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Abstract The common marmoset (Callithrix jacchus) is a small New World

non-human primate indigenous to northeastern Brazil. This species has been attracting

the attention of biomedical researchers and neuroscientists for its ease of handling and

colony maintenance, unique behavioral characteristics, and several human-like traits,

such as enriched social vocal communication and strong relationships between parents

and offspring. Its high reproductive efficiency makes it particularly amenable for use in

the development of transgenic and genome editing technologies in a non-human

primate model. Our group has recently generated transgenic marmosets with germ

line transmission, opening new avenues in primate research.

In this chapter, we describe recent advances in neuroscience and disease research

using common marmosets, and we outline potential uses of genome editing in

non-human primates toward the development of knock-in/knock-out marmosets.

Introduction

Rodent models have long played important roles in neuroscience and medical

research, made possible in part by the advent of robust genetic technologies.

Knock-out/knock-in mouse models have shown particular utility in the neurosci-

ences. There are nonetheless substantial anatomical, physiological, and cognitive

differences between rodents and humans. The human brain consists of two major

functional domains, one that is evolutionarily conserved and a second that is

primate-specific and the locus of many higher cognitive functions. For many

human neurological and psychiatric diseases involving higher cognitive dysfunc-

tions, studies using rodent models may thus not be informative with respect to the

relevant pathophysiological mechanisms. To gain a better understanding of the
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pathogenesis of such diseases, we need animal models that exhibit brain functions

more closely similar to those in humans.

This need has led to increased interest in the development of genetically

engineered non-human primates for use in the study of both functional domains.

Our group has recently generated a transgenic common marmoset, a New World

monkey (Sasaki et al. 2009). Emerging genome editing techniques are also opening

new possibilities for the creation of better non-human primate models for use in the

study of neurodegenerative and mental disorders (Izpisua Belmonte et al. 2015).

This chapter is an updated and modified version of previously published review

articles on marmosets (Okano et al. 2016; Kishi et al. 2014) and work presented by

Hideyuki Okano at the “Genome Editing in Neurosciences” symposium.

Characteristics of the Common Marmoset

Common marmosets (Callithrix jacchus) are New World primates native to the

Atlantic coastal forests of northeastern Brazil (Abbott et al. 2003; Carrion and

Patterson 2012; Mansfield 2003; Okano et al. 2016; Tokuno et al. 2012; Kishi et al.

2014; Izpisua Belmonte et al. 2015). These small monkeys (adult height: 20–30 cm;

weight: 350–400 g) have ear tufts and relatively long banded tails, and they are

omnivorous, eating plant exudates, lizards, and infant mammals. Common marmo-

sets are monogamous and, unlike many other non-human primates, live in stable

families of approximately ten members (Tardif et al. 2003). Females commonly

give birth to two babies per litter and are ready to breed again about 10 days after

giving birth; they typically have two litters per year. Since mothers need to nurse

infants during gestation and the perinatal period, the male partner and other

members of the group also provide infant care. This remarkably human-like trait

is a focus of attention among neuroscientists and behavioral scientists.

Although common marmosets have been used for biomedical research since the

1960s, macaque monkeys are more widely used in research, due to their closer

similarity to humans. The recent rapid advances in genome editing are now calling

new attention to the advantages offered by the marmoset because of its size,

availability, and high reproductivity.

Macaques are evolutionarily closer to humans than common marmosets, but

some marmoset traits are more similar to those of humans, perhaps due either to

geographical segregation or convergent evolution. New World primates are esti-

mated to have diverged from Old World primates ~35 mya, and these monkeys

have adapted to neotropical environments. Despite this phylogenetic distance,

common marmosets, like humans, exhibit strong intergenerational kin relationships

and social vocal communications (Dell’Mour et al. 2009; Eliades and Wang 2008;

Gordon and Rogers 2010), which may indicate a convergent trajectory in their

evolution. The genomic basis of the origins of such traits may be addressable

through genome editing studies in the future.
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Advantages of Using Common Marmosets for Biomedical

Research

Rodents play a crucial role in biomedical investigations in many research fields.

Powerful genetic tools, such as knock-out/knock-in mice, have informed the study

of gene functions, but the significant anatomical and physiological differences

between rodents and humans mean that a more closely similar animal model is

needed to advance our understanding of human biology in areas such as the

neurosciences.

