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Abstract. With the growth of face recognition, the spoofing mask
attacks attract more attention in biometrics research area. In recent
years, the countermeasures based on the texture and depth image against
spoofing mask attacks have been reported, but the research based on
3D meshed sample has not been studied yet. In this paper, we propose
to apply 3D shape analysis based on principal curvature measures to
describe the meshed facial surface. Meanwhile, a verification protocol
based on this feature descriptor is designed to verify person identity and
to evaluate the anti-spoofing performance on Morpho database. Further-
more, for simulating a real-life testing scenario, FRGCv2 database is
enrolled as an extension of face scans to augment the ratio of genuine
face samples to fraud mask samples. The experimental results show that
our system can guarantee a high verification rate for genuine faces and
the satisfactory anti-spoofing performance against spoofing mask attacks
in parallel.

1 Introduction

As the most significant biometric trait of human beings, the human face has been
widely used for human identification and verification in the scientific research and
the real-world application. The facial data acquisition method is natural, non-
intrusive and contactless, which is friendly to accept in social activities [11,12].
With the development of 3D scanner, 3D printer, Virtual Reality (VR) and Aug-
mented Reality (AR), capturing and reconstructing 3D samples become more con-
venient in daily-life [30]. Meanwhile, 2D and 3D face recognition have been applied
widely in the criminal investigation, the access control, the frontier inspection and
the bank service. Even though the techniques of the face recognition have been
widely studied in biometrics research area [1,2,9,19,26,36] and many state-of-the-
arts have been reported in many publications, the spoofing attacks against face
recognition systems is a potential threat to biometric application.

Spoofing attack is defined as an intrusive act of deceiving a biometric sys-
tem by presenting a fake evidence or a copied biometric trait to obtain a valid
authentication [28]. By using photographs or videos captured in distance or col-
lected via internet, the attacker can easily achieve the facial information of a
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valid user registered in a face recognition system. Then the attacker shows the
fake photograph printed on paper or the recorded video displayed on a tablet for
attempting to get access in the system. Furthermore, since few yeas ago, a social
public website “Thats My Face”1 started to provide the wearable 3D mask man-
ufacturing service with only one frontal photo (another side-view photo is asked
as option). It further reduced the difficulty of attacker’s deception by wearing
such a 3D printed mask. The simplicity and the convenience of the acquirement
and the manufacture of the 2D/3D face data, which should be the advantages
of the face recognition, become gradually the jeopardy and the calamity to the
reliability and the stability of the face recognition system.

Due to the vulnerability of face recognition systems, many papers have been
published on countermeasure studies, and the reported experimental results
showed that the corresponding methods are sufficient and efficient. Among the
published works, liveness detection [3,15,29,39], motion detection [5,14] and tex-
ture analysis [20,25] are three principal categories of anti-spoofing methods [6,7]
against photo- and video-based spoofing attacks. However, with the help of the
improvement of 3D manufacture technology, the easily obtained high-quality
3D masks introduce new challenge to anti-spoofing research. Morpho database2

and 3DMAD database [6], including 2D, 2.5D and 3D face samples of genuine
person and imposters wearing 3D mask, were constructed for simulating this
mask intrusion. Kose et al. proposed the countermeasure based on the fusion
of the information extracted from texture and depth images, and tested it on
the Morpho database [16–18]. Erdogmus et al. evaluated various LBP based
countermeasures on texture images in [6,7]. All of their works reported that the
texture information can be essential discriminative characters to distinguish real
faces and masks. However, the shape analysis based approach, as an important
kind of methods in 3D face recognition, has not been discussed and studied in
their works. To fill this gap, in this paper, we aims to evaluate the anti-spoofing
performance of this kind of method.

