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Abstract. In this paper, we intend to propose a framework for the
description and the matching of three dimensional faces. Our starting
point is the representation of the 3D face by an invariant description
under the M(3) group of translations and rotations. This representation
is materialized by the points of the arc-length reparametrization of all the
level curves of the three polar representation. These points are indexed
by their level curve number and their position in each level. With this
type of description we need a step of registration to align 3D faces with
different expressions. Therefore, we propose to use a robust version of the
iterative closest point algorithm (ICP) adopted to 3D face recognition
context. We test the accuracy of our approach on a part of the BU-
3DFE database of 3D faces. The obtained results for many protocols of
the identification scenario show the performance of such framework.
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1 Introduction

The automatic 3D shape recognition has known a growing interest during the
last years in the pattern recognition field. Recently, the 3D data become active
especially with the 3D acquisition materials improvement and the big computer
capacity in the term of calculations. Therefore, the quality and the resolution of
3D meshes become better. In addition, 3D data permit to overcome the prob-
lems often encountered in 2D data. In fact, 2D data need an invariance under
the perspective transformations while the 3D data surfaces need only the invari-
ance under the Euclidian transformations. But one of the major problems of
3D surfaces is the lack of a canonical parameterizations. This fact makes hard
the matching procedure between 3D objects. In order to overcome as much as
possible this limits many works propose to extract an invariant description from
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3D surfaces under the initial parametrization. In the literature, the 3D shape
description can be classified into two main categories: The global methods and
the local ones.

Several 3D global surface descriptions were proposed in the literature. In
this category, we can mention the cords histogram methods proposed by Paquet
et al. [1]. Its consists on the extraction of the statistical characteristics from the
cords of the 3D object. Osada et al. [2] proposed as a global description for the
3D surfaces, the 3D distribution forms method. This last one is obtained by a
probability distribution of a 3D shape function.

For the second category of methods, a 3D local representation is extracted
from a 3D objects. In this context, there are many local descriptors based on the
curvature such as the Gaussian curvature proposed by Shw-wei et al. [3] which
is used to describe the 3D faces. Also, Ganguly et al. [4] proposed to use a two
pairwise of curvature analysis. The first pair is composed by the mean, and the
maximum curvature and the second one corresponds to the minimum and the
gaussian curvature. We can mention here, Bannour et al. [19] who presented a
3D surface description by a set of invariant points obtained from a set of uniform
levels of the curvature values. Another kind of the local methods which based
on the construction of the geodesic level curves around a feature point are used
to represent the 3D surfaces. [5–7] proposed to describe the 3D surface by a set
of geodesic level curves generated from a one reference point qualified by the
unipolar representation. Other works proposed to use the representation based
on many reference points in order to overcome the problem of the instability in
the case of error of the reference point extraction. Ghorbel et al. [8] proposed
to use the bipolar representation. It is obtained from two reference points. It
consists on the levels of the superposition of the two geodesic potentials generated
from two reference points. In this context, Jribi et al. [9] proposed to extend this
representation to the three polar one based on the superposition of three geodesic
potentials from three reference points instead of two.

The majority of these description methods require a registration step in order
to estimate the variation between two shapes and to align them. In the liter-
ature, the registration methods between 3D shapes can be classified into two
major categories. The first type is based on the local geometry to construct a
valid hypotheses of mappings. In this category, we can classify the registration
methods based on Hough transform and Hashage tables [15–18]. The second
type performs the mapping by iterative algorithms. We can mention here the
works of Bes et al. [12] who used an iterative techniques to extract the matched
points. In this paper, we intend to propose a 3D face recognition technique based
on two stages: The first one consists on the proposition of an invariant 3D face
description. The second stage is a step of alignment of the 3D surface by a novel
robust version of ICP [12].

Thus, this paper will structured as follows: we present in the second section
a brief recall of the proposed representation. The implementation steps of the
proposed representation on 3D faces are described in section three. The used
similarity metric to compare between two shapes and the novel robust version
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of ICP are detailed in the fourth section and finally, we test the accuracy of our
representation for the identification scenario on a part of the BU-3DFE database
of 3D faces in the last section.

