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Abstract. Due to the appealing advantages in term of medical decision making,
the problem of multimodal medical image fusion has received focused research
over the recent years. Moreover, complimentary imaging modalities such as CT
and MRI are able to improve medical reliability by reducing uncertainty. In this
paper, we propose a new algorithm for multimodal medical image fusion based
on non-subsampled shearlet transform (NSST) and neuro-fuzzy. Firstly, CT and
MR source images are decomposed using the NSST to obtain low and high
frequency sub-bands. Maximization of absolute value is performed to fuse low
frequency coefficients while high frequency coefficients are fused using the
neuro-fuzzy approach. Finally, the inverse NSST is performed to gain the fused
image. To assess the performance of the proposed method, several experiments
are carried on different medical CT and MR image datasets. Subjective and
objective assessments reveal that the proposed scheme produces better results in
various quantitative criterions compared to other existing methods.

Keywords: Multimodal image fusion � Non-subsampled shearlet transform �
Neuro-fuzzy

1 Introduction

Image fusion is the procedure consisting of registering and combining two ormore source
images to obtain single image by using image processing techniques. Its main goal is to
provide suitable information for human visual perception and to reduce redundancy [1]
by storing a single fused image instead of multiple source images. Image fusion tech-
nology as one of the major research fields in image processing has been applied in large
scale of applications such as remote sensing, computer vision andmedical diagnosis. Due
to the advent of disease, complementary information is required from different imaging
modalities such as magnetic resonance images (MRI), computed tomography (CT),
positron emission tomography (PET) and ultrasound (US) and which the selection
depends on clinical requirements like the organ undergo study. Thus, multimodal medical
image fusion techniques have shown notable achievement in improving accuracy of
decisions in the field of medical diagnosis and treatment planning.
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Image decomposition is an important tool that affects the fusion quality. Recently,
multi-scale decomposition based image fusion methods has been widely used in the
medical image fusion area, and has achieved great success. Wavelet theory has
emerged since the beginning of the last century as a signal processing tool then directed
towards image processing [2]. It has been applied for multimodal medical image fusion
[3] and accomplished favorable outcome since it preserves different frequency infor-
mation and allows localization both in time and spatial frequency domain. Owing to the
limitation of capturing directional information, wavelets are not optimally efficient in
representing images containing sharp transitions such as edges. In the past few years,
multi scale geometric analysis (MGA) methods have been reported in the literature as
revolutionary algorithms to overcome this deficiency. Many MGA tools have been
introduced into medical image fusion for the purpose such as contourlet, ridgelet,
bandelet, curvelet, etc. Those approaches have proved directional sensitivity and effi-
ciency when dealing with medical imaging fusion process based on contourlet trans-
form [4], non-subsampled contourlet transform [5], ridgelet transform [6], bandelet
transform [7], curvelet transform [8]. Literature has reported that curvelets is an effi-
cient transform to represent images with smooth edges similarly to contourlets which is
purely discrete filter bank variety of curvelet [10]. However, multi resolution repre-
sentation of the geometry cannot be provided by curvelet transform which cannot be
built in the discrete domain. Moreover, contourlet transform suffer from the lack of
shift-invariance [16] which was settled by non-subsampled contourlet transform but
still suffering from limited number of directions and high computational cost. In recent
past, shearlet theory as an extension of the wavelet framework has been provided by
Labate et al. [9, 11]. It owns the advantageous properties of all above approaches and
additionally it is equipped by rich mathematical structure suitable for multi resolution
analysis which is very useful in for developing fast algorithmic implementations. The
fact that there is no limitation on the number of directions obtained by applying the
shear matrix makes the shearlet advantageous over the contourlet. Thus, shearlets build
a tight frame at different scales and directions convenient to optimal sparse represen-
tation of images with edges [10]. On the other hand, Easley et al. [11] introduced the
non-subsampled shearlet transform (NSST) to fill the need of shift invariance property.