The general technique of the shape analysis based 3D face recognition is to
utilize the geometric attributes to describe and characterize the facial surface pre-
cisely. Geometry attributes, including principal curvatures, Gaussian curvature,
mean curvature and their variations (e.g. shape index), have been commonly used
to 3D face representation [21,22,35], keypoints location [24,26,38] and 3D facial
feature descriptor generation [8,19,31]. In this study, we exploit “curvature mea-
sures” developed by [27,32,33] based on concept of normal cycle [4] to extract
shape information of discrete surface (e.g. 3D meshed face), and design the corre-
sponding facial description and recognition framework. This triangle mesh based
geometric feature can highlight the micro-shape dissimilarity between genuine
faces and manufactured masks, which leaves us more opportunities to distinguish
them.

Besides, in the real-life scenario, comparing to the verification cases with
genuine face samples, the spoofing mask attacks appear more rarely, which are

1 http://www.thatsmyface.com.
2 http://www.morpho.com.
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regarded as an exceptional testing case. In order to simulate such a scenario,
we firstly propose to combine Morpho database and FRGCv2 database [1], the
largest public 3D face database, to appraise the anti-spoofing performance. The
gallery set and the genuine probe set are formed by the genuine face samples com-
ing from both Morpho database and FRGCv2 database, while the testing fake
face scans from Morpho database are 5% and 1% of the scale of the whole probe
set. This performance evaluation scenario corresponds better to the real-life case.
Meanwhile, the conventional discriminative power evaluation and anti-spoofing
performance test on Morpho database are also reported in the experiment part.

The rest of this paper is organized as follows. Section 2 gives a brief review
of related anti-spoofing face recognition works. Section 3 presents principal cur-
vature measures estimation method and the related shape analysis based facial
feature descriptor. Section 4 shows the experimental results in several scenarios,
and Sect. 5 finally concludes the paper.

2 Related Work

In the history of mask anti-spoofing research, the work of Kim et al. [13] can
be regarded as the first published one. Due to the difference of the reflectance
between face skin and materials used to manufacture mask, their work aimed to
analyse the distribution of albedo values for illumination at various wavelengths.
Based on Fisher’s linear discriminant, they selected a 2D feature vector consist-
ing of radiance measurement to be the classification criteria in visual and NIR
spectrum (685 and 850 nm respectively). Similarly, Zhang et al. published their
mask detection countermeasure based on multi-spectral analysis in [39]. They
claimed to abandon visual face image, but to analyse multi-spectral images cap-
tured in two discriminative wavelengths of illumination (850 and 1450 nm). They
measured the albedo curves of different materials and trained SVM classifier to
distinguish real face and mask. Even though these two papers above are effective
in mask distinguishing, they haven’t resolve the anti-spoofing problem. Besides
an extra multi-spectral capturing device is obligatory in their defence system.

Lately, Kose et al. reported their anti-spoofing works based on texture and
depth information in 2D and 2.5D images from Morpho Database. Three base-
line face recognition algorithms are tested and an anti-spoofing mask attack
related experimental strategy is mentioned in [17]. Furthermore, they extracted
LBP features in color and depth image and trained the linear SVM classifier to
determine whether the input sample is genuine or fake in [16]. Then in order to
combine the advantage of color and depth image in anti-spoofing mask attack,
two feature and score level fusions were proposed in [18]. They concluded that
texture analysis is a effective method for developing a countermeasure. Similarly,
Erdogmus et al. introduced their 3D Mask Attack Database (3DMAD) and anti-
spoofing countermeasures based on three extended LBP algorithms in [6]. Some
more comparative anti-spoofing experimental results on Morpho and 3DMAD
databases were reported in [7]. Even though the works presented above intro-
duced great countermeasures against 3D mask attacks, all of their main methods
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are designed based on 2D images projected from 3D face scans. Moreover their
evaluation of the anti-spoofing capability of 3D face samples is constructed rely-
ing on Thin Plate Spline (TPS) warping parameters and Iterative Closest Point
(ICP) methods. But 3D shape based geometric attributes, as potent characters
in 3D shape analysis, haven’t been evaluated their anti-spoofing potentiality.
Besides, all their experiments are limited into the mask attack related database
which doesn’t includes not enough genuine face scans to test. In this paper, we
have two main purposes to fill the gaps:

– We take full advantage of principal curvature measures based on asymptotic
cone theory to design a facial descriptor, and evaluate the potential anti-
spoofing performance of the facial descriptor for 3D meshed face scans.