2 Brief Recall of the Proposed Representation

In this paper, we propose to describe the 3D surfaces by an accurate, finite,
and invariant set of points under the geometrical transformations of the M(3)
group of translations and rotations. This description is proposed by Rihani
et al. [14]. It is obtained by two steps: (i) The first step consist on the con-
struction of the three polar representation proposed by Jribi et al. [9]. (ii) in the
second step a geometric arc-length reparametrization of each level of the three
polar representation should be performed. We describe in the rest of the section
the two steps cited above.

In the rest of the section, we consider that a 3D object as a 2D-differential
manifold denoted by S.

2.1 The Construction of the Three Polar Representation

Let denote by Ur the function that computes for each point p of S the length
of the geodesic curve joining it to the point r. The three polar representation
consists on the superposition of three geodesic potential generated from three
reference points. Therefore let denote by p1, p2, p3 three reference points of S
Up1 , Up2 , Up3 their corresponding geodesic potentials and Us the sum of these
three geodesic potentials. Thus, the three polar representation that we denote
by Mk(S) corresponds to the set of k level curves where each level curve Cλi is
composed by a set of points having the sum of the three geodesic potential Us

equal to λ. It can be formulated as follows:

Mk(S) = {Cλi}i=1..k (1)

where
Cλi = {p ∈ S,Us(p) = λi} (2)

2.2 Geometric Arc-Length Reparametrization

After the construction of the three polar representation, the 3D surface S is
presented by a collection of level curves {Cλi}. A curve parametrization {Cλi(t)}
is an 1-periodic function of a continuous parameter t defined by:

Cλi : [0, 1] → R
3 (3)

t �→ [x(t), y(t), z(t)]t

It’s well known that the same parametric curve Cλi can have many parameteri-
zations. This due to parametrization dependance on the position, the orientation



68 A. Rihani et al.

of the used curve and the speed we go over. In order to overcome this problem,
we propose to use a G invariant reparametrization of each curve of the three
polar representation where G is a group of geometrical transformations applied
to a curve.

In our context, G corresponds to the M(3) group formed by the R
3 rotations

and translations. This group of transformations preserves the length of the curve
however the speed we go over the curve affects its parametrization. Therefore,
we carry out an arc-length reparametrization of a 3D curve Cλi in order to cover
it with the same speed. The arc-length reparametrization is defined as follows:

S(t) = 1/L

∫ t

0

√
x(t)′2 + y(t)′2 + z(t)′2dt, t ∈ [0, T ] (4)

Here, L denotes the length of the level curve Cλi .

3 The Application of the Proposed Representation
on 3D Faces Meshes

Since the 3D faces known a growing interest for the identities determination
especially after the many terrorist acts occurred around the world, we imple-
ment this novel representation on this type of data. In practice, the 3D surface
corresponds to a discrete mesh. We will start by the construction of the three
polar representation on the 3D faces. As mentioned before the three polar repre-
sentation is based on the three reference points. In our case, the out corner of the
eyes and the noise tip are used as reference points. For the automatic extraction
of the reference points, we use an approach based on a curvature analysis of 3D
faces proposed by Szeptycki et al. [21]. Then, for each reference point we com-
pute its geodesic potential. In the discrete case, the computation of a geodesic
potential generated from a reference point corresponds to the computation of
the geodesic curves between the reference point and the other points of the 3D
face. Here, we use the fast marching algorithm [13] for the computation of the
geodesic path between each pairs of points. The three polar representation is
composed by a set of discrete level curves. Each level curve of value λ can be
represented by a set of vertices. The sum of three geodesic potentials of each
vertex should belongs to [λ − ε, λ + ε] it can formulated as follows:

Cλ = {P ∈ S, λ − ε ≤ U3(P ) ≤ λ + ε} (5)

where ε is a real positive value chosen according to the resolution of mesh to
avoid the intersections between successive level curves.

After the construction of the geodesic level curves of the three polar represen-
tation, we perform the approximation of these curves by the B-spline function.
Finally, we realize the arc-length reparametrization procedure for each level curve
of the tree polar representation. The obtained points are equidistant and invari-
ant under the M(3) group of translations and rotations. Each point is defined
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by its level number value and its position in that level. In fact, the 3D face can
be defined for N levels of the three polar level curve by:

M̂N (S) = {pS
ij ∈ R

3}, i ∈ [1..N ], j ∈ [1..L] (6)

where N is number of the geodesic level curves of the three polar representation
and L is number the points by level. In Fig. 1, we summarize all the steps of the
proposed representation applied on the 3D faces.