Although the shearlet transform provides an efficient tool for image decomposition,
one open problem that remains under investigation is how to select the appropriate fusion
rules for low frequency and high frequency coefficients. The computational intelligent
systems play a crucial role in the field of medicine. In [27] a method based on fuzzy
classification and regions segmentation is proposed to detect tumoral zone in the brain
IRM images. Besides, Neuro-fuzzy logic is one of the approaches which are finding
applications in image processing fields as well as in medical image fusion [26]. As a
fusion rule, it consists of a combination of artificial neural network (ANN) and fuzzy logic
where neurons can be trained and the membership functions can also be applied for
decision making. Neuro-fuzzy inference system (NFIS) has been adopted in [17] to fuse
multimodal medical images. The recent literature in [18, 19] have also reported the
combination of multi scale geometric analysis with neuro-fuzzy logic in the purpose to
fuse medical images. In [18], Das et al. employed the non-subsampled contourlet
transform to decompose input images and reduced pulse coupled neural network with
fuzzy logic is utilized as a fusion rule. Furthermore, in [19] images are decomposed using
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wavelet transform then fused based on neuro-fuzzy. In this work, MRI-CT image fusion
is performed in order to help as an accurate tool for planning the correct surgical pro-
cedure or therapy. In this regard, we firstly propose to decompose input CT and MRI
images using the shearlet transform. Then, we perform neuro-fuzzy inference to fuse high
sub band similarly to low sub band given by the shearlet decomposition.

The remainder of this paper is organized as follows: recent literature associated to
shearlet transform and neuro-fuzzy in the realm of medical image fusion is described in
Sect. 2. In Sect. 3, we present the proposed fusion method consisting of shearlet
decomposition of the input images fused based on NFIS. Experimental results and
comparisons are discussed in the last section. Finally, conclusion and future research
directions are outlined.

2 Related Works

Shearlet transform (ST) is equipped with rich mathematical structure which is
improved by shearing filters having small support size then directional filters so it can
be implemented more efficiently. Shearlet theory has been studied and applied grad-
ually. Its applications in image processing were extended to image denoising [11] and
edge detection [12] where it has been shown that ST allows one to exactly identify the
location and the orientation of the edge. However, this broader area of research at the
cross road of medical image fusion is still under exploring. ST was introduced by Miao
et al. [13] in the field of image fusion and accomplished satisfying performance. Deng
et al. [14] also applied ST to fuse remote sensing images but still not able to overcome
the problem of shift invariance. Another extension provided by Wang et al. [15], the
sift-invariant sheralet transform (SIST) which is combined with Hidden Markov Tree
(HMT) to model the dependent relationship for the SIST sub-bands. Owning the
property of shift invariance the non-subsampled shearlet transform combined with
neural networks was conducted by Kong and Liu in [23]. In [16], a fusion method for
the CT and MRI images were presented utilizing pulse coupled neural network in the
non-subsampled shearlet transform (NSST) domain which incorporate several different
combination of the shearing with the non-subsampled Laplacian pyramid transform. It
has been concluded that NSST can suppress the pseudo-Gibbs phenomenon advanta-
geously over standard shearlet. Furthermore, MGA tools have been proposed in
junction with neuro-fuzzy [18, 19]. Moreover, non-subsampled contourlet transform
are applied to decompose input images into low and high frequency sub-bands, and
then the neuro-fuzzy is performed as a fusion rule [25]. In [20], Rajkumal et al.
compared lifting wavelet transform and neuro-fuzzy with only iterative neuro-fuzzy
and concluded the superiority of the second approach.

3 Proposed Fusion Methods

The task of multimodality image fusion is to make many salient features in the new
image such as regions and their boundaries. However, image registration is an
important requirement applied for fusion technique. In this paper, it is assumed that the
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source images are registered before initiating the fusion process. In the following, we
propose to decompose the CT and MRI images using the shearlet transform to obtain
low and high frequency coefficient. Then, low frequency coefficients are fused by
maximization of absolute value while high frequency sub band is fused based on NFIS.