– For simulating a real-life recognition case, we firstly attempt to combine a
scale limited genuine-imposter combined database (i.e. Morpho database) to
a large genuine face scans database (i.e. FRGCv2 database), and perform
comprehensive experimental scenarios.

3 Principal Curvature Measures Based 3D Face
Recognition Scheme

The shape analysis is regarded as an important kind of 3D face recognition
methods. Among this branch of approaches, both a precise estimated geometric
attribute and a proper related facial feature descriptor are significant to repre-
sent and describe the shape of facial surface. In this section, we will introduce our
principal curvature measures estimation method and their related 3D face recog-
nition scheme, which meet these two demands of this kind of method. Meanshile,
because the surface of manufactured mask is smoother than real face which is
stated in [17,18], our proposed descriptor, which can highlight the dissimilarity
of the minor shape between genuine faces and masks, is capable to verify the
liveness of the testing samples. The pipeline of our proposed method includes 4
steps: principal curvature measures estimation, 3D keypoint detection, 3D key-
point feature description and 3D keypoint matching.

3.1 Principal Curvature Measures Estimation

In general speaking, principal curvatures are the most basic but fundamental
geometrical attributes in differential geometry. They are defined regularly as
below: Suppose a point p locating on a smooth oriented surface S, its principal
curvatures λ1p

and λ2p
are estimated as the eigenvalue sets of the corresponding

second fundamental form h (q is the quadratic form associated to h). λ1p
and

λ2p
can describe the local bending information around p of S. Remark that this

definition is coherent because of the smoothness of surface S. However, 3D face
sample is commonly recorded as the triangle mesh, which is continuous but piece-
wise smooth. It makes the conventional curvature estimation method unsuitable
here. A possible solution proposed and demonstrated in [32,33] is to generalize
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the definition of curvatures to the discrete surface and to replace functions by
measures. Here we will present the generalization from the smooth surface case
to the discrete surface case. Please refer [32,33] for a comprehensive and detailed
introduction of the generalization.

Principal Curvature Measures of Smooth Surfaces. Inspiered to [32,33],
the second fundamental form h and its associated quadratic form q can be gener-
alized to a measure on a smooth surface S on E

3. Suppose that any Borel subset
B of E3 and any vector field X of E3, the definition of hB and qB are:

hB(X,X) =
∫

S∩B

hp(prTpSXp, prTpSXp)dp,

qB(X) =
∫

S∩B

hp(prTpSXp, prTpSXp)dp

=
∫

S∩B

qp(prTpSXp)dp,

(1)

where prTpS denotes the orthogonal projection over the tangent plane TpS of S
at p. If X is a constant vector fields in E

3, for any fixed Borel subset, qB(X) is
a measure. {λ1B

, λ2B
, λ3B

} is the associated eigenvalue set, and {e1B
, e2B

, e3B
}

is the eigenvector set of hB . The map λi : B → λiB
, i ∈ {1, 2, 3} is a measure

of E3, named as principal curvature measure. Remark that, in piece-wise case,
principal curvature measures have three components rather than two in the
point-wise approach.

Principal Curvature Measures of Triangle Meshes. A triangle mesh is
a discrete surface apparently, which means its shape and bending information
can not be describe by point-wise approach. That’s why the measure theoretic
method is coherent in triangle mesh case. According to the concept and theory
of normal cycle [4,27], suppose a triangle mesh T in E

3, an explicit formula of
h and q defined of constant vector field X as:

hB(X,X) =
∑
e∈E

l(e ∩ B)∠(e)<X, e><X, e>,

qB(X) =
∑
e∈E

l(e ∩ B)∠(e)<X, e>2.
(2)

where E denotes the set of edge e of T , l(e ∩ B) denotes length of e belongs to
B, and ∠e denotes the signed angle between unit normals n1 and n2 of incident
facets f1 and f2 to e. Meanwhile, hB associated matrix FB is written as:

FB =
∑
e∈E

l(e ∩ B)∠(e)e · et. (3)

We similarly name the set of eigenvalues {λ1B
, λ2B

, λ3B
} of hB is the prin-

cipal curvature measures of T over B. The corresponding set of eigenvectors
{e1B

, e2B
, e3B

} of hB can also be estimated. Based upon the generalization of
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hB , three eigenvectors are respectively two principal directions and one normal
direction of X over B.