Fig. 1. The steps of the proposed approach applied to a 3D face. (a, b): The extraction
of the three polar level curve. (c): Approximation of this level curve with the B-spline
function. (d, e): The arc-length reparametrization of this level curve.

4 3D Faces Comparison

4.1 Haussdorff Shape Distance

In this work, we use the well known Haussdorff shape distance introduced by
Ghorbel et al. [10,11] for the recognition task between 3D shapes. All the possible
parameterizations of surface are grouped on G. G can be R

2 plane if the surface
is open or S2 if it is closed. Let S1 and S2 be two 3D surface pieces diffeomorphic
to G on which act the M(3) group of geometrical transformations. The Hausdorff
shape distance between S1 and S2 can be defined by:

�(S1, S2) = max(ρ(S1, S2), ρ(S2, S1)) (7)

where :
ρ(S1, S2) = sup

g1∈M(3)

inf
g2∈M(3)

‖g1S1 − g2S2‖2L2 (8)

Since the M(3) displacement group preserves this norm, the Hausdorff shape
distance can be written as the following quantity:

�(S1, S2) = inf
h∈M(3)

‖S1 − hS2‖2L2 (9)

The transformation between two shapes should be estimated in order to compute
the correct value of the Haussdorff shape distance. We use in our context, a novel
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robust version of the Iterative Closest Point algorithm to estimate the optimal
transformation between faces. In this work, each 3D face is characterized by its
3D descriptor. Therefore a face is described by a set of infinite points obtained
after the reparametrization of the tree-polar geodesic level curves.

4.2 Proposed Robust Version of ICP

In this work, we are interested on the problem of the 3D faces recognition. In
this context, we generally need an elementary process of fine alignment which
consists on the minimization of the global deviation between surfaces to compute
the right distance value. But the major problem of such type of surfaces consists
on the uncontrolled effects of the facial expressions. Therefore, we propose here,
a robust version of the iterative closest point algorithm (ICP) adopted to this
context. The ICP algorithm takes as input two 3D surfaces characterized by
their points cloud. ICP is based on three main steps: (i) The first one consists
on the matching procedure between the two sets of points. (ii) In the second
step, the optimal rigid transformation is estimated. (iii) We apply finally the
estimated transformation to one of the sets of points. The main contributions of
the proposed version of ICP are essentially in its two first steps.

Here, a 3D face is represented by a set of discrete points corresponding to the
proposed descriptor. The descriptor of a 3D face S1 is formulated as mentioned
above by:

M̂N (S1) = {pS1
ij ∈ R

3}, i ∈ [1..N ], j ∈ [1..L] (10)

where N is number of the three polar level curve of the three polar representation
and L is number the points by level.

Let consider two surfaces S1 and S2 and their respectively corresponding
descriptors M̂N (S1) and M̂N (S2) are defined by:

M̂N (S1) = {pS1
ij ∈ R

3} (11)

M̂N (S2) = {pS2
ij ∈ R

3}, i ∈ [1..N ], j ∈ [1..L]

First Step: Pairwise Points Matching. Bes et al. [12] determined that the
matching step assumed 95% of the ICP’s time. This fact shows that the effi-
ciency of the ICP depends on the corresponding step. In our approach, the 3D
surface is presented by a set of discrete points. These points are indexed by their
level number value and their position in this level. The first contribution of the
proposed robust version of the ICP derive directly from the three polar repre-
sentation. In fact, the matching procedure is automatically obtained since each
point pS1

ij is matched to the point pS2
ij of the second face. One the other hand,

a correct correspondence is conditioned by having a unique way to obtain the
starting point on each level curve. We use, therefore, the plane passing through
the noise tip and the first level of the three polar representation (which corre-
spondence to a invariant point) to detect the starting point in each level curve.



Enhancing 3D Face Recognition by a Robust Version of ICP 71

The intersection between this plane and the 3D surface in each level curve of the
three polar representation corresponds to the starting points of each three polar
level curve.