For biomedical use, the common marmoset offers many advantages. Marmoset

endocrinology and metabolism are more similar to those of humans than of rodents,

which is important in pharmacological and toxicological studies of new drug

candidates. The marmoset is also more closely phylogenetically related to humans

(Kitamura et al. 2011; t’Hart et al. 2003, 2012). In Europe, the marmoset is now

being used as a non-rodent second species in drug safety tests (Smith et al. 2001).

The common marmoset can be handled with greater ease than many other

non-human primates. Along with the appropriateness of the model to the research

question, animal welfare and availability are important factors in selecting a model

species. Marmosets are readily obtained for laboratory use and, as distinct from

macaques, have not been reported to carry herpes b virus (Macacine herpesvirus 1),
providing a safety benefit to researchers and animal facility staff (Mansfield 2003).

The small size of marmosets is also beneficial as it reduces costs and floor space

requirements (Smith et al. 2001).

Common marmosets are among the most highly reproductive of all primates.

The ovarian cycle is approximately 28 days, similar to that in human (Summers

et al. 1985). The gestation period is approximately 145–148 days. Female animals

are ready to breed again 10 days after delivery. Usually, female marmosets have

two litters per year, which is strongly advantageous when compared to macaques,

which require 5 years to sexual maturation and breed only once per year (Austad

and Fischer 2011). The remarkable reproductive efficiency of marmosets is

extremely well-suited to the development of transgenic and genome editing

techniques.

Lastly, a number of basic research tools have been developed for use in marmo-

sets, which is important for encouraging broader adoption by the scientific commu-

nity. Although the annotated sequencing of its genome has not been completed, a

draft sequence with 6� coverage using whole-genome shotgun sequencing is avail-

able on GenBank (The Marmoset Genome Sequencing and Analysis Consortium

2014; URL: https://www.hgsc.bcm.edu/content/marmoset-genome-project).

Our group has also sequenced the marmoset genome using animals from the

colony maintained by the Central Institute for Experimental Animals (CIEA) in

Kawasaki, Japan (Sato et al. 2015). Resequencing and assembly of the genome

were performed by deep sequencing with high-throughput sequencing technology

using a next-generation sequencer, giving approximately 60� coverage. This
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enabled us to generate genome assemblies and gene-coding sequence analysis more

efficiently and provided a basis for genome editing.

We have also applied non-invasive imagingmethods in marmoset research. The use

of marmosets in such studies is limited to small numbers due to cost and ethical issues.

Magnetic resonance imaging (MRI) is a non-invasive imaging technique to visualize

various organs in detail. We have adapted a number of MRI techniques, including

diffusion tensor tractography (DTT; Fujiyoshi et al. 2007; Hikishima et al. 2015) and

voxel based morphometric (VBM) analysis (Hikishima et al. 2011, 2015), and a new

method for the visualization of myelin (Myelin Map; Fujiyoshi et al. 2016).

Transgenic Techniques and Genome Editing Technology

for Marmoset Research

One of the strengths of the mouse model is the availability of powerful genetic

tools, such as transgenic and knock-in/knock-out animals, that have given the

mouse a central place in life sciences research over the past two decades. However,

results from mouse genetics are not always directly relevant to humans. Particularly

in the neurosciences, there are considerable interspecies differences in brain anat-

omy and physiology, behavioral control mechanisms, and life span, and some

mouse disease models do not recapitulate human symptoms. For example, neuro-

fibrillary tangles, the neuropathological hallmarks of Alzheimer’s disease, cannot
be recapitulated in mice showing amyloid plaques (Chin 2011; Games et al. 1995;

Hsiao et al. 1996; Sturchler-Pierrat et al. 1997; Tanzi and Bertram 2005; Walsh and

Selkoe 2004). It is also known that mice in which parkin, the gene associated with

familial Parkinson’s disease in humans, has been knocked out do not show

parkinsonism.

Despite the scientific demand for research in non-human primates, efforts to

generate transgenic non-human primate animals have been unsuccessful until

recently. In 2008, Yang et al. (2008) reported a transgenic rhesus macaque

expressing the human huntingtin (HTT) gene with a CAG-expansion encoding

the poly glutamine as a model of Huntington’s disease. However, despite the

genomic insertion of the human HTT-transgene in the founder monkeys, germline

transmission of the transgene has not been confirmed. Our group independently

generated transgenic common marmosets expressing the enhanced GFP (EGFP)
gene and we reported the first germline transmission in a non-human primate

(Sasaki et al. 2009).