3.1 Non Subsampled Shearlet Transform

In contrast to all MGA tools, the shearlet provides a unique combination of mathe-
matical rigidness and computational efficiency when addressing edges. Proposed by
K. Guo et al. [9, 11, 12, 21, 22], it is derived from the theory of wavelets. In dimension
n ¼ 2, the affine systems with composite dilation are defined as follows:

AAS Wð Þ ¼ Wj;l;k xð Þ ¼ detAj jj=2W SlA jx� k
� �

; j; l 2 Z; k 2 Z
2

n o
ð1Þ

Where W 2 L2 R
2

� �
, A, S are both 2� 2 invertible matrices, and det Sj j ¼ 1. The

elements of this system are called composite wavelet if AAS Wð Þ forms a tight frame for
L2 R

2
� �

satisfied by:

X
j;l;k

f ;Wj;l;k
� ��� ��2 ¼ f 2

�� �� ð2Þ

The shearlet transform is a function of three variables: the scale j, the shear l and the
translation k. Let A denote the scaling matrix and S stand for the shear matrix. For each
a[ 0 and s 2 R,

A ¼ a 0
0

ffiffiffi
a

p
	 


; S ¼ 1 s
0 1

	 

ð3Þ

The matrices described above plays an important role in the process of the shearlet
transform. The former matrix A controls the scale of the shearlet by applying a fine
dilation along the two axes which increasingly elongated the frequency support at fine
scales. The latter matrix, which is not expensive, dominates the orientation of the
shearlet. The tiling of the frequency and the size of frequency support are illustrated in
Fig. 1 for a particular values of a and s. The frequency support size of the shearlet for
particular values of a and s is shown in Fig. 2.

In reference [11], commonly assume a ¼ 4; s ¼ 1, where A0 and S0 are respectively
the anisotropic dilation matrix and the shear matrix. Equation (3) gives:

A0 ¼ 4 0
0 2

	 

; S0 ¼ 1 1

0 1

	 


For any n ¼ n1; n2ð Þ 2 bR2; n1 6¼ 0, let w 0ð Þ nð Þ be given by
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ŵ 0ð Þ nð Þ ¼ ŵ 0ð Þ n1; n2ð Þ ¼ ŵ1 n1ð Þŵ2 n2=n1ð Þ

where ŵ1; ŵ2 2 C1 bR� �
arebothwavelets,andsupp ŵ1 � �1=2;�1=16½ � [ 1=16; 1=2½ �,

supp ŵ2 � �1; 1½ �. In addition, assume that:

X
j� 0

ŵ1 2�2jx
� ���� ���2 ¼ 1 for xj j � 1

8
ð4Þ

and, for each j� 0,

X2 j�1

l¼�2 j

ŵ2 2 jx� l
� ���� ���2 ¼ 1; xj j � 1 ð5Þ

(a) The tiling of the frequency by the 

shearlets

(b) The size of the frequency 

support of a shearlet

Fig. 1. The structure of frequency tiling and the size of the frequency support.

Fig. 2. Frequency support of shearlets wj;l;k for different values of a and s.
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That is, each element wj;l;k is supported on a pair of trapezoid of approximate scope
22j � 2 j oriented along lines of slope l2�j (Fig. 1b). Under these assumptions (Eqs. 4
and 5), several examples of ŵ1 and ŵ2 imply that:

X
j� 0

X2 j�1

l¼�2 j

ŵ 0ð Þ nA�j
0 B�l

0

� ���� ���2 ¼ X
j� 0

X2 j�1

l¼�2 j

ŵ1 2�2jn1
� ���� ���2 ŵ2 2 j n1

n2
� l

	 
����
����
2

¼ 1 ð6Þ

Accordingly, we can obtain discrete non-subsampled shearlet transform by sampling
the shearlet on a proper discrete set. Suppose that A and B are respectively two registered
CT and MRI images. Our fusion algorithm for image A and B begins with performing
discrete NSST for these two images to obtain low-and-high frequency sub band coeffi-
cients of them as illustrated in Fig. 3. The image decomposition process is divided in two
steps: non-subsampled pyramid (NSP) is used to accomplish multi-scale factorization by
applying non-subsampled filter banks in order to satisfy shift-invariance. The decom-
position leads to jþ 1 sub images; one is low frequency image, the others represent the
high frequency images where j denotes the number of decomposition levels. The second
phase performs themulti-directional decomposition realized by the shearingfilters (SF) at
each scale which induces directional details information. Orientation factorization with l
stages in high frequency produces 2l directional sub images. The NSST decomposition
process is illustrated in Fig. 4 where the two basic steps are demarcated. In this work,
decomposition level by NSP is j ¼ 3 and the sub-band filter adopted is “maxflat” in a
purpose to be aligned with the compared methods based on NSST [16, 26, 28] and to
investigate the efficiency of neuro-fuzzy.

3.2 Neuro-Fuzzy Inference System Based Image Fusion

Properties like brightness and edges have fuzzy effects on images due to the
non-uniform illumination and inherent image vagueness [24]. NFIS is a feed-forward
neural network system in which neural nets are used to tune the membership functions
of fuzzy sets that operate as a decision making system [19]. The main concept of fuzzy
logic lies in fact that fuzzy sets are defined by a membership function which associate a

Fig. 3. Block diagram of the proposed
fusion method

Fig. 4. Schematic diagram of multi-scale and
multidirectional decomposition of NSST
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membership degree for each element of those sets. The hybrid technique is performed
in three steps; first, the membership function and fuzzy rules are defined and adaptive
neuor-fuzzy inference system (ANFIS) is generated from the training data using
“genfis1” function which provides initial conditions for the training. The second step
consists of routine training for Sugeno-type fuzzy inference system using “anfis”
function in a regard to identify the membership parameters. Finally, the total output is
calculated. The process learning of NFIS and its structure are illustrated in Fig. 5.
Three layers are involved; the first calculates the input membership degree, the second,
calculates the pertinence degree of each rule and the final adds up the output of NFIS.

Low and high frequency fusion rules. Low frequency coefficients of the fused image
are conventionally given by the averaging method. However, this technique is only
able to contribute with low contrast result [4]. To overcome this deficiency, low fre-
quency sub-bands of input images are chosen to be fused using the maximum of the
absolute value to preserve more contrast. Thus, LFA;B i; jð Þ denotes the low frequency
coefficients located at i; jð Þ of image A or B, the fused low sub-band is given as follows:

LFF i; jð Þ ¼ LFA i; jð Þ LFA i; jð Þj j � LFB i; jð Þj j
LFB i; jð Þ LFA i; jð Þj j\ LFB i; jð Þj j


ð6Þ

On the other hand, high frequency coefficients are fused based on neuro-fuzzy
approach. At each decomposition level and for each sub-image obtained by the
shearing filter, NFIS is performed in a goal to fuse the trained inputs. The fusion
process is described in the following.

Algorithm. The proposed medical image fusion method as illustrated in Fig. 3 pursue
the following steps:

• Step 1: Pre-registered CT and MR image are decomposed by NSST to obtain low
and high frequency coefficients.

• Step 2: Low frequency coefficients of the source images are fused by the greatest of
the absolute value methods (Eq. 6).

• Step 3: High frequency coefficients of each decomposition level and each sub-image
are fused based on NFIS as follows:

Fig. 5. The schematic framework of NFIS
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• Step 3.1: Form a training data in column and reshaping the input sub-images in
column form to get the check data.

• Step 3.2: Generate fuzzy inference system (FIS) structure from training data,
number and type of membership function using “genfis1” command.

• Step 3.3: Training process is performed by applying “anfis” command involving
the generated FIS and the training data. Finally, the fuzzy inference calculation
is performed.

• Step 4: Apply the inverse NSST on the fused coefficients to get the fused medical
image.

