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Abstract New advances in genome engineering technologies, such as efficient

programmable CRISPR nucleases, have enabled new advances in forward and

reverse genetic studies. Here, I discuss recent work from our group combining

top-down approaches like genome-wide loss-of-function screens and bottom-up

approaches like disease variant modeling in human stem cells and stem cell-derived

cortical neurons.

Introduction

Patient-sequencing studies have yielded large lists of disease-associated gene

variants but it has been difficult to establish a causal role based solely on

genetics. New methods are needed for rapidly understanding the effects of

these variants and ascertaining whether the variants directly influence disease-

related phenotypes. At the IPSEN meeting “Genome Editing in Neurosciences,” I

presented two approaches (top-down and bottom-up) for harnessing new genome

engineering techniques to decipher the roles of genetic variants in human health

and disease.

Top-down approaches utilize large-scale pooled libraries of genome-

engineering reagents to start with a large, minimally biased hypothesis space and

identify relevant variants via a single phenotypic selection (Fig. 1, right). In

contrast, bottom-up approaches start with a handful of genetic variants nominated

by strong genetic data, e.g., genome-wide association studies, case-control, family

linkage studies, etc., and they examine a wide range of phenotypes (Fig. 1, left).
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Top-Down Approaches Using Genome-Wide CRISPR

Screens

Themicrobial CRISPR-Cas9 nuclease from S. pyogenes can be guided to specific DNA
sequences using a 20 bp guide sequence. Given the short length of the guide sequence,

we have been able to use oligonucleotide array synthesis techniques to create libraries

of thousands of guide sequences in a pooled format. By designing pooled libraries to

target all genes in a specific genome, we have created a new tool for functional genomic

screens (Sanjana 2016). Genome-scale CRISPR knock-out (GeCKO) screens use the

consistent phenotypic enrichment ofmultipleCRISPR reagents targeting the same gene

to lend evidence to the gene’s role in a particular disease. Using a GeCKO library

targeting ~18,000 genes with 64,751 guide sequences, we have found loss-of-function

mutations that confer resistance to the BRAF inhibitor vemurafenib in human mela-

noma cells (Shalem et al. 2014). Using a second-generation GeCKO library in a mouse

model, we performed an in vivo screen to identify driver mutations that trigger

metastasis to the lung (Sanjana et al. 2014; Chen et al. 2015). Recently, we have

expanded the scope of CRISPR pooled screens to also include noncoding regions of the

genome (Sanjana et al. 2016; Wright and Sanjana 2016).

Bottom-Up Approaches Using Exome Sequencing in Autism

Whole exome and whole genome sequencing have ushered in a revolution in

identifying rare, disease-associated variants. Several whole exome sequencing stud-

ies have pinpointed rare de novo variants associated with autism spectrum disorder

by examining exomes from autistic individuals and comparing them to parental

Fig. 1 Schematic diagram of the dynamic interplay between top-down and bottom-up genetic

approaches. Top-down approaches (right) identify new gene candidates that can shape/reduce the

space of hypotheses for more detailed bottom-up (left) cellular models and phenotyping.

Top-down approaches are unbiased or minimally biased to cast a wide net of possible genetic

hypotheses and use phenotypic selection to identify putative disease-associated gene variants.

Bottom-up approaches focus on a smaller set of variants but usually provide a more detailed

phenotypic analysis of different molecular/cellular/circuit aspects of each genetic variant. Candi-

date variants for the bottom-up approach can be derived from either genetic evidence (e.g., patient

sequencing studies) or from top-down approaches like genome-wide CRISPR screens
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exomes (Iossifov et al. 2012; Neale et al. 2012; O’Roak et al. 2012; Sanders et al.

2012). The next logical step is to create relevant cellular models to better understand

the mechanisms through which these variants work and to serve as a platform for

drug screens and therapeutic testing. There are two major roadblocks for building

these kinds of cellular models. The first one concerns gene editing and, over the past

3 years, has become largely historical: Until recently, genome engineering in human

stem cells and neurons has been challenging but transfection of CRISPR plasmids or

ribonucleoproteins provides an easy, efficient technique for engineering human cells

(Peters et al. 2008; Swiech et al. 2015). The second major hurdle has been neural

differentiation. Common protocols to differentiate neurons from human stem cells,

such as dual SMAD inhibition or embryoid body differentiation, require months to

create mature neurons (Zhang et al. 2001; Chambers et al. 2009). Recently, we and

others have demonstrated that viral overexpression of Neurogenin 1 or Neurogenin

2 can rapidly drive stem cells into a homogeneous culture of mature cortical neurons

(Zhang et al. 2013; Busskamp et al. 2014). These neurons display robust electro-

physiological activity within just 2–3 weeks after the start of differentiation, making

them ideally suited for synaptic assays, calcium imaging and neurophysiology. We

are now moving forward with phenotypic analyses of de novo mutations in autism

using the combined CRISPR-Neurogenin platform for rapid mutagenesis and human

neuron profiling.

Taken together, these new technologies in genome engineering—enabled in

large part by CRISPR nucleases and related transformative methods—have

improved our ability to perform forward and reverse genetic assays in relevant

model systems. A major challenge for neuroscience is finding clear phenotypes that

accurately reflect complex diseases, such as schizophrenia or autism. Despite these

challenges, a combination of top-down and bottom-up approaches will pave the

way for a clearer understanding of the human brain in healthy and disease states.
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