introduction

Today’s computing networks are playing the role of nerve systems in many mis-
sion critical infrastructures, such as cloud data centers and smart grids. However,
the scale and severity of security breaches in such networks have continued to
grow at an ever-increasing pace, which is evidenced by many high-profile security
incidents, such as the recent large scale DDoS attacks caused by the Mirai Botnet
on the Dyn DNS, and the cyber-physical attack on the Ukrainian power grid in
2015. The so-called zero-day attacks, which exploit either previously unknown or
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known, but unpatched vulnerabilities, are usually behind such security incidents,
e.g., Stuxnet employs four different zero day vulnerabilities to target SCADA.
Therefore, administrators of a mission critical network usually need to worry
about not only patching known vulnerabilities and deploying traditional defense
mechanisms (e.g., firewalls, IDSs, and IPSs), but also non-traditional security
threats, e.g., how to live with known, but unpatchable vulnerabilities, and how
to improve the network’s resilience against potentially unknown vulnerabilities.

In fact, it is well known that both cybercriminals and governmental agencies
stockpile vulnerabilities that are not publicly known (e.g., the NSA reportedly
spent more than 25 million a year to acquire software vulnerabilities, and private
vendors are providing at least 85 zero-day exploits on any given day [16]). On
the other hand, even for known vulnerabilities, patching is not always a viable
option. For example, a patch may not be readily available at the time of the
attack, or the system may have reached their end-of-support with no more patch
available; patching a vulnerability may cause unacceptable service disruptions on
a regular basis (e.g., Windows updates); even worse, patching a vulnerability may
sometimes reintroduce other security vulnerabilities that have previously been
fixed (e.g., Apache MINA SSHD 2.0.14 introduces an SSL regression previously
fixed in 2.0.13 [20]).

Consequently, security professionals need to block the exploitation of such
vulnerabilities through other means, such as modifying firewall rules, service
diversification, or access control. A critical question is How to optimally combine
such options in order to both improve the security and lower the cost? To this
end, network hardening is a well-known preventive security solution that aims to
improve network security by taking proactive actions, namely, hardening options.
However, most existing network hardening approaches rely on a single hardening
option, such as disabling unnecessary services [9,21] or service diversification [6]
(a detailed review of related work will be given later in Sect. 5). Such a solution
becomes less effective when it comes to dealing with unknown and unpatchable
vulnerabilities. There lacks a heterogeneous approach that can combine different
hardening options in an optimal way to deal with such vulnerabilities.

Running Example. We first consider a concrete example to demonstrate why
deriving an optimal hardening solution with heterogeneous hardening options
would demand a systematic and automated approach. Figure 1 shows a hypo-
thetical network roughly based on Cisco’s cloud data center concept [5] as well
as the OpenStack architecture [11]. Despite its relatively small scale, it mimics
a typical cloud network, e.g., the client layer connects the cloud network to the
internet through the CRS 7600; a firewall (ASA v1000) separates the outside
network from the inner one. There is a security/authentication layer (authenti-
cation server, Neutron server, etc.) as well as a VM and Application layer (Web
and application servers). Finally, a storage layer is separated and protected by
another firewall (ASA 5500) and an MDS 9000.

We make the following assumptions about the network. We assume the two
firewalls and other host-based security mechanisms (e.g., personal firewalls or
iptables) together enforce the connectivity described inside the connectivity table
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Fig. 1. An example cloud network.

shown in the figure. External users (including attackers) are represented with
host h0, and the most critical asset is assumed to be the Xen database server (h4),
which may be accessed through the three-tier architecture involving hosts h1, h2,
and h3. We assume the network is free of any known vulnerabilities, except for
an unpatchable vulnerability on the application server running SecurityCenter
5.5 (which cannot be changed due to functionality requirements), and another
one on the database server running MySQL 5.7 which may be changed to MSQL
2012 or PostgreSQL 9. For simplicity, we exclude exploits and conditions that
involve firewalls in this example.