In summary, the set of principal curvature measures λ1B
, λ2B

, λ3B
is coherent

to the geometrical properties of 3D face scans in triangle mesh and comprehen-
sively suitable to describe facial surface. These principal curvature measures are
the essential geometric attributes (i.e. the geometric feature) of our 3D keypoint
descriptor presented in following parts.

3.2 λB Based 3D Keypoint Detection

In order to guarantee the scale invariance property of facial descriptor, our key-
point detection is inspired by Lowe’s SIFT [23] and related works [19,31], but
the difference of principal curvature measures are used to locate keypoints. We
firstly construct the Gaussian scale space by smoothing the face scan in trian-
gle mesh with a series of Gaussian kernel gσs

(σs denotes to different scales).
Given a vertex vi in a face scan, the facial surface adjacent becomes smoother
by convolving gσs

over neighbour vertices vj and vi is updated to viσs
as (4).

viσs
=

∑
vj∈N(vi,1)

gσs
(vi, vj) · vj∑

vj∈N(vi,1)
gσs

(vi, vj)
(4)

where N(vi, 1) denotes the set of vertices within 1-ring neighbourhood of vi and
Gaussian kernel gσs

is defined as

gσs
(vi, vj) = exp(− ‖vi − vj‖2 /2σ2

s). (5)

We estimate principal curvature measures λiB
over each scale space of 3D

facial surface as introduced in Sect. 3.1, and then compute the keypoint loca-
tion criterion called Difference of Curvatutre (DoC), referring to Difference of
Gaussian (DoG) in SIFT.

δ(λi(Bvσs
) = λi(Bvσs

) − λi(Bvσs−1
), i = 1, 2, 3 (6)

where δ denotes Difference of Curvature over B. If DoC associated to vi is the
extreme among 1-ring vertices around vi in three scales σs−1, σs and σs+1, vi

is defined as a keypoint vk and σs is its corresponding detection scale. The key-
points detected by three principal curvature measures separately are combined
as one group for following 3D keypoint description.

3.3 λB Based 3D Keypoint Description

3D keypoint description can be divided into two parts. The first one is to assign
a primary direction for improving the robustness to minor head pose change.
The second part is to construct histograms of curvature measures based feature
descriptor.
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Primary Direction Determination. Let’s suppose one keypoint vk and its
proper scale σs of a face scan F as before. The primary direction dvk

associated
to vk is defined by the neighbour vertices N (vk) within a geodesic disc of σs

related radius Rσs
:

N (vk) = {vj ∈ F |Dist(vk, vj) ≤ Rσs
} (7)

We first determine a plane TSvk
orthogonal to the unit normal vector ξvk

of
vk, then project the unit normal vector ξvj

of vj on TSvk
. The primary direction

of vk is created by computing a Gaussian weighted histogram of 360 bins (1
bin per degree) on TSvk

, and determined as the peak of the weighted direction
histogram. Here the Gaussian weight is defined as:

w(vk, vj) = mag(vj) · gσs
(vk, vj),

mag(vj) =
√

ξx(vj)2 + ξy(vj)2.
(8)

HoC Based Feature Descriptor Representation. We construct the feature
descriptor of a keypoint by using principal curvature measures estimated on a set
of neighbor vertices. Following 2D daisy descriptor [37], all the neighbor vertices
locating in 9 ovelapping circles r1, r2, · · · , r9 with a radius of 3.75σs around the
keypoint support one keypoint feature descriptor. r1 locates in the central part
and its center is the keypoint here. Starting form the primary direction, other
8 circles around range along as clock-wise order (as shown in Fig. 1), and the
distance from their center to the keypoint is 4.5σs. This kind of daisy flower
pattern descriptor simulates the functioning of human complex cells in visual
cortex [10], and tends to be invariant to minor face transformation.

