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Abstract. We propose a 2D-shape Gaussian Bayes classifier based upon
Kendall’s representations that help to quotient out the effects of non-
altering shape geometric transformations. The Kendall space is a non
linear space that coincides with the unit sphere modulo an isometry
group. The proposed Riemannian metric is more apt in the case where
shapes are different only in translation, scale and rotation. In addition
to that, the manifold structure of this space renders the multivariate
statistical analysis implementation unfeasible in practice. Consequently,
tools such as learning and classification models are non trivial and not
frequently available. To overcome these issues, we adapt the Gaussian
Bayes classifier to this space. We computed the likelihood parameters
through appropriate projections onto Kendall tangent space that pro-
vides a good linear approximation. In order to validate the robustness of
our classifier, we proceeded to computer simulations using several bench-
marks.

Keywords: Kendall space · Gaussian Bayes classifier · Likelihood
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1 Introduction

Objects’recognition is one of the most active areas of research with crucial appli-
cations in diverse fields. Object representation is a primordial step to system-
atically allocate mathematical structures to shapes in order to ease the imple-
mentation and analysis of the relevant classification algorithms. Objects may
be described according to main parameters: colors, textures, shapes, movements
and locations. However, shape remains a critical feature for object recognition
as commonly accepted by the computer vision community. The need for con-
sistent structures that help handle the rich repertoire of shapes has elicited the
investigation of several researchers. Among the proposed representations are:
continuous contour parametrization [1], medial [2], active model [3], and alge-
braic representations [4]. Once a particular representation is defined, a classifier
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is either trained during a learning phase through probability models and pres-
elected shape sets, or designed through a clustering technique. Another type of
invariant shape representation has been proposed, the Fourier descriptors along
with moment invariants. These are among the main techniques, yet are only
based on continuous regions and contours [5]. In 1977, D.G Kendall proposed
a new invariant representation where he identified a shape with the geometri-
cal information that remains after filtering out the location, scale and rotation
effects from initial configuration matrices that capture objects’shapes through
landmarks. The elimination of irrelevant effects generated a non-linear space.
Consequently, the application of various clustering and classification methods is
not appropriate. The Riemannian metric for this space refers only to whether
two shapes are identical (different only in translation, rotation and scale) or
not, yet in many cases we need to measure shape similarity. An appropriate
metric for shape classification should not only suit certain invariance proper-
ties but also satisfy the different input properties. This study tries to devise
a robust classifier through the combination of an efficient shape representa-
tion emerging within the framework of the Kendall’s theory with the Bayesian
approach renowned for its rigorous theoretical foundation and optimal classi-
fication results. We based our choice of the Kendall representation upon the
firm belief that its adequate implementation yields computational effectiveness.
Indeed, representation-based-matrices are easy for calculate and are much less
time consuming compared to those using more complex structures. Our main
contribution is the adaptation of the Gaussian Bayes classifier in Kendall space
and its local approximation through projections onto tangent spaces. Section 2 of
this paper exposes an overview of some works related to Kendall space. The pro-
posed method is presented in Sect. 3. Experiments are presented and discussed
in Sect. 4. Finally, we conclude the work and suggest proposals in Sect. 5.

2 Previous Works on Kendall Space

The study of shapes dates back to D’Arcy Thompson, but the first more sys-
tematic algorithmic treatment of shape representations and metrics is due to
Bookstein and Kendall. They represented shape by a collection of ordered land-
mark points invariant to Euclidean similarity transformations. Two objects have
the same shape if they can be translated, scaled and rotated to each other so that
they match exactly. This standpoint has led to the foundation of the Kendall
shape theory [6,7] which is a most popular and widely discrete used shape repre-
sentation. Number of works elaborated by shape theories experts like Bookstein
[8], Dryden [9], have adopted Kendall definition to get finite dimensional spaces
from landmarks coordinates. The readers are referred to [10,11] for a thorough
view of the recent developments of Kendall theory. The solution to resolve the
problem of non-conforming between Kendall space and the classical linear algo-
rithm of classification was proposed by Jayasumana et al. in [12] and is to per-
form a mapping operation from the manifold to the Hilbert space using a kernel
function. Which produces a richer representation of the data, and makes tasks
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such as classification easier. However, only positive definite kernels yield a map-
ping to a Hilbert space and a poor choice of kernel can often result in reduced
classification performance. Another idea to adapt an unsupervised learning algo-
rithm, k-means, to Kendall space is to integrate the Procrustes mean [13]. Here
we focus on adapting the Bayesian approach to Kendall space through a linear
tangent space.