To measure the network’s resilience against zero-day attacks, we apply the k-
zero-day safety metric (k0d) [25]. This metric basically counts how many distinct
services must be compromised using unknown vulnerabilities before an attacker
may compromise the critical asset (i.e., the number of distinct services along the
shortest path). In addition, we refine the metric by taking into consideration
the potentially uneven distribution of distinct services along the shortest path
[29,32] (e.g., a path consisting of three http and one Xen would be considered
slightly “shorter”, or less secure, than a path consisting of two http and two Xen,
although both paths have the same number of resource instances and resource
types).

For hardening options, we consider changes of both the firewall rules and
service types. First, we assume the administrator may enable or disable firewall
rules on both the firewall ASA v1000 (f1) and on the firewall ASA 5500 (f2).
On f1 he has a rule that allows the connection from the cloud user (h0) to the
app VM (h2); he also has the option to allow local user access to h1 and h2.
The firewall ASA 5500 (f2) has a rule where he allows the rsh connection on
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h3 from h2, as well as local user access to h3 and h4. Second, we assume the
administrator has the option of replacing the Apache Mina 2.0.14 ssh servers
with either Copssh 5.8, OpenSSH 7.4, or Attachmate 8.0; the Web servers with
either Apache 2.4, IIS 8.5, NGINX 1.9 or a Litespeed 5.0.14 Web server; the rsh
service only uses MVRSHD 2.2.

Clearly, even with such a small scale network, the administrator now faces a
number of hardening options, including disabling service instances, diversifying
service types, and changing firewall rules, each of which may incur certain instal-
lation/maintenance costs (we will discuss the cost model in more details later in
Sect. 2). To maximize the resilience of the network against both unknown and
unpatchable vulnerabilities, the administrator must decide what would be the
optimal combination of such hardening options in order to maximize the afore-
mentioned security metric, while respecting given cost constraints. Such a task
would obviously be tedious and error-prone, if done manually, and demands a
systematic and automated approach.

In this paper, we develop such an approach to optimally combine heteroge-
neous hardening options in order to increase a network’s resilience again both
unknown and unpatchable vulnerabilities under various cost constraints. Specif-
ically, we first devise our model of different hardening options, costs, and the
security metric. We then develop optimization and heuristic algorithms to derive
optimal hardening solutions under given cost constraints. We evaluate our app-
roach through simulations in order to study the effect of optimization parameters
on accuracy and running time, and the effectiveness of optimization for differ-
ent types of networks. In summary, the main contribution of this paper is the
following.

– To the best of our knowledge, this is the first effort on network hardening
using heterogeneous hardening options.

– In contrast to previous works, we provide a refined security metric and an
improved cost model that takes into account real world variables in calculating
hardening costs.

– Our method is practically relevant to the defense of mission critical networks
in which unknown and unpatchable vulnerabilities are realistic security con-
cerns.

The remainder of this paper is organized as follows: In Sect. 2, we present
the model and formulate the optimization problem, and in Sect. 3 we discuss the
methodology and show case studies. Section 4 shows simulation results. Section 5
reviews related work and Sect. 6 concludes the paper.

2 The Model

We first introduce the extended resource graph model to capture network services
and their relationships, then we present the heterogeneous hardening control and
cost model, followed by the problem formulation.
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2.1 Extended Resource Graph

To model network services and their relationships, we revise the Extended
Resource Graph concept introduced in our previous work [6] in order to model
both unpatchable and unknown vulnerabilities, as well as heterogeneous hard-
ening options. The extended resource graph of the running example is shown in
Fig. 2 and detailed below.

Fig. 2. The extended resource graph of our running example.

In Fig. 2, each pair shown in a rectangle is a security-related condition.
If the condition is a privilege, it is represented as 〈privilege, host〉; if it is
connectivity, it is represented as 〈source, destination〉. If a firewall affects a
security-related condition, it is represented as 〈privilege, firewall, host〉 or as
〈source, firewall, destination〉. Each one of the rows below the rectangle indi-
cate different hardening options available for that condition. The option cur-
rently in use is indicated by the highlighted integer (e.g., 0 means disabled; in
the case of service diversification, 1 means Apache, and 2 means IIS) and other
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potential instances are in a lighter text. For the conditions modifiable by a fire-
wall rule, the rows below the rectangle indicate the firewall rules that affect it.