Then we build three histograms of three principal curvature measures (hoci)
respectively in each circular region of r1, r2, · · · , r9. In each circular region, the
value of ith principal curvature measure are quantized equally to 8 bins and
weighted by Gaussian kernel, and the standard deviation is assumed as the
Euclidean distance between current point to corresponding center of circle. After
that, we normalize and concatenate all three principal curvature measures related
27 histograms (3 principal curvature measures × 9 regions) following this rule:

HOC = {hocr1
1 , hocr2

1 · · · hocr9
1 , hocr1

2 , hocr2
2 · · · hocr9

2 , hocr1
3 , hocr2

3 · · · hocr9
3 }

(9)
HOC, denoting to Histogram Of principal Curvature measures, is the keypoint
feature descriptor.

3.4 3D Keypoint Matching

For keypoint matching, we aim to find matched keypoint pairs based on HOC
feature descriptor. Assume a keypoint v1

ki
belongs to first facial surface and the

set of all keypoints {v2
kj

} in second facial surface. We estimate the angle set
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Fig. 1. Keypoint descriptor configuration in 9 overlapping circles for generating HoC.

{αi
j} between feature vectors of v1

ki
and {v2

kj
} inspired to [31]. Each angle is

defined as:

αi
j = cos−1

(
< HOC1

i ,HOC2
j >

||HOC1
i || · ||HOC2

j ||

)
. (10)

The angles αi
j are then ranked in ascending order. If the ratio between the

first and second angle is smaller than predefined threshold rα, the match is
accept. Otherwise it is rejected. Finally the number of matching keypoints is set
as the similarity measurement μ between two facial surfaces.

4 Experiments

4.1 Database

In the experiment part, Morpho database and FRGC database are both involved
for evaluation in different scenarios. We will introduce them briefly as follow.

Morpho Database. In Morpho databse, 16 masks were manufactured accord-
ing to the facial information of 16 persons. Their faces are captured by 3D scan-
ner with the structured light, and the mask is manufactured with 3D printer by
Sculpteo 3D Printing [16]. Morpho database consists of two parts: (a) 20 sub-
jects with 10 genuine face samples; (b) 20 subjects wearing their own or other’s
mask are captured around 10 times. In part (b), a person wearing his/her own
mask is marked as a type AA mask sample. Otherwise it’s marked as a type
AB mask sample. In the following experiments, both AA and AB samples are
both regarded as spoofing mask attacks. Some examples in Morpho database are
shown in Fig. 2.
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Fig. 2. 2D texture image and corresponding 3D mesh sample in Morpho database. (a)
genuine face scan of person A; (b) genuine face scan of person B; (c) person A wears
his own mask (type AA fake sample); (d) person A wears person B’s mask (type AB

fake sample).

FRGC V2.0 Database. FRGCv2 database is the largest published 3D face
database, which is built with 4,007 3D face scans of 466 subjects with various
facial expressions, genders and ages. All the face samples recorded are genuine
faces. The face samples are captured in controlled pose and lighting condition by
Minolta Vivid 900 scanner. After preprocessing step following [34], ROI contains
about 30,000 vertices and 40,000 facets.

4.2 Experiment Scenarios

The basic purpose of our 3D face verification system is to guarantee the verifica-
tion accuracy for genuine face, and the complementary purpose is to distinguish
faces and masks. We hence firstly define a series of threshold of the similarity
measurement tiμ in a baseline estimation scenario, and then we apply the same
series of thresholds to evaluate the anti-spoofing performance of our facial fea-
ture descriptor. Furthermore, we also try to control the quantity ratio of genuine
faces to fake faces in probe set for simulating a real-life case. Based on this idea,
two series of experiment scenarios (Scenario A and B) are designed. For intro-
ducing clearly in following part, GM and SM denotes respectively to the set of
all genuine face scans and the set of all spoofing mask scans (including type AA

and AB mask scans) in Morpho database. GF denotes to the group of all genuine
face scans in FRGC database. GM 1 and GM i represents respectively the group
of the first scan of individuals, and other samples of individuals in GM (similarly
for GF ).
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– Scenario A-1: Baseline evaluation with Morpho database.
GM 1 forms gallery set, and GM i builds probe set.