While the establishment of transgenic marmosets enables the generation of mar-

moset models of diseases caused by overexpression of a relatively small mutant gene,

such as Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis

(ALS), transgenic techniques limited our ability to genetically modify non-human

primates. Transgenic technologies available at the time could only randomly insert

only <8 kb of exogenous genes into the genome (Sasaki et al. 2009). Moreover,
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transgenes were segregated and suppressed across generations, expression levels

could not be controlled, and the techniques were only suited to gain-of-function,

not loss-of function, studies. Most human genetic diseases are caused by either point

mutations or deletions of endogenous genes, which highlighted the need for new gene

modification technologies for use against endogenous genes.

Remarkable recent advances in genome editing technology have now made it

possible to overcome these previous limitations (Sato et al. 2016). Genome editing

tools, i.e., engineered nucleases, bind to a target genome sequence and introduce

specific double-strand breaks. Double-strand breaks initiate cell-endogenous repair

mechanisms such as homology-directed repair (HDR), non-homologous

end-joining (NHEJ), and microhomology-mediated end-joining (MMEJ). Muta-

genesis against endogenous genes can be introduced by taking advantage of such

mechanisms. Zinc finger nucleases (ZFNs), transcription activator-like effector

nucleases (TALENs), and the clustered regularly interspaced short palindromic

repeat (CRISPR)/Cas system are mainly used as engineered nucleases. A number

of genetically modified animals have already been generated using such restriction

enzymes (Bedell et al. 2012; Geurts et al. 2009; Hauschild et al. 2011; Mashimo

et al. 2010; Ochiai et al. 2010; Sung et al. 2013; Suzuki et al. 2013; Wang et al.

2013; Yang et al. 2013). Among these, the CRISPR/Cas system was developed the

most recently and is particularly promising (Cong et al. 2013; Mali et al. 2013).

Using these genome editing technologies, we recently generated X-linked SCID

model marmosets by knock-out of interleukin-2 receptor subunit gamma gene (Sato

et al., 2016). Currently, we are now seeking to generate marmoset models of autism

spectrum disorders, including Rett syndrome (Chahrour and Zoghbi 2007; Kishi

and Macklis 2005) and tuberous sclerosis complex (Ess 2010; Fig. 1). Although a

mouse model (male hemizygous MecP2 mutation) is available for Rett syndrome, it

does not necessarily mimic the critical symptoms. For example, while male hemi-

zygous mice (Mecp2-/y) are used as model mice, Rett patients are exclusively

female heterozygous in human. It is likely that males with MECP2 mutations are

embryonic lethal in human, but not in mice. Furthermore, phenotypes appear at

adult stages in mouse models, whereas symptoms become evident by 1 year of age

in human Rett syndrome patients. New primate models that more closely mimic the

Fig. 1 Generation of a knock-out marmoset by genome editing with ZFN or TALEN
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clinical course of human disease may thus contribute to a better understanding of

the pathogenesis and future treatments for neurodevelopmental disorders.

Future Perspectives

Genome editing has developed rapidly in recent years, leading to the production of

genetically modified animals in many species. This technology has also been

applied to non-human primates, and some groups have begun to report genetically

modified macaques (Niu et al. 2014; Liu et al. 2014). Macaques offer a number of

advantages, but it is difficult to expand colony size within a reasonable research

period. We suggest that the common marmoset is thus a highly suitable alternative

model primate for many areas of study, and the creation of knock-in/knock-out

marmosets would help to introduce the benefits of this model to a larger community

of researchers. Since germ-line-competent marmoset embryonic stem cells are not

currently available, it is necessary to perform genome editing in one-cell stage

embryos (fertilized eggs) to obtain knock-in/knock-out marmosets efficiently. The

emergence of more sophisticated genome editing techniques will facilitate and

accelerate the development of new gene manipulation technologies in marmoset.

Marmoset models of disease generated using genome editing may contribute to the

development of new therapeutic strategies for currently incurable neurodegenera-

tive diseases and mental disorders.
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