Each exploit node (oval) is a tuple that consists of a service running on
a destination host, the source host, and the destination host (e.g., the tuple
〈http, 1, 2〉 indicates a potential zero-day vulnerability in the http service on
host 2, which is exploitable from host 1). If the exploit is unpatchable, but
diversifiable, it is represented by a double oval; if it is neither patchable nor
diversifiable, it is represented as a colored oval (those different types of exploits
will contribute to the calculation of the security metric value, as detailed later).
The self-explanatory edges point from preconditions to an exploit (e.g., from
〈0, 1〉 and 〈http, 1〉 to 〈http, 0, 1〉), and from the exploit to its post-conditions
(e.g., from 〈http, 0, 1〉 to 〈user, 1〉).

We make two design choices here. The first is to associate the service instance
concept as a property (label) of a condition (e.g., 〈http, 1〉), instead of an exploit
(as in our previous work [6]). This label can then be inherited by the correspond-
ing exploits. The second design choice is that, while some conditions indicate the
involved firewall rules, the actual label values that they will take will depend on
the number of predefined modifiable rules in the firewall itself. For each firewall,
instead of modeling service instances, we model the number of modifiable firewall
rules that can be enabled. This would help to avoid the need for introducing new
conditions and exploits into the extended resource graph when firewall rules are
to be disabled and hence we may work with a fixed structure of the extended
resource graph. While the definitions of service pool and service instance remain
the same as in [6], Definitions 1 and 2 formally introduce the revised concepts.

Definition 1 (Firewall Rule Pool and Firewall Rule). Denote F the set
of all firewalls and Z the set of integers, for each firewall f ∈ F , the function
r(.) : F → Z gives the firewall rule pool of f which represent all modifiable
firewall rules of that firewall.

Definition 2 (Extended Resource Graph). Given a network composed of

– a set of hosts H,
– a set of services S, with the service mapping serv(.) : H → 2S,
– the collection of service pools SP = {sp(s) | s ∈ S},
– the collection of firewall rules FR = {r(f) | f ∈ F},
– a set of firewalls F , with the rule mapping r(.) : F →| FR |,
– and the labeling function v(.) = vf (.) ∪ vc(.) where vf (.) : f → F and vc(.) :

C → SP .

Let E be the set of zero-day exploits {〈s, hs, hd〉 | hs ∈ H,hd ∈ H, s ∈ serv(hd)},
and Rr ⊆ C × E and Ri ⊆ E × C be the collection of pre and post-conditions
in C. We call the labeled directed graph, 〈G(E ∪ C,Rr ∪ Ri), v〉 the extended
resource graph.

2.2 Heterogeneous Hardening Control and Cost Model

We introduce the notion of heterogeneous hardening control as a model to
account for all hardening options in a network where we represent each initial
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condition as an optimization variable. We formulate the heterogeneous harden-
ing control vectors using those variables as follows. We note that the number of
optimization variables present in a network will depend on the number of initial
conditions that are affected by one or more hardening options. Since we only
consider remotely accessible services in the extended resource graph model, we
would expect in practice the number of optimization variables to grow linearly
in the size of the network (i.e., the number of hosts). We will further evaluate
and discuss the scalability of our solution in Sect. 4.

Definition 3 (Optimization Variable and Heterogeneous Hardening
Control). Given an extended resource graph 〈G, v〉, ∀c ∈ C and ∀f ∈ F , v(c)
and v(f) are optimization variables. A hardening control vector is the integer
valued vector V = (v(c1), v(c2), ..., v(c|C|) ∪ (v(f1), v(f2), ..., v(f|F |)

Changing the value of an optimization variable has an associated hardening
cost and the collection of such costs are given in a hardening cost matrix in a self-
explanatory manner. We make use of Gartner’s 2003 Total Cost of Ownership
(TCO) analysis report [19] to establish a realistic cost estimation of the cost of
different hardening options. Table 1 provides a reference as to which criteria is
applicable to different hardening options costs.

Table 1. Criteria to be used when calculating hardening costs for different hardening
options based on Gartner’s TCO [19]

Hardening option cost selection criteria

Gartner’s TCO criteria Firewall
connectivity

Firewall
layer 3

Firewall
access
control

Diversity

Downtime costs x

Operational costs x x x x

Support costs x x x

Changes in upgrade costs x x x x

Monitoring costs x x

Production costs x

Security management and
failure control costs

x x x x

Definition 4 (Hardening Cost). Given s ∈ S and sp(s), and given f ∈ F
and r(f), the cost to change from one specific hardening option to another is
defined as the hardening cost.

Definition 5 (Hardening Cost Matrix). The collection of all hardening
costs for all hardening options are given as a hardening cost matrix HCM . For
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the different hardening options, the element at ith row and jth column indicates
the hardening cost of changing the ith hardening option to be the jth hardening
option.

Definition 6 (Total Hardening Cost). Let vs(ci) be the service associated
with the optimization variable v(ci) and V c0 the initial service instance values
for each of the conditions in the network. Let vf (fi) be the firewall associated
with the optimization variable v(fi) and V f0 the initial firewall rule set values
for each of the firewalls in the network. The total hardening cost, Qd, given by
the heterogeneous hardening vector V is obtained by

Qd =
|C|∑

i=1

CMvs(ci)(V c0(i),Vc(i)) +
|F |∑

i=1

CMvf (fi)(V f0(i),Vf (i))

We note that the above definition of hardening cost between each pair of
service instances has some advantages. For example, in practice we can easily
imagine cases where the cost is not symmetric, i.e., changing one service instance
to another (e.g., from Apache to IIS) carries a cost that is not necessarily the
same as the cost of changing it back (from IIS to Apache). Our approach of using
a collection of two-dimensional matrices allows us to account for cases like this.
Additionally, by considering instance 0, it provides us the advantage to model
disabling a service as a special case of service diversification if the hardening
option allows it. Nonetheless, our cost model can certainly be further improved,
as discussed in Sect. 6.

2.3 Problem Formulation

As mentioned in Sect. 1, the security metric that we will be using, denoted
as d, is based on the minimum number of distinct resources, excluding those
with unpatchable vulnerabilities, on the shortest attack path in the resource
graph [25], with the extension for considering the uneven distribution of services
along that path [29,32], as formally defined below.

Definition 7 (d-Safety Metric). Given an extended resource graph 〈G(E ∪
C,Rr ∪Ri), v〉, and a goal condition cg ∈ C; let t =

∑n
i=1 2−n | serv(hi)) | (total

number of service instances), and let pj = |hi:sj∈serv(hi))|
t (1 ≤ i ≤ n, 1 ≤ j ≤ n)

(relative frequency of each resource). For each c ∈ C and q ∈ seq(c) (attack
path), denote R(q) for s : s ∈ R, r appears in q, r is not unpatchable, we define
the network’s d-safety metric (where min(.) returns the minimum value in a set)
d = minq∈seq(cg)r(R(q)); where r(R(q)) is the attack path’s effective richness of
the services, defined as r(G) = 1∏n

1 p
pi
i

[29].

With the aforementioned models, the network hardening problem is to maxi-
mize the d value by changing the hardening options while respecting the available
budget in terms of given cost constraints. In the following, we formally formulate
this as an optimization problem.
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Problem 1 (d-Optimization Problem). Given an extended resource graph
〈G, v〉, find a heterogeneous hardening control vector V which maximizes
min(d(〈G(V ), v〉)) subject to the constraint Q ≤ B, where B is the available
budget and Q is the total hardening cost as given in Definition 6.