– Scenario A-2: Anti-spoofing performance evaluation with Morpho database.
GM 1 forms gallery set, and GM i and SM build respectively probe set and
spoofing probe set.

– Scenario B-1: Baseline evaluation simulating real-life case.
GM 1 and GF 1 build gallery set, and GM i and GF i build probe set.

– Scenario B-2: Simulating real-life case including 5% fake scans against 95%
genuine face scans.
GM 1 and GF 1 build gallery set, GM i and GF i build genuine face probe set.
SM build spoofing probe set.

– Scenario B-3: Simulating real-life case including 1% fake scans against 99%
genuine face scans.
Gallery set and genuine face probe set is same as B-2, but only 20% scans of
SM enrolled in spoofing probe set. The quantity ratio between fake scans and
genuine face scans is 1:99.

4.3 Experimental Results and Analysis

In scenarios A-1 and B-1, we evaluate the baseline of verification performance
with True Accept Rate (TAR). Because TAR varies along with tiμ, TAR is shown
in Table 1 under several False Accept Rate (FAR) cases. For scenarios A-2, B-2
and B-3 in Table 1, we first take only spoofing probe set to evaluate the anti-
spoofing performance. Recall it that all scans in spoofing probe set are type AA

or AB mask scans which are treated as illegal samples and should be rejected by
system. True Accept Rate (TAR) and False Reject Rate (FRR), which are com-
monly used as criterion, can’t be estimated in this case, because there are only
two verification results for the spoofing probe sample, which are accepted falsely
(FAR) or rejected correctly (TRR). Therefore we evaluate the performance with
Spoofing True Reject Rate (STRR) as criterion for spoofing scans in scenarios
A-2, B-2 and B-3 with FAR predefined in scenario A-1 and B-2 respectively.
STRR is a special criteria for the spoofing samples, so as to show the distinction
to TRR for the genuine face samples.

As shown in Table 1, the verification rate in baseline evaluation with Morpho
Database is above 92% except the case that FAR is 0.01. And in real-life simu-
lating case, we extend the scale of database by adding FRGC database and the
verification rate is 91.98% even FAR equals only 0.001. If FAR is 0.01, the TAR
increases from 84.75% to 94.68% which means the real-life simulating scenario
with more samples can evaluate more properly the performance. Here, we can
conclude that, in the baseline evaluation scenarios, our 3D face feature guaran-
tees the verification performance for only genuine faces. Even though TAR is
84.75% in A-1, it can’t deny the above conclusion. Because the scale of genuine
face scans in A-1 is 180, which means there are only 1 or 2 samples accepted
falsely if FAR is 0.01. And that’s why we don’t show the results of A-1 and A-2
when FAR is 0.001. By the way, based on the contrary thought, the results when
FAR is 0.1 are blank in last three scenarios. Because there are 3,721 genuine face
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Table 1. Verification and anti-spoofing performance evaluation in scenarios

Scenarios A-1 A-2 B-1 B-2 B-3

FAR TAR STRR TAR STRR STRR

0.1 94.35% 62.82% - - -

0.05 92.09% 69.49% 96.41% 62.97% 69.49%

0.01 84.75% 75.64% 94.68% 73.59% 73.78%

0.001 - - 91.98% 81.28% 84.59%

scans in scenario B-1, and if FAR is 0.1, there are too many samples accepted
falsely which can’t show the performance correctly.

In scenario A-2, STRR is above 62.82% and arrives 75.64% when FAR is
0.01. It’s obvious that our algorithm can distinguish the genuine face and fraud
mask from Morpho database. STRR arises along with decrease of FAR because
threshold tiμ is more restricted. Moreover, in real-life simulating case, STRR is
higher than 62.97% and achieves 81.28% and 84.59% including different spoofing
probe set. In this case, STRR is lower a bit with same FAR than A-2 because
the scale of gallery set is larger and tiμ is more rough. However, this experimental
results also demonstrate our algorithm can complete the anti-spoofing mission
even the mask manufactured in high quality.