4 Experimental Results and Comparisons

In this section, several illustrative experiments are conducted in order to assess the
effectiveness of our proposed methods. The implementation is handled in Matlab
R2013a on a PC with 2.39 GHz Core 2 Duo processor and with 2 GB of memory. The
proposed fusion method is evaluated on different datasets each includes pre-registered
CT and MRI images of the same person and the same part of the body. Furthermore,
obtained results are compared quantitatively and qualitatively with other existing
methods of the literature according to several performance measures.

4.1 Evaluation Criterion

Visual perception is most of time subjective when providing instinctive comparisons of
the fused images due to eyesight level and mental state. As a consequence, several
evaluation metrics should be applied in order to provide an objective assessment. These
criterions are of two types; metrics based on single image and the others integrating
both source and fused images.

Entropy (En). Entropy measures the amount of information available in both source
and fused images each apart. The larger is the entropy of the fused image denotes the
presence of more abundant information. It is defined as follows:

En ¼ �
Xl�1

i¼0

p ið Þlog2p ið Þ ð7Þ

Where p ið Þ indicates the probability of pixels gray level with the range 0; . . .; l� 1½ �.
Standard deviation (STD). STD reflects the contrast of a single image. An image with
high standard deviation will have high contrast. The degree of deviation between pixels
gray level of an image I i; jð Þ whose size is M � N and the average is expressed by:
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STD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM
i¼1

XN
j¼1

I i; jð Þ � 1=ðM � Nð ÞPM
i¼1

PN
j¼1 I i; jð Þ

� �h i2
M � N

vuuut ð8Þ

Spatial frequency (SF). Spatial frequency (SF) [16] reflects the level of clarity and
returns the whole activity of an image. Hence, the larger is the SF the higher is the
resolution. It is calculated trough row and column frequency and defined as:

SF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RF2 þCF2

p
ð9Þ

Where RF is row frequency and CF is column frequency both defined by Eqs. 10
and 11 where a and b denotes the image size and I i; jð Þ gives the gray level of the fused
image.

RF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
a b� 1ð Þ

Xa
i¼1

Xb
j¼2

I i; j� 1ð Þ � I i; jð Þð Þ2
vuut ð10Þ

CF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
a� 1ð Þb

Xa
i¼2

Xb
j¼1

I i; jð Þ � I i� 1; jð Þð Þ2
vuut ð11Þ

Structural similarity index (SSIM). SSIM [29] is a perceptual metric that quantifies
image quality degradation. It expresses the similarity between the reference and the
fused image and it values is in �1; 1½ �. So that large value means similarity between
source and fused images and the value 1 indicates the identical between two images. It
is defined as:

SSIM F; Ið Þ ¼ 2lFlI þC1ð Þ � 2rFI þC2ð Þð Þ
l2F þ l2I þC1ð Þ � r2F þ r2I þC2ð Þð Þ ð12Þ

Where F is the fused image, I is the input image, lF and lI are respectively the mean
intensity of image F and I, rF and rI denotes the variance of image F and I, rFI
calculates the covariance of F and I and finally, C1 and C2 are constants.

Peak signal to noise ratio (PSNR). PSNR is given in dB value for quality judgment
and it reflects the level of noise restraint. Better fused image quality is related to the
higher value of PSNR which means little difference between input and fused image and
less distortion. It is expressed by:

PSNR ¼ 10� log10 2552=MSE
� � ð13Þ

Mutual information (MI). MI indicates how much information that input image
brings to the fused image. Its value increases with increasing of details and texture
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information in the fused result. Given two input images XA;XB and a fused image XF It
is defined as [16]:

MI ¼ I XA;XFð Þþ I XB;XFð Þ ð14Þ

Where,

I XR;XFð Þ ¼
XL
u¼1

XL
v¼1

hR;F u; vð Þlog2 hR;F u; vð Þ
hR uð ÞhF vð Þ ð15Þ

R denotes a reference image and F a fused image, where hR;F u; vð Þ is the joint gray
level histogram of XR and XF . hR uð Þ; hF vð Þ are the normalized gray level histogram of
XR and XF respectively.