Since our problem formulation is based on an extended version of the resource
graph, which is syntactically equivalent to attack graphs, many existing tools
developed for the latter (e.g., the tool in [15] has seen many real applications
to enterprise networks) may be easily extended to generate extended resource
graphs which we need as inputs. Additionally, our problem formulation assumes a
very general model of budget B and cost Q, which allows us to account for differ-
ent types of budgets and cost constraints that an administrator might encounter
in practice, as will be demonstrated in the following section.

3 The Methodology

This section details our optimization and heuristic algorithms used for solving
the formulated heterogeneous hardening problem. We also illustrate the opti-
mization process through a few case studies.

3.1 Optimization Algorithm

Our first task is to select an optimization algorithm that would fit our harden-
ing problem. First, it is well known that most gradient-based methods require
to satisfy mathematical properties like convexity or differentiability, which are
not applicable to our problem. Second, the problem we want to solve includes
different if-then-else constructs to account for the different hardening technique
used, and thus, an algorithm that allows to insert this construct is necessary.
Additionally, since our optimization problem uses variables that are defined as
discrete (discrete variable space), a simple and robust search method and opti-
mization technique is needed. We find that metaheuristic algorithms provide
these advantages. Specifically, the Genetic Algorithm (GA) provides a simple
and clever way to encode candidate solutions to the problem [8]. One of the
main advantages is that we do not have to worry about explicit mathematical
definitions. For our automated optimization approach, we chose GA because it
requires little information to search effectively in a large search space in contrast
to other optimization methods (e.g., the mixed integer programming [4]).

The extended resource graph is the input to our automated optimization
algorithm where the fitness function is d. One important point to consider when
optimizing the d function on the extended resource graph is that, for each gen-
eration of the GA, the graph’s labels selected will dynamically change. This in
turn will change the value of d, since the shortest path may have changed with
each successive generation of GA and the change in the hardening options will
enable or disable certain paths. Our optimization tool takes this into consider-
ation. Additionally, if there are more than one shortest path that provides the
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optimized d, our optimization tool gives priority to the paths by considering
the uneven distribution and relative frequency of resources in that path, thus
addressing one of the limitations that was present in [6] where no priority was
provided.

The constraints are defined as a set of inequalities in the form of q ≤ b,
where q represents one or more constraint conditions and b represents one or
more budgets. These constraint conditions can be overall constraints (e.g., the
total hardening cost Qd) or specific constraints to address certain requirements or
priorities while implementing the heterogeneous hardening options. The number
of independent variables used by the GA (genes) are the optimization variables
given by the extended resource graph. For our particular network hardening
problem, the GA will be dealing with integer variables representing the selection
of a hardening option. Because v(.) is defined as an integer, the optimization
variables need to be given a minimum value and a maximum value. This range
is determined by the number of instances provided in the service pool of each ser-
vice and firewall rule pool of each firewall. The initial service instance for each of
the services and the initial set of firewall rules are given by the extended resource
graph while the final heterogeneous hardening control vector V is obtained after
running the GA.

3.2 Case Studies

In the following, we demonstrate different use cases of our method with varying
cost constraints and hardening options. For these test cases, the population size
defined for our tool is set to be at least the value of optimization variables (more
details will be provided in the coming section). This way we ensure the individu-
als in each population span the search space. We ensure the population diversity
by testing with different settings in genetic operations (like crossover and muta-
tion). For all the test cases, we have used the following algorithm parameters:
population size = 100, number of generations = 150, crossover probability = 0.8,
and mutation probability = 0.2 (Fig. 3).

Test case A: Qd ≤ 500 units with firewall rule constraints. We start with the
simple case of one overall budget constraint (Qd ≤ 500). There are 11 different
services-based optimization variables and 2 firewall-based optimization variables.
If no firewall rules are changed, the solution provided by the GA yields d =
2.7529. In this case, because of the firewall rules that are enabled, the metric
cannot be increased any further.