3 Our Approach of Supervised Learning in Kendall Space

3.1 Landmarks Selection

At the outset we fixed the value of the number Nc of the targeted shape classes
ωi, for 1 ≤ i ≤ Nc, since we are working within a supervised context. Then, we
generated for each ωi amongst the Nc classes a set

{
Xi�

j

}
1≤j≤Nps

comprising
Nps initial configurations of learning samples. Here, we gathered in each matrix
Xi�

j the vector column coordinates of some fixed number of labelled landmarks,
which are selected to capture the shape of the jth sample from the class ωi. More
accurately, the selection consists of picking up k landmarks from the contours.
We noticed that some of the benchmarks also provide a set of landmarks selected
by experts, unless said landmarks were not valid, in that case we performed the
selection task manually based on templates assigned to each class.

3.2 Learning Shapes Processing

Let Xi
j
� =

(
x�
0 x�

1 . . . x�
k−1

)
be one of the learning samples in {Xi

j
�}1≤j≤Nps

for the class ωi (Cf. Sect. 3.1). We started by calculating the center of Xi�
j to

remove the translation effect from Xi�
j , by moving x�

c to the origin of the coor-
dinates system, when each x�

� is substituted with x�
� − x�

c , for all 0 ≤ � ≤ k − 1,
respectively.

x�
c =

1
k

k−1∑

�=0

x�
� (1)

Next, we performed a dimension reduction via a right multiplication of the last
version of Xi�

j by the recentering orthogonal matrix Q,

Q =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Q�1 = 1√
k
, 1 ≤ � ≤ k;

Q�� = �−1√
�(�−1)

, 2 ≤ � ≤ k;

Q�h = − 1√
�(�−1)

, 1 ≤ � ≤ h − 1, 2 ≤ h ≤ k;

Q�h = 0, otherwise.

(2)

to get an intermediate representation matrix X̃i
j with general form(

0 x̃1 x̃2 . . . x̃k−1

)
which we reduced naturally to

X̃i
j =

(
x̃1 x̃2 . . . x̃k−1

)
(3)
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After that, we eliminated the scaling effect through normalization to get

Xi
j =

1
√

tr(X̃i
j(X̃

i
j)t)

(4)

The set
{
Xi

j

}
1≤j≤Nps

coincides with points on the 2 (k − 1)−1 dimensional unit

sphere, denoted by Sk
2 . We notice that any matrix TXi

j , for T ∈ SO (2), has the
same shape as Xi

j . So, from now on, Xi
j is treated as a pre-shape representation

and the sought shape denoted by π
(
Xi

j

)
identifies an equivalence class modulo

the left action of rotations T in SO (2) on the pre-shape Xi
j ; the space of all

possible shapes is the 2 (k − 1) − 2 dimensional Kendall space, which is the
quotient space.

Σk
2 = Sk

2

/
SO (2) (5)

The pseudo-singular values decomposition helps to write any pre-shape Xi
j as a

three-factors product,

Xi
j = U(Λ 0 )V (6)

where U ∈ SO (2), V ∈ SO (k − 1), 0 is the null matrix of dimensions 2×(k − 3),
and Λ is the 2×2 diagonal matrix diag{λ1, λ2} such that λ1 ≥ |λ2|, λ2

1 +λ2
2 = 1,

and λ2 ≥ 0 unless k = 3. This decomposition provides a systematic way to
decide whether or not any couple of learning pre-shapes belong to the same
equivalence class. In order to quotient out the left acting orthogonal matrices
to obtain the learning shapes in Σk

2 (5), we calculated UXi
j1

(ΛXi
j1

0 )VXi
j1

and

UXi
j2

(ΛXi
j2

0 )VXi
j2

of each couple of pre-shapes Xi
j1

and Xi
j2

in {Xi
j}1≤j≤Nps

(6).

Then, we decided that π(Xi
j1

) and π(Xi
j2

) are identical if and only if ΛXi
j1

= ΛXi
j2

and both first rows of VXi
j1

and VXi
j2

are exactly the same, the remaining k − 3
rows of VXi

j1
and VXi

j2
do not matter since they are multiplied by the null matrix

of dimensions 2 × (k − 3) appearing in (ΛXi
j1

0 ) and (ΛXi
j2

0 ), respectively.
Naturally, we did not care about the left acting orthogonal matrices UXi

j1
and

UXi
j2

because they do not affect shapes. This way, we succeeded in regrouping

the Nps learning pre-shapes of {Xi
j}1≤j≤Nps

into N i
s learning equivalence classes.