Image quality index (IQI). IQI reflects the quality of the fused image. Its dynamic
range is �; 1½ � and IQI is higher closer to unit signifies the better quality of the fused
result. IQI is defined as:

IQI ¼ rFR
rFrR

	 

:

2lFlR
l2F þ l2R

	 

:

2rFrR
r2F þ r2R

	 

ð16Þ

Where lF ; lR are the means and rF ;rR are the variances of fused and source images,
respectively. Since two source images A and B are contributing in the fusion process,
so the total IQI value is given by the mean:

IQI ¼ IQI A;Fð Þþ IQI B;Fð Þ
2

ð17Þ

4.2 Results and Discussion

Experiments are carried out on different datasets including CT and MR images in order
to compare the proposed approach with several existing methods. It is obvious that CT
images discriminate soft tissues information and show bone structures where the MR
images provide the soft tissue information and lacks in boundary information. In the
following, experiments are conducted on different datasets and results will be discussed
quantitatively and qualitatively based on performance metrics described above and also
on visual perception.

Experiment 1. Visual and quantitative results of three methods dealing with CT/MR
image fusion were compared with the proposed method. Iterative Neuro-Fuzzy
Approach (INFA), Discrete Wavelet Transform (DWT) based approach and Lifting
Wavelet Transform combined with Neuro-Fuzzy Approach (LWT-NFA) [20] are
analyzed and compared subjectively and objectively based on EN and SSIM. Perfor-
mance results are listed in Tables 1 and 2. Comparative analysis is carried on six
different pairs of pre-registered CT (Fig. 6. A1-F1) and MR (Fig. 6. A2-F2) images
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(256 � 256). Their resultant fusion images are shown in Fig. 6. From the visual
analysis of the fused results, it can be observed that our method preserve successfully
both soft tissue information provided by MR images and bony structures given by CT
images with better resolution compared with the aforementioned methods.

As mentioned above, besides the visual comparison, an assessment of quantitative
results based on evaluation criterion (EN and SSIM) demonstrates the outcomes of the
proposed fusion method. Table 1 shows the entropy results where it can be concluded
that the proposed method gives the highest performance than others which means that
more information lies in fused image given by our algorithm. Table 2 exposes the
highest values of SSIM produced by the proposed method over different methods. It
reveals that our algorithm produces less quality degradation of the resultant image
which means the better similarity between source and fused image.

Experiment 2. To further evaluate and compare the performance of the proposed
methods with the adjacent literature, we propose to process another pre-registered
image set (Fig. 7) already applied by several methods. The fusion results are compared
with neuro-fuzzy based fusion method in the non-subsampled contourlet domain [18]
(NSCT-NF), neuro-fuzzy approach [25] (INF), non-subsampled shearlet transform and
spiking neural network [16] (NSST-NN), pulse coupled neural network in the
non-subsampled shearlet domain [26] and finally, shearlet transform based fusion
approach [13]. Objective evaluation of different results is tabulated in Table 3. While
visual results are demonstrated in Fig. 7.

On the basis of visual results given by different scheme and illustrated in Fig. 7, it
can be recognized that the proposed fusion algorithm produces fused images with
competitive quality and containing both soft tissue and dense tissue information
derived from source images. Further, edges information is recuperated in resultant
image with good contrast. Additionally, objective evaluation performance listed in
Table 3 shows greatest entropy produced by the proposed scheme means that more
information is preserved. The standard deviation value is competitive with other
methods reflecting a good contrast compared to others as assessed by visual perception.
Mutual information and spatial frequency values are not the better compared to the rest
of scheme due to the training of input data but still higher than neuro-fuzzy in the
non-subsampled contourlet domain. IQI provided by our algorithm is greatest com-
pared to other schemes depicting the better similarity between reference and fused

Table 1. Entropy performance of different
approaches.

Methods

INFA DWT LWT-NFA Proposed method

Dataset 1 6.4787 6.1688 6.35ll 6.8144

Dataset 2 6.4717 6.1081 6.3675 6.7004

Dataset 3 6.3794 6.0444 6.2601 6.7271

Dataset 4 6.4605 6.1397 6.3631 6.8463

Dataset 5 6.5104 6.2040 6.4176 6.8506

Dataset 6 6.4275 6.0945 6.2936 6.7803

Table 2. SSIM performance of different
approaches.

Methods

INFA DWT LWT-NFA Proposed
method

Dataset 1 0.6362 0.2250 0.5031 0.7784

Dataset 2 0.6241 0.2145 0.4658 0.7261

Dataset 3 0.6377 0.2124 0.4850 0.7382

Dataset 4 0.6574 0.2172 0.5113 0.7227

Dataset 5 0.6338 0.2206 0.4990 0.7448

Dataset 6 0.6492 0.2193 0.5122 0.7898
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Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6

CT

A1 B1 C1 D1 E1 F1

MRI

A2 B2 C2 D2 E2 F2

INFA

A3 B3 C3 D3 E3 F3

DWT

A4 B4 C4 D4 E4 F4

LWT-
NFA

A5 B5 C5 D5 E5 F5

Proposed 
Method

A6 B6 C6 D6 E6 F6

Fig. 6. Comparative visual results of different methods applied to input CT (A1 - F1) and MR
(A2 - F2) images. Rest of rows illustrates fusion results provided by INFA method (A3 - F3),
DWT method (A4 - F4), LWT-NFA method (A5 - F5) and the proposed method (A6 - F6).

Table 3. Comparative performance of different methods for the dataset shown in Fig. 7.

EN STD MI SF IQI PSNR SSIM

NSCT-NF
[18]

6.7918 64.6989 – 7.2512 – – –

NFA [25] 4.4894 – – 16.9926 0.3182 11.4129 –

NSST-NN
[16]

6.8352 62.1700 4.1550 – – –

NSST-
MAX- SF -
PCNN [26]

6.7801 60.0200 3.7930 – – –

ST [13] 6.1851 45.0704 – – – 0.6881
Proposed
scheme

7.1030 64.7186 3.5718 7.2515 0.5227 20.5818 0.8024
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images. Finally, PSNR and SSIM are comparatively better. Thus, the new method
decreases noise than others and the corresponding fusion results are similar to refer-
ences with less distortion. It can also be concluded that pseudo-Gibbs phenomenon is
suppressed through shift invariant shearlet transform.

Time cost is also paid attention in this work. It has been summarized that NSST is
lower time consuming than NSCT [16]. Moreover, fusion rules based on PCNN are
time consuming due to the learning process compared to the average or maximum
methods but still closer to neuro-fuzzy fusion rule.

5 Conclusion and Perspectives

Equipped with a rich mathematical structure, shearlet transform is an MGA tool that
possesses anisotropy, directionality and shift invariance. In this work, we have exposed
a multimodal medical image fusion method based on non-subsampled shearlet trans-
form and neuro-fuzzy. Thus, low frequency sub-bands are fused by maximization of
absolute value while high frequency fusion rule is based on Neuro-Fuzzy Inference
System. Experiments carried on different CT and MR pre-registered datasets reveals the
effectiveness of the proposed method. Based on visual perception, we can notice that
the fused images produced by the proposed scheme are rich of information details that
belong both to soft tissues and bones with good contrast. Objective evaluation
demonstrates that the fusion results provided by the proposed method contain more
details and less distortion and noise. Subsequently, the main advantage of the shift
invariant shearlet transform over standard shearlet is covered which is the elimination
of the pseudo-Gibbs phenomenon.

Additional outcomes are attempted in future in order to further optimize and
enhance the performance of our method. Fusion rules for low and high frequency will
be addressed with more attention and hybrid intelligence will be paid more consider-
ation. Future works will investigate the deep learning in medical image fusion where
different modalities will be integrated in the experimental protocol.

CT MRI

NSCT-NF NFA NSST-NN NSST- MAX- SF -
PCNN

ST Proposed scheme

Fig. 7. Fusion results of different methods applied to input CT and MR images. Rest of rows
illustrates fusion results provided by NSCT-NF, NFA, NSST-NN-PCNN, ST and the proposed
scheme.
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