On the other hand, if we allow the firewall rules to be modified, while main-
taining the overall budget Qd ≤ 500, the optimization results will be quite dif-
ferent. The solution provided by the GA is a d metric of 3.3895. This total
hardening cost satisfies both the overall budget constraints. We can see that the
hardening options enforced by the firewall rules in our optimization tool can
affect the optimization. Nevertheless, additional budget constraints might not
allow achieving the maximum d possible.
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Fig. 3. Test case A: Effect of modifiable hardening options and budget constraints.

Test case B: Qd ≤ 500 units with a critical service with an unpatched vulnerabil-
ity. While test case A shows how enabling or disabling predefined firewall rules
can affect the d metric optimization, when considering the effects of unpatch-
able vulnerabilities the d metric value will change. This test case models such
a scenario by assigning a restriction for the ssh services not to be diversified or
disabled.

In the graph, we can see that the ssh service is highlighted to represent the
fact that it cannot be patched. The solution provided by the GA is d = 2.8284.
While the increase is less than when the ssh service can be diversified, we can
still have an increase in the d metric even with unpatchable vulnerabilities on
the network (Fig. 4).

As seen from the above test cases, our model and problem formulation makes
it relatively straightforward to apply any standard optimization techniques, such
as the GA, to optimize the d metric through combining different network hard-
ening options while dealing with unpatchable and unknown vulnerabilities and
respecting given cost constraints.
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Fig. 4. Test case B: Effect of having an unpatchable vulnerability in the network.

3.3 Heuristic Algorithm

All the test cases described above rely on the assumption that all the attack paths
are readily available. However, this is not always the case in practice. Due to the
well-known complexity that resource graphs have inherited from attack graphs
due to their common syntax [29,32], it is usually computationally infeasible to
enumerate all the available attack paths in a resource graph for large networks.
Therefore, we present a modified version of the heuristic algorithm [6] to reduce
the search complexity when calculating and optimizing the d metric by only
storing the m-shortest paths at each step. The following briefly describes the
modified algorithm.

The algorithm starts by finding the initial conditions that are affected by
the modifiable firewall rules and stores them on a list γ. After that, it topo-
logically sorts the graph and proceeds to go through each one of the nodes on
the resource graph. If an exploit is a post-condition of one of the conditions in
γ, it is not included in the set of exploits σ(). The main loop cycles through
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each unprocessed node. If a node is an initial conditions, the algorithm assumes
that the node itself is the only path to it and it marks it as processed. For each
exploit e, all of its preconditions are placed in a set. The collection of attack
paths α(e) is constructed from the attack paths of those preconditions. In a
similar way, σ′(ov(e)) is constructed with the function ov() which, aside from
using the exploits, includes value of elements of the hardening control vector
that supervises that exploit.

If there are more than m paths to that node, the algorithm will first look for
the relative frequency of each unique combination of exploit and service instance
in α′(ov(e)). Then, the algorithm creates a dictionary structure where the key is
a path from α(e) and the value is the effective richness of service/service instance
combinations given by each one of the respective paths in α′(ov(e)). A function
ShortestM() selects the top m keys whose values are the smallest and returns the
m paths with the smallest effective richness value. If there are less than m paths,
it will return all of the paths. After this, it marks the node as processed. The
process is similar when going through each one of the intermediate conditions.
Finally, the algorithm returns the collection of m paths that can reach the goal
condition cg. It is worth noting that by considering the effective richness of each
path, the algorithm provides a path a priority based on the relative frequency
of the combination of unique service with service instance.

4 Simulations

In this section, we show simulation results. All simulations are performed using
a computer equipped with a 3.0 GHz CPU and 8GB RAM in the Python 2.7.10
environment under Ubuntu 12.04 LTS and MATLAB 2015a’s GA toolbox. To
generate a large number of resource graphs for simulations, we first construct a
small number of seed graphs based on realistic cloud networks and then gener-
ate larger graphs from those seed graphs by injecting new hosts and assigning
resources in a random but realistic fashion (e.g., the number of pre-conditions
of each exploit is varied within a small range since real world exploits usually
have a constant number of pre-conditions).

