Skip to main content

Spread of Pathogens in the Patient Transfer Network of US Hospitals

  • Conference paper
  • First Online:
Social, Cultural, and Behavioral Modeling (SBP-BRiMS 2017)

Abstract

Antibiotic-resistant organisms, an increasing source of morbidity and mortality, have a natural reservoir in hospitals, and recent estimates suggest that almost 2 million people develop hospital-acquired infections each year in the US alone. We investigate the temporal network of transfers of Medicare patients across US hospitals over a 2-year period to learn about the possible role of hospital-to-hospital transfers of patients in the spread of infections. We analyze temporal, geographical, and topological properties of the transfer network and show that this network may serve as a substrate for the spread of infections. Finally, we study different strategies for the early detection of incipient epidemics on the temporal transfer network as a function of activation time of a subset of sensor hospitals. We find that using approximately 2% of hospitals as sensors, chosen based on their network in-degree, with an activation time of 7 days results in optimal performance for this early warning system, enabling the early detection of 80% of the C. difficile. cases with the hospitals in the sensor set activated for only a fraction of 40% of the time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zimlichman, E., Henderson, D., Tamir, O., et al.: Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA Intern. Med. 173(22), 2039–2046 (2013)

    Article  Google Scholar 

  2. Threat Report 2013-Antimicrobial Resistance - CDC. http://www.cdc.gov/drugresistance/threat-report-2013/

  3. Klevens, R.M., Edwards, J.R., Richards, C.L., et al.: Estimating health care-associated infections and deaths in U.S. hospitals, 2002. Publ. Health Rep. 122(2), 160–166 (2007)

    Article  Google Scholar 

  4. Infectious Diseases Society of America (IDSA): Combating antimicrobial resistance: policy recommendations to save lives. Clin. Infect. Dis. 52(S5) (2011)

    Google Scholar 

  5. Roberts, R.R., Hota, B., Ahmad, I., et al.: Hospital and societal costs of antimicrobial-resistant infections in a Chicago teaching hospital: implications for antibiotic stewardship. Clin. Infect. Dis. 49(8), 1175–1184 (2009)

    Article  Google Scholar 

  6. Mauldin, P.D., Salgado, C.D., Hansen, I.S., Durup, D.T., Bosso, J.A.: Attributable hospital cost and length of stay associated with health care-associated infections caused by antibiotic-resistant gram-negative bacteria. Antimicrob. Agents Chemother. 54(1), 109–115 (2010)

    Article  Google Scholar 

  7. Filice, G.A., Nyman, J.A., Lexau, C., et al.: Excess costs and utilization associated with methicillin resistance for patients with Staphylococcus aureus infection. Infect. Control Hosp. Epidemiol. 31(4), 365–373 (2010)

    Article  Google Scholar 

  8. Karkada, U.H., Adamic, L.A., Kahn, J.M., Iwashyna, T.J.: Limiting the spread of highly resistant hospital-acquired microorganisms via critical care transfers: a simulation study. Intensive Care Med. 37(10), 1633–1640 (2011)

    Article  Google Scholar 

  9. Iwashyna, T.J., Christie, J.D., Kahn, J.M., Asch, D.A.: Uncharted paths: hospital networks in critical care. Chest 135(3), 827–833 (2009)

    Article  Google Scholar 

  10. Iwashyna, T.J., Christie, J.D., Moody, J., Kahn, J.M., Asch, D.A.: The structure of critical care transfer networks. Med. Care 47(7), 787–793 (2009)

    Article  Google Scholar 

  11. Unnikrishnan, K.P., Patnaik, D., Iwashyna, T.J.: Spatio-temporal structure of US critical care transfer network. AMIA Summits Transl. Sci. Proc. 2011, 74–78 (2011)

    Google Scholar 

  12. Lee, B.Y., McGlone, S.M., Song, Y., et al.: Social network analysis of patient sharing among hospitals in Orange County. California. Am. J. Public Health 101(4), 707–713 (2011)

    Article  Google Scholar 

  13. Lee, B.Y., McGlone, S.M., Wong, K.F., et al.: Modeling the spread ofMethicillin-Resistant Staphylococcus Aureus (MRSA) outbreaks throughout the hospitals in Orange County. California. Infect. Control Hosp. Epidemiol. 32(6), 562–572 (2011)