Second Step: Transformation Estimation. The second step of ICP consists
on the estimation of the rigid transformation between M̂N (S1) and M̂N (S2) that
we denote by T̂ . ICP algorithm is an iterative procedure minimizing the Mean
Square Error (MSE). In practice, the rigid transformation should find a solution
to the least squares defined by:

T̂ = argmin
T

∑
i

∑
j

e2ij (12)

where eij is the distance between the point pS1
ij of S1 and its corresponding point

pS2
ij of S2.

e2ij = ‖pS2
ij − T (pS1

ij )‖2 (13)

Our approach is implemented on the 3D faces with different facial expres-
sions. Since the rigid matching process is sensitive to the 3D shape deformations,
we should consider this variation shape. In the present work, we propose to auto-
matically associate different weights to the different points representing the 3D
surface. In fact, only the points that are less influenced by the facial expressions
will participate in this estimation step. To distinguish these points, we suggest
to study the variation V k

ijof each point pSk
ij of the surface Sk from its centroid

noted by CSk
in all the surfaces. This variation corresponds to the distances

between pSk
ij and CSk

. It can defined by:

V k
ij = (d(P k

ij , CSk
)), (14)

The weight value WSk
ij given for each point pSk

ij should qualify the quality of
matching. Indeed, The more static the point is, the greater its weight should.
Therefore, the weight Wij for two corresponding points pS1

ij and pS2
ij for the two

surfaces S1 and S2 can be formulated by:

Wij =
Vmax − (V S2

ij − V S1
ij )

Vmax
(15)

where Vmax is presented by:

Vmax = max
k

(max
ij

(V k
ij)), k ∈ [1..H]i ∈ [1..N ], j ∈ [1..L] (16)

where H is the number of the used 3D surfaces.
This equation shows that when the variation between two correspondent

points tends to reach Vmax the weight Wij of pij tends to zero.
Thus, the novel transformation estimation should find a solution to the least

squares defined by:
T̂ = argmin

T

∑
i

∑
j

W 2
ije

2
ij (17)
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Seen that T is a rigid transformation, it can be decomposed on rotation and
translation. Therefore, it can be defined as follows

T̂ = argmin
T

∑
i

∑
j

W 2
ij(‖pS2

ij − T (pS1
ij )‖2) (18)

The translation between the two sets of points is defined by:

t̂ = CS2 − RCS1 (19)

where CS2 and CS1 are respectively the centroid of M̂N (S1) and M̂N (S2).
Once the rotation R is determined the translation can be derived. Therefore,

we need firstly to estimate the rotation R. We place each set of points on its
centroid landmark: pS1

Cij
= pS1

ij −CS1 and pS2
Cij

= pS2
ij −CS1 . The optimal rotation

is rewritten as follows:

R̂ = argmin
R

∑
i

∑
j

W 2
ij‖pS2

Cij
− R(pS1

Cij
)‖2 (20)

5 Experiments and Discussion

Here, we perform experiments based on the novel version of ICP applied to the
reparametrized level curves for the identification scenario. For the experimenta-
tion, we used a part of the BU-3DFE database [20]. This portion is composed
by 700 faces corresponds to the first magnitude level of the six facial expressions
and the neutral face of all the subjects of the database(100 subjects). We run

Fig. 2. The CMC curve of the proposed approach for the scenarios: All vs All, Expres-
sion vs Expression and Neuter vs Expression
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the experiments with three protocols: (i) The first one is All vs All. It consists
on the comparison of each face of the database to all the others. (ii) Expression
vs Expression is the second protocol. This one corresponds to the comparison
between each expression of the database and all the other expressions. (iii)
Neuter vs Expression protocol is used to compare each 3D neutral face with the
3D faces with expression. Figure 2 shows the Cumulative Matching Curves of the
proposed 3D representation under the three protocols cited above. The obtained
rank-one recognition rates are about 96.48% for All vs All protocol, 88.53% for
Expression vs Expression and 98.65% for Neuter vs Expression.

6 Conclusion

We introduced in this work a new approach for the recognition of the 3D faces.
This approach consists on a novel robust version of the ICP algorithm. This
proposed ICP is based on the three polar representation proposed in [9] and it is
adopted to the variation of the facial expression on the 3D faces. The obtained
rates for the three protocols of the identification scenario show the performance
of the proposed framework.

We propose in the future work to experiment the proposed approach on the
standard database of 3D faces FRGCV2. We intend also to compare the proposed
ICP with ICP’s variants.
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