For the different hardening options that are implemented through firewall
rules, we randomly select 10% of the initial conditions. Additionally, to analyze
the effect of unpatchable vulnerabilities, our graphs include randomly assigned
unpatchable services. The resource graphs are used as the input for the optimiza-
tion toolbox where the objective function is to maximize the minimum d value
subject to budget constraints. In all the simulations, we employ the heuristic
algorithm described in Sect. 3.3.

To determine the genetic operators, we used the hill climbing algorithm. Our
simulations showed that (detailed simulation results are omitted here due to
page limitations), using the GA with a crossover probability of 80%, a mutation
rate of 20%, and setting the number of generations to 70 will be sufficient to
obtain good results. Additionally, our experiences also show that, because our
largest resource graph had a heterogeneous hardening control vector of fewer
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than 100 variables, we could set the population size equal to 200; nevertheless,
we believe that when dealing with a bigger number of optimization variables,
the population size should be at least twice the number of variables.

The complexity of our proposed solution will depend on the objective func-
tion, the population size, and the length of hardening control vector. We note
that the optimization problem here is NP-hard since the sub-problem of finding
the shortest paths (within the objective function) in resource graphs is already
intractable by the well know results in attack graphs [29,32] and the common
syntax between resource graphs and attack graphs. We will therefore rely on
the heuristic algorithm presented in Sect. 3.3. Figure 5 shows that the processing
time increases almost linearly as we increase the number of optimization vari-
ables or the parameter m of the heuristic algorithm. The results show that the
algorithm is relatively scalable with a linear processing time.

The accuracy of the results presented in Fig. 5 is also an important issue to
be considered. This is address through the simulations depicted in Fig. 6. Here
the accuracy refers to the approximation ratio between the result obtained for
the d metric using our heuristic algorithm and that of simply enumerating and
searching all the paths while assuming all services and service instances are dif-
ferent ( dHeuristic

dBruteForce
). The heterogeneous hardening control vector provided by the

GA is used to calculate the accuracy. A ration close to 1 indicates that our algo-
rithm can provide a solution that is closer to the one provided by enumerating
all paths (brute force). From the results, we can see that when m is greater or
equal to 4 the approximation ratio reaches an acceptable level. For the following
simulations, we have settled with an m value of 9.

We also consider the ratio between the difference in the d metric before and
after optimization, (dOptimized−dNotOptimized

dNotOptimized
), which will be called the gain of

the d metric (or simply the gain). The gain provides us with an idea on how
much room there is to improve the security with respect to given cost con-
straints using our method. Figure 7 shows that the gain will increase linearly
as we increase the number of firewall-based hardening options. These results
confirm that firewall-based hardening options can positively affect our effort to
provide better resilience for cloud networks against zero-day attacks. Addition-
ally, the figure shows that the number of unpatchable vulnerabilities that are
present in the network will significantly reduce the gain that can be achieved
through other hardening techniques. Since it is not probable to find a large num-
ber of unpatchable vulnerabilities all at the same time within a network, we only
consider up to three unpatchable vulnerabilities.

In Fig. 8, we analyze the average gain in the optimized results for different
sizes of graphs. In this figure, we can see that we have a good enough gain for
graphs with a relatively high number of nodes. As expected, as we increase the
number of unpatchable vulnerabilities, the gain will decrease. However, we can
also see this decrease is linear. In the case where no unpatchable vulnerabilities
are present, we can see that the gain stops to increase after reaching a certain
size of the graph, which can be explained as that the number of available service
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instances is not large enough (in constrast to the increasing size of the graph)
to allow to optimize the d metric any further.

5 Related Work

In general, the security of networks may be qualitatively modeled using attack
trees [9,10,22] or attack graphs [2,23]. A majority of existing quantitative models
of network security focus on known attacks [1,28], while few works have tackled
zero day attacks [25,26,29,32] which are usually considered unmeasurable due to
the uncertainties involved [17]. In terms of security metrics, most of the current
works deal with assigning numeric scores to rank known vulnerabilities (mostly
based on the CVSS) [18] to be able to model the impact that they have on a
network. This ranking is based on how likely and easily exploitable the known
vulnerabilities are. This, however, is not the case for unknown vulnerabilities.