Concretely, for all 1 ≤ p ≤ N i
s, the pth equivalence class is represented by any

candidate denoted by π(Xi
p), and qualified as the learning shape.

3.3 Likelihood for Parameters Inference

We describe here, our approach of learning procedure to estimate the expecta-
tion vector μi as well as the covariance matrix Σi of the Gaussian likelihood. We
assume that the learning samples in each set

{
π

(
Xi

p

)}
1≤p≤Ni

s

are independent
and identically distributed according to the likelihood of each ωi, respectively.
In a first step, we calculated the mean shape π (ν̂i) of the set of learning shapes
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{
π

(
Xi

p

)}
1≤p≤Ni

s

which we used later as a reference shape where we approxi-

mated Σk
2 locally by its tangent space [14]. Specifically, we looked for π (ν̂i) as

a solution of the minimization problem

arg inf
π(ν)∈Σk

2

Ni
s∑

p=1

d2F
(
π

(
Xi

p

)
, π (ν)

)
(7)

which involves the procrustes distance between π
(
Xi

p

)
and π (ν)

d2F
(
π

(
Xi

p

)
, π (ν)

)
= sin

(
ρ

(
π

(
Xi

p

)
, π (ν)

))
(8)

Here, ρ is the distance function defined for Σk
2 as

ρ
(
π

(
Xi

p

)
, π (ν)

)
= arccos (λ1 + λ2) (9)

with the pseudo-singular values λ1 and λ2 of Xi
pν

t for arbitrary pre-shapes Xi
p

and ν of π
(
Xi

p

)
and π (ν), respectively. In a second step, we mapped each learn-

ing shape π
(
Xi

p

)
in

{
π

(
Xi

p

)}
1≤p≤Ni

s

onto its projection π̄i

(
Xi

p

)
computed as

π̄i

(
Xi

p

)
=

(
Im − π (ν̂i) π (ν̂i)

t
)

π
(
Xi

p

)
, (10)

In practice, we computed π (ν̂i) and π̄i

(
Xi

p

)
for all 1 ≤ i ≤ Nc and 1 ≤ p ≤ N i

s

using the generalised procrustes analysis [15]. We emphasize here on two impor-
tant features of the last function: first, we get always the same mean shape π (ν̂i)
even if we use left rotated versions of the actual shapes π

(
Xi

p

)
, for all 1 ≤ i ≤ Nc,

respectively. Second, all the left rotated versions of the shape π
(
Xi

p

)
project

always to the same point of the tangent space to Σk
2 at π (ν̂i). In a last step, we

reshaped each one of the matrices π̄i

(
Xi

p

)
onto a row vector π̄v

i

(
Xi

p

)
. Then, we

profited from the maximum likelihood method to get likelihood parameters

μi =
1

N i
s

Ni
s∑

p=1

π̄v
i

(
Xi

p

)
, (11)

Σi =
1

N i
s

Ni
s∑

p=1

(
π̄v

i

(
Xi

p

) − μi

)t (
π̄v

i

(
Xi

p

) − μi

)
, (12)

Both parameters dimensions are 1 × 2 (k − 1) and 2 (k − 1) × 2 (k − 1), respec-
tively.

3.4 Generalization

In the present subsection we detail how we conducted the classification task of
general shapes. After obtaining the likelihood phase (Cf. Sect. 3.3), we used the
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values of the Gaussian likelihood μi and Σi of each class ωi to compute the
posteriori probabilities

p (ωi|π (X))=
p (π̄v

i (X) |ωi) P (ωi)
p (π̄v

i (X))
(13)

where

p (π̄v
i (X) |ωi)=

1

(2π) (k−1)
√

det (Σi)
exp

(
−1

2
(π̄v

i (X)− μi)Σ−1
i (π̄v

i (X)− μi)
t

)
, (14)

P (ωi) is an a priori probability of ωi, and p (π̄v
i (X)) is the evidence term.

Finally, the maximum amongst the values of p (ωi|π (X)) indicates the class of
π (X). Here again, we draw the attention of the readers that if we represent the
shape π (X) by any TX where T ∈ SO (2), then we still have exactly the same
likelihood value in (14), because all such TX matrices project always through
(10) to the same π̄i (X) in the tangent space to Σk

2 at π (ν̂i); that is to remind
that our a posteriori probability distribution does depend on shapes rather than
pre-shapes.