After that, for scenarios A-2, B-2 and B-3, we combine genuine face related
probe set (GM i and GF i) and spoofing probe set (SM ) to evaluate the per-
formance. Here a Detection Error Trade-off graph (DET) is given to show the
experimental results (as shown in Fig. 3). Remark that in order to present clearly,
the figure only shows the part when FAR and FRR is lower than 35% in scenarios
B. In Fig. 3, the lower Equal Error Rate (ERR) is, with same gallery set, the bet-
ter verification performance is. In this DET graph, when the scale of gallery set
is limited in Morpho database, EER of A-2 is 9.3% higher than the baseline. It’s
obvious to study that the involvement of spoofing mask samples decreases the
verification rate in scenarios A. In similar, when we extend the scale of gallery
set enrolling FRGC database, EER of B-2 and B-3 is higher than corresponding
baseline experiment. But comparing to A-2, EER declines to 3.1% and 2.8%. A
similar conclusion obtained as before that two goals have been achieved: (1) the
verification system guarantees a high verification ability and (2) it possesses the
distinguishable power against spoofing attack in real-life simulating case.

4.4 Comparison with the State-of-the-Art Approaches

In this subsection the comparison with the state-of-the-art approaches using
Morpho database is also given in Table 2. According to the experimental config-
uration assigned in [7,17], here we use scenario A-1 to compute the EER. Then
adopt the same threshold in A-2 to compute the SFAR, that is, Spoofing False
Accept Rate. Spoofing False Accept indicates to the case that the samples with
mask is false accepted by the sysem. In Table 2, we only report our experimental
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Table 2. Comparison of verification performance with spoofing attacks in Morpho
database. (1) Results reported in [17], (2) results reported in [7], (3) results with our
proposed method.

Texture Image Depth Image 3D Mesh Model

(1) (2) (1) (2) (1) (2) (3)

EER 5.90% 6.54% 7.27% 17.63% 3.85% 9.58% 6.72%

SFAR 72.87 59.94% 88.94 47.98% 91.46 54.09% 33.10%

Fig. 3. Detection error trade-off graph of experimental scenarios: Scenarios A-1 and
A-2 are shown in left graph, Scenarios B-1, B-2 and B-3 are shown in right graph.

results using 3D mesh samples. Comparing to 2D texture image and 2.5D depth
image, the face recognition based on 3D face samples generally achieve higher
verification performance with all genuine face samples in the test. The warp-
ing parameters related method in [17] achieves the lowest EER of 3.85%, which
is better than 6.91% EER obtained by our method. However, the WP-related
FR system is the most vulnerable one among the reported systems. Our PCM-
meshSIFT-based method is the most robust system when replace all the probe
samples by the samples with masks. We achieve the lowest SFAR of 33.10%
in such experiment. It proves that the minor shape difference between genuine
faces and manufactured masks can be detected and highlighted by our princi-
pal curvature measure based 3D facial feature, which is effective to enhance the
security level of FR system.

5 Conclusion

In this paper, we first propose to using 3D shape description related method
to distinguish the genuine faces and the spoofing masks stored in 3D trian-
gle meshes. Due to the estimation process relying on a integral form, principal
curvature measures are suitable to present the shape of triangle mesh directly.
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Furthermore, principal curvature measures related feature descriptor can char-
acterize properly the shape information of facial surface, and highlight the minor
dissimilarity of shape between manufactured masks and genuine faces. Thereby
our system can guarantee both high verification rate for genuine face and satis-
factory anti-spoofing performance against mask attack.

Moreover, in a real-life case, the spoofing mask attack is a small proportion
of testing samples. In experiment part, we hence propose to extend the probe set
by combining mask samples in Morpho database and genuine faces in FRGCv2
database for simulating a real-life verification environment. The experimental
results show that our method is effective in verification scenario and anti-spoofing
performance during this simulating case.
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