Early works on network hardening typically rely on qualitative models while
improving the security of a network [23,24,27]. Those works secure a network
by breaking all the attack paths that an attacker can follow to compromise an
asset, either in the middle of the paths or at the beginning (disabling initial
conditions). Also, those works do not consider the implications when dealing
with budget constraints nor include cost assignments, and tend to leave that
as a separate task for the network administrators. While more recent works
[1,31] generally provide a cost model to deal with budget constraints, one of the
first attempts to systematically address this issue is by Gupta et al. [14]. The
authors employed genetic algorithms to solve the problem of choosing the best
set of security hardening options while reducing costs.

Dewri et al. [9] build on top of Gupta’s work to address the network hardening
problem using a more systematic approach. They start by analyzing the problem
as a single objective optimization problem and then consider multiple objectives
at the same time. Their work consider the damage of compromising any node in
the cost model in order to determine the most cost-effective hardening solution.
Later on, in [10] and in [30], the authors extrapolate the network hardening
optimization problem as vulnerability analysis with the cost/benefit assessment,
and risk assessment respectively. In [21] Poolsappasit et al. extend Dewri’s model
to also take into account dynamic conditions (conditions that may change or
emerge while the model is running) by using Bayesian attack graphs in order
to consider the likelihood of an attack. Unlike our work, most existing work is
limited to known vulnerabilities and focus on disabling existing services.

There exist a rich literature on employing diversity for security purposes. The
idea of using design diversity for tolerating faults has been investigated for a long
time, such as the N-version programming approach [3], and similar ideas have
been employed for preventing security attacks, such as the N-Variant system [7],
and the behavioral distance approach [12]. In addition to design diversity and
generated diversity, recent work employ opportunistic diversity which already
exists among different software systems. For example, the practicality of employ-
ing OS diversity for intrusion tolerance is evaluated in [13]. More recently, the
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authors in [29,32] adapted biodiversity metrics to networks and lift the diversity
metrics to the network level. While those works on diversity provide motivation
and useful models, they do not directly provide a systematic solution for improv-
ing diversity. So far, the work done by [6], is one of the first work that has tried
to provide a solution for this problem; their limitation, however, is that their
metric is too simplistic and does not consider additional hardening options.

6 Conclusions

In this paper, we have provided a heterogeneous approach to network hardening
to increase the resilience of a network against both unknown and unpatchable
vulnerabilities. By unifying different hardening options within the same model,
we derived a more general method than most existing efforts that rely on a single
hardening option. Our automated approach employed a heuristic algorithm that
helped to manage the complexity of evaluating the security metric as well as
limiting the time for optimization to an acceptable level. We have addressed
one limitation of our previous work by considering the uneven distribution of
services along an attack path. We have devised a more realistic cost model.
We have tested the efficiency and accuracy of the proposed algorithms through
simulation results, and we have also discussed how the gain in the d value will
be affected by the number of available modifiable firewall rules, unpatchable
vulnerabilities, and the different sizes and shapes of the resource graphs.

The following lists several future direction of our approach.

– While this paper has proven that we can integrate different network hardening
options (e.g., firewalls and diversity) under the same model, some hardening
options may not easily fit into this model (e.g., service relocation).

– The security metric we applied relies on the number of unknown vulnera-
bilities, which may be refined by further considering known and patchable
vulnerabilities (even though those would carry less weight).

– This study relies on a static network configuration. A future research direction
would be to consider a dynamic network model in which both attackers and
defenders may cause incremental changes in the network.

– We note that, although we assume that the costs are linearly additive, there
could be cases where the exact costs may depend on the actual combination
of controls (which would make the problem significantly more complex). We
believe this could be explored in a future work.

– We will evaluate other optimization algorithms in addition to GA to find the
most efficient solution for our problem.
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