4 Experiments and Results Analysis

We ran several experiments for the purpose of evaluating the behavior of our
classifier on Σk

2 (see Sect. 3 above). We used mainly four 2D shape benchmarks
namely, MPEG-7, Swedish leaves [14], great apes data, and T2 mouse verte-
brae data [15]. Our classifier faced an important challenge since the handled
shapes correspond to domestic objects, leaves, skulls or even mouse vertebrae.
The MPEG-7 offers 70 classes and 20 images per class, yet in our experiments we
only used 60 classes. Figure 1 contains some annotated samples from MPEG-7.
We assigned 10 images per class to the learning phase, and the rest for general-
ization. We will now demonstrate the benefits of our Classifier on the problem of
leaf identification. We employed the Swedish leaves dataset, which contains 15
different classes with 75 images per class. We used 35 images for training and the
rest for testing. Some annotated samples are shown in Fig. 2. The apes database
contains the skulls of 167 specimens of great apes, with different species and
both sexes: chimpanzee (26 females and 28 males), gorilla (30 females and 29
males) and orangutan (30 females and 30 males). We used 15 samples of each
class for the learning phase, the rest were used for the test. Finally, the T2 mouse
vertebrae database contains the second thoracic vertebra of three groups of mice:
large (23 samples), small (23 samples) and control group (30 samples). We used
13 samples for each group for the learning stage and the reset for generalization.

In Table 1 we summarize the outcomes of the experiments on the aforemen-
tioned benchmarks, where the numbers of landmarks are 12 and 27 for MPEG-7
and Swedish leaves respectively, which we selected since they are not available as
shown in the table. For the case of apes and T2 mouse vertebrae, the landmarks
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Fig. 1. Samples of hammer, bell, bone, heart, bottle, and apple shapes from MPEG-7.
The red dots indicate the selected landmarks for each shape sample. (Color figure online)

have been provided by an expert. We end the current subsection by comparing
the results of our classifier in Σk

2 to those of the Gaussian Bayes classifier in
Euclidean space and to the kernel SVM classifiers in Hilbert space. It should be
noted that the result of the last classifier is derived from this paper [12]. We
gathered the results of generalization of all these classifiers in Table 2 where it
is clear that our classifier outperforms the classical one, proof of its robustness.

We expect that the improvement in classification results comes from the
nonexistence of redundancy within the learning sets

{
π

(
Xi

p

)}
1≤p≤Ni

s

used by

our classifier in Kendall space, compared to the sets
{
Xi�

j

}
1≤j≤Nps

used by
the classical classifier. Here, the nonexistence of the redundancy stems straight-
forwardly from the systematic elimination of translation, scale, and rotation
effects during the construction of learning shapes. Besides, the complexity of
our classifier in Kendall space amounts to an order determined mainly by the

2 (k − 1)
Nc∑

i=1

N i
s coordinates values involved in learning phase, which should be

much smaller than the 2kNcNps coordinates values involved in the learning phase
of the classical classifier since N i

s � Nps, for all 1 ≤ i ≤ Nc, when the initial
learning data sets get larger.
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Fig. 2. Swedish leaves dataset samples.

Table 1. Computer simulations summary

Benchmark Landmarks Availability Success rate

MPEG-7 12 No 97.16%

Swedish leaves 30 No 91.16%

Apes 8 Yes 98.70%

T2 vertebrae 6 Yes 97.29%

Table 2. Comparison between our classifier and two other supervised classifiers

Benchmark Gaus-Bay in Ken Gaus-Bay in Eucl SVM in Hilb

MPEG-7 97.16% 86.33% 96.57%

Swedish leaves 91.16% 90.37% 91.47%

Apes 98.70% 90.90% −
T2 vertebrae 97.29% 78.37% −

5 Conclusion and Future Works

In the present paper we proposed an approach of supervised learning for shape
classification in Σk

2 . The supervised learning has concerned the inference of the
expectation vectors and covariance matrices of the Gaussian distributions. The
inference here has been realized in the context of maximum likelihood, using the
available learning shapes. We detailed the procedure that helped us to construct
a learning shape set from initial configurations. Then, we used the Riemannian
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structure to specify the mean shape where the Σk
2 is approximated by its tangent

space. Consequently, we succeeded in establishing a likelihood density function
on Σk

2 . The results of the experiments has confirmed the robustness of our model
where the success rates are outstanding. The major drawback of our approach
comes from the landmarks selection which is at best a semi-automatic process
where the selection remains subjective because the human supervision is neces-
sary. In our future work, we propose to use a deformable templates for automatic
detection of landmarks. We will also further the analysis of the abilities of our
classifier through considering noisy or corrupt samples.
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