    Article  Google Scholar 

  14. Huang, S.S., Avery, T.R., Song, Y., et al.: Quantifying interhospital patient sharing as a mechanism for infectious disease spread. Infect. Control Hosp. Epidemiol. 31(11), 1160–1169 (2010)

    Article  Google Scholar 

  15. Obadia, T., Silhol, R., Opatowski, L., Temime, L., Legrand, J., et al.: Detailed contact data and the dissemination of Staphylococcus aureus in hospitals. PLoS Comput. Biol. 11(3), e1004170 (2015)

    Article  Google Scholar 

  16. Isella, L., Romano, M., Barrat, A., Cattuto, C., Colizza, V., Van den Broeck, W., Gesualdo, F., Pandolfi, E., Rav, L., Rizzo, C., Tozzi, A.E.: Close encounters in a pediatric ward: measuring face-to-face proximity and mixing patterns with wearable sensors. PLoS ONE 6(2), e17144 (2011)

    Article  Google Scholar 

  17. Medicare beneficiaries as a percent of total population. http://kff.org/medicare/state-indicator/medicare-beneficiaries-as-of-total-pop/

  18. Overview of hospital stays in the United States (2010). http://www.hcup-us.ahrq.gov/reports/statbriefs/sb144.jsp

  19. American Hospital Association. http://www.aha.org/

  20. Gerding, D.N., Johnson, S.: Harrisons principles of internal medicine. In: Fauci, A.S., Braunwald, E., Kasper, D.L., et al. (eds.) 17th Editi. McGraw-Hill, New York (2008)

    Google Scholar 

  21. Bajardi, P., Barrat, A., Savini, L., Colizza, V.: Optimizing surveillance for livestock disease spreading through animal movements. J. R. Soc. Interface 9(76), 2814–2825 (2012)

    Article  Google Scholar 

  22. Schmiedeskamp, M., Harpe, S., Polk, R., Oinonen, M., Pakyz, A.: Use of international classification of diseases, ninth revision, clinical modification codes and medication use data to identify nosocomial clostridium difficile infection. Infect. Control Hosp. Epidemiol. 30(11), 1070–1076 (2009)

    Article  Google Scholar 

  23. Scheurer, D.B., Hicks, L.S., Cook, E.F., Schnipper, J.L.: Accuracy of ICD-9 coding for Clostridium difficile infections: a retrospective cohort. Epidemiol. Infect. 135(6), 1010–1013 (2007)

    Article  Google Scholar 

  24. Dubberke, E.R., Butler, A.M., Yokoe, D.S., et al.: Multicenter study of surveillance for hospital-onset Clostridium difficile infection by the use of ICD-9-CM diagnosis codes. Infect. Control Hosp. Epidemiol. 31(3), 262–268 (2010)

    Article  Google Scholar 

  25. Fisher, R.A.: Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10(4), 507–521 (1915)

    Google Scholar 

  26. Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64(2), 026118 (2001)

    Article  Google Scholar 

  27. Newman, M.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208701 (2002)

    Article  Google Scholar 

  28. Newman, M.: Mixing patterns in networks. Phys. Rev. E 67(2), 026126 (2003)

    Article  MathSciNet  Google Scholar 

  29. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, chap. 16. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  30. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Science 220, 671–680 (1983)

    Google Scholar 

Download references

Acknowledgments

We thank Laurie Meneades for the expert assistance required to build the dataset. JFG and JPO are joint first authors of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Fernández-Gracia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fernández-Gracia, J., Onnela, JP., Barnett, M.L., Eguíluz, V.M., Christakis, N.A. (2017). Spread of Pathogens in the Patient Transfer Network of US Hospitals. In: Lee, D., Lin, YR., Osgood, N., Thomson, R. (eds) Social, Cultural, and Behavioral Modeling. SBP-BRiMS 2017. Lecture Notes in Computer Science(), vol 10354. Springer, Cham. https://doi.org/10.1007/978-3-319-60240-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60240-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60239-4

  • Online ISBN: 978-3-319-60240-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics