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Abstract The repair of mammalian DNA double-strand breaks (DSBs) by classi-

cal non-homologous end joining (C-NHEJ) suppresses genomic instability and

cancer and is required for development of the immune and nervous system. We

hypothesize that proper repair of neural DSBs via C-NHEJ or other end-joining

pathways is critical for neural functionality and homeostasis over time and that

improper DSB repair could contribute to complex psychiatric and neurodegenera-

tive diseases. Here, we summarize various findings made by our laboratory and

others over the years that support this hypothesis. This evidence includes, most

recently, our discovery of a set of genes, of which most serve neural functions, that

can serve as targets of recurrent DSBs in primary neural stem and progenitor cells.

We also present a speculative model, based on our findings, of mechanisms by

which recurrent DSBs in neural genes can generate neuronal diversity and contrib-

ute to neuropsychiatric disease.

Early studies revealed that the lymphocyte-specific V(D)J recombination reaction

involves the introduction of DNA double-stranded breaks (DSBs) at the ends of

antigen receptor V, D, and J gene segments, followed by the processing of the
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generated ends and subsequent fusion of the DSB ends of the different types of gene

segments to form V(D)J variable regions exons (Alt and Baltimore 1982). The

Baltimore lab discovered the lymphocyte-specific endonuclease (RAG) that gener-

ates V(D)J DSBs (Schatz and Swanson 2011). Based on screens of DNA repair-

mutant Chinese hamster ovary cell lines, we discovered that the end-joining phase

of V(D)J recombination is carried out by a multi-component DSB end-joining

pathway (Taccioli et al. 1993). We went on with collaborators to identify many

of the various components of the “classical” non-homologous end-joining

(C-NHEJ) pathway, including discovering the XRCC4 “core” C-NHEJ factor,

based on our finding that this factor restores the ability of a DNA repair-defective

Chinese hamster ovary cell line to undergo the joining phase of V(D)J recombina-

tion (Li et al. 1995).

To evaluate potential physiological functions of XRCC4 and other C-NHEJ

factors newly discovered at the time, or other putative C-NHEJ factors, we

inactivated the genes encoding them in mice (Sekiguchi et al. 1999; Ferguson and

Alt 2001). Mice in which we inactivated the XRCC4 C-NHEJ factor, or its

interaction partner DNA Ligase 4 (Lig4), had essentially identical phenotypes.

These phenotypes included, most notably, abrogation of both lymphocyte and

neuronal development due to unrepaired DSBs that occurred at the progenitor

stage (Frank et al. 1998; Gao et al. 1998). It is striking that the development of

lymphocytes and neurons was the most clear-cut defect in these C-NHEJ-deficient

mice. As discussed below, XRCC4- or Lig4-deficient mice routinely die late in

embryonic development, most likely due to their neuronal developmental defects.

At this stage, effects on fetal lymphocyte development can still be assessed.

Lymphocyte development is blocked at the progenitor stages in these core C-NHEJ-

deficient backgrounds due to the inability to join V(D)J recombination-associated

DSBs generated by the RAG endonuclease in the absence of core C-NHEJ factors

(Alt et al. 2013). Thus, progenitor B and T lymphocyte development was completely

abrogated due to the inability to, respectively, assemble functional antibody and T cell

receptor genes that are needed for further development of the B and T cell lineages. As

V(D)J recombination occurs at the G1 cell cycle stage, core C-NHEJ-deficient pro-

genitor lymphocytes correspondingly undergo apoptosis due to a response to their

unrepaired V(D)J DSBs that is mediated by the p53 G1 check-point response factor

(Frank et al. 2000; Gao et al. 2000; Zhu et al. 2002). In this regard, p53 deficiency, in

fact, rescues the embryonic lethality of XRCC4- or Lig4-deficient mice but does not

rescue lymphocyte development because V(D)J joining is still abrogated. The allevi-

ation of the p53 response to unrepaired RAG-generated DSBs at antigen receptor genes

allows XRCC4- or Lig4-deficient progenitor lymphocytes to survive and enter the cell

cycle, resulting in XRCC4/p53-deficient mice that rapidly develop lethal pro-B cell

lymphomas (Frank et al. 2000; Gao et al. 2000). These C-NHEJ/p53-deficient pro-B

lymphomas all harbor recurrent translocations that fuse RAG-initiated DSBs at the IgH
locus to DSBs downstream of c-Myc (Zhu et al. 2002), with many likely initiated at

cryptic RAG off-targets sites in the c-Myc downstream region (Hu et al. 2014;

Tepsuporn et al. 2014). Notably, however, even though core C-NHEJ-deficient/p53-

deficient mice die from recurrent pro-B lymphomas, many of them harbor
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medulloblastomas in situ at the time of their death from pro-B lymphoma (Zhu et al.

2002). Finally, conditional inactivation of Xrcc4 in p53-deficient B cells leads to

mature B lymphomas with recurrent translocations involving DSBs initiated by the B

cell-specific activation-induced cytidine deaminase (AID) during IgH class switch

recombination (CSR, see below) that are joined to upstream regions of the c-Myc

gene (Wang et al. 2009).

Our studies demonstrated that XRCC4- or Lig4-deficient neuronal progenitor

cells undergo apoptosis throughout the nervous system at a developmental time

when particular neuronal progenitor populations differentiate into postmitotic neu-

rons (Gao et al. 1998). Moreover, we implicated p53 checkpoint-initiated apoptosis

in response to unrepaired DSBs that occurred in the neuronal progenitors as a

mechanism for this death of newly differentiated neurons, as demonstrated by our

finding that such neuronal apoptotic death could be rescued by p53 deficiency. In

this regard, the postnatal survival of XRCC4-deficient or Lig4-deficient mice

conferred by p53 deficiency has been speculated to be due to rescue of newly

differentiated neurons with unrepaired DSBs (Sekiguchi et al. 1999). However, the

potential effects of such unrepaired DSBs on neuronal functions in these mice could

not be assessed due to their rapid death from pro-B cell lymphomas; thus, the

potential roles of these implied DSBs in neuronal development and neuronal

functions remained speculative. In this regard, a lingering question was the location

of the genomic sites of the involved DSBs.

As mentioned above, C-NHEJ/p53 double-deficient mice all develop progenitor

B cell lymphomas with recurrent translocations between the IgH and c-Myc genes,

whereas p53-deficient mice with Xrcc4 conditionally inactivated in B-lineage cells

develop mature B-lineage tumors with translocations between IgH and c-Myc but

also translocations of other antigen receptor loci (Wang et al. 2008, 2009). Thus, we

attempted to identify recurrently breaking genomic sites in neural progenitor cells

by conditionally inactivating Xrcc4 in neuronal stem and progenitor cells in a

p53-deficient background. Strikingly, we found that such conditional inactivation

of Xrcc4 in p53-deficient neural progenitors routinely led to medulloblastomas

(MBs) with recurrent translocations on several different chromosomes and frequent

chromosomal or extrachromosomal amplification of the N-myc gene (Yan et al.

2006). These N-myc amplifications were reminiscent of those we found in human

neuroblastomas in the process of discovering N-myc (Kohl et al. 1983). While the

findings supported our original hypothesis that recurrent DSBs in the vicinity of

N-myc (or other frequently translocated regions in MBs) could predispose to such

translocations and amplifications, the resolution available from our studies at that

time did not allow mapping of potential fragile break sites.

Together, our prior studies revealed that DSB repair by C-NHEJ in neural stem

and progenitor cells (NSPCs) is required for nervous system development and for

suppressing childhood brain tumors (Gao et al. 1998; Yan et al. 2006). These

studies also raised the interesting possibility of potential parallels between func-

tional outcomes of DSB generation and repair in lymphocytes and neuronal pro-

genitor cells. More recently, studies by others have shown that mature brain cells

contain frequent genomic alterations that have been speculated to contribute to
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neuronal diversity and disease (McConnell et al. 2013; Poduri et al. 2013;

Weissman and Gage 2016). In this regard, beyond inherited germline mutations,

somatic, “brain only”, mutations have been implicated in neurodevelopmental and

neuropsychiatric disorders (Poduri et al. 2013). However, the potential causes of

genomic alterations in brain cells continued to remain largely unexplored and

speculative. Based on our observations regarding the effects of C-NHEJ deficiency

on neuronal development and neuronal disease, namely cancer, we sought to

develop and employ new technologies to test the hypothesis that genomic alter-

ations in mature brain cells and some variations connected to neuropsychiatric

diseases might originate from DSBs in NSPCs.

Over the past decade, since our discoveries of the potential roles for DSBs in

neuronal diversity and disease, we have developed and enhanced a high-

throughput, genome-wide translocation sequencing (HTGTS) approach to rapidly

and highly sensitively identify DSBs genome-wide based on their translocation to

bait DSBs (Chiarle et al. 2011; Frock et al. 2015; Hu et al. 2016). For this approach,

bait DSBs can be introduced ectopically by designer endonucleases (Chiarle et al.

2011; Hu et al. 2014; Meng et al. 2014; Frock et al. 2015) or recurrent endogenous

DSBs can be used as bait, including those initiated by AID during IgH CSR (Dong

et al. 2015) or by RAG during V(D)J recombination (Zhang et al. 2012; Hu et al.

2015; Zhao et al. 2016).

Our studies have shown that various classes of DSBs, including those induced

ectopically by ionizing radiation, show a much greater preference to join to other

DSBs within the same topological domain due to proximity effects associated with

the spatial genome organization of chromatin domains (Zarrin et al. 2007; Zhang

et al. 2012; Alt et al. 2013; Frock et al. 2015). As two random DSBs rarely occur

within the relatively short genomic distances within a chromosomal domain, which

is often a megabase or less, this phenomenon most greatly impacts the joining of

closely linked recurrent DSBs (Alt et al. 2013). Our HTGTS studies provided

additional insights into our prior finding (Zarrin et al. 2007; Gostissa et al. 2014)

that indicated that CSR joining exploits the predisposition of high frequency DSBs

within topological domains to be joined to each other to achieve physiological

joining levels (Zarrin et al. 2007; Dong et al. 2015). We also showed that, during

V(D)J recombination, RAG exploits chromosomal loop domains to not only achieve

high joining frequency but also to developmentally restrict its activity directionally

within a loop domain (Hu et al. 2015; Zhao et al. 2016).

To identify the sources and functions of neural DSBs, we applied our HTGTS

DSB identification approach to cultured, primary mouse NSPCs. For these HTGTS

studies, we employed ectopically generated bait DSBs on several different chromo-

somes to search for significant, recurrent clusters of DSBs genome-wide that joined

to bait DSBs on more than one chromosome. These studies identified 27 recurrent

DSB clusters (“RDCs”) in the NSPC genome, all of which were enhanced by mild

replication stress via treatment with aphidicolin, a compound that inhibits replica-

tion (Wei et al. 2016). Strikingly, all 27 of these RDCs lie within genes, most of

which encode surface proteins involved in synaptogenesis and related neural pro-

cesses (Wei et al. 2016). Moreover, variations of most RDC genes also have been
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implicated in neuropsychiatric disorders, including schizophrenia and autism, and

many are rearranged in cancers, including brain cancers such as medulloblastoma

(Wei et al. 2016; Weissman and Gage 2016). Notably, human counterparts of 9 of

the 27 NSPC RDC genes occurred in copy number variations (CNVs) found in

individual human frontal cortex neurons (McConnell et al. 2013), suggesting that

NSPCRDCDSBs could contribute genomic variations in mature neurons (Wei et al.

2016; Weissman and Gage 2016).

RDC gene transcriptional and replication characteristics suggest that their fre-

quent DSBs could occur during collisions between RNA and DNA polymerases

associated with mild replication stress (Wei et al. 2016). RDC gene DSBs appear to

occur very frequently across the body of RDC genes, which generally are very long

(up to 2 Mb in length) with relatively small exons and which also potentially often

lie within topological domains (Wei et al. 2016). As HTGTS maps only those bait

DSBs that translocate, local RDC DSB frequency may be much higher than the

estimated minimal frequency of 12 RDC translocations per NSPC that we estimated

via translocation junction capture via HTGTS (Wei et al. 2016). Indeed, we have

estimated that the frequency of DSBs across long RDC genes, while of lower

density than CSR DSBs, approach the same order of magnitude in numbers per

gene as CSR DSBs in B lymphocytes during IgH CSR (Wei et al. 2016). Notably,

because most of the RDC gene sequences are within introns, most of the RDC DSBs

also occur within introns as opposed to within exons (Wei et al. 2016).

By analogy to mechanisms of lymphocyte-specific recombination (Dong et al.

2015; Hu et al. 2015), we propose that many DSBs that occur within RDC genes

would be joined to other DSBs within the same RDC gene (Wei et al. 2016). Thus,

we further propose that frequent RDC gene DSBs, which again mostly occur within

introns, may be joined to shuffle exons and, thereby, contribute to neural cell

diversity (Fig. 1). Such breakage and joining events may also have the potential

of contributing to disease-associated neural gene alterations (Wei et al. 2016;

Weissman and Gage 2016).

A number of RDC genes, for example, the neurexins (Treutlein et al. 2014), are

thought to produce numerous isoforms via differential RNA processing. Beyond

such a diversification mechanism, we propose that RDC-based recombination, by

generating exon deletions, might “hard-wire” expression of variant RDC products

in NSPCs and, thereby, contribute to neural diversity. Our current findings suggest

that such putative activities would occur in NSPCs and the products of recombina-

tion events would be carried on into mature neurons; in this regard, the process

would be somewhat analogous to V(D)J recombination. However, the actual exon

shuffling mechanism we propose would be more similar to IgH CSR, creating

different isoforms of the protein rather than creating new exons (Fig. 1). In this

scenario, the evolution of long, neural genes that are largely comprised of intronic

sequences into which are embedded small exons (Smith et al. 2006) could have

evolved to provide large target introns for more random stress-associated DSBs in

NSPC development. This would be a different solution to the problem of targeted

exon shuffling than that employed by CSR, in which DSBs are introduced into

specialized intronic switch region sequences (Fig. 1). Whether or not the processes
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that generate RDC genes are specialized to the neural lineage will require further

investigation, as will the question of whether enhanced replication stress at the stem

and progenitor development stages during neural development could, via an

RDC-based mechanism, contribute to neural disease.

RDCs also potentially provide a mechanistic basis for many common fragile sites

and certain CNVs, which may result from transcription/replication collisions in

generating DSBs or other lesions (Glover and Wilson 2016; Wei et al. 2016). Two

Fig. 1 Top panel Diagram of the IgH class switch recombination reaction as illustrated by

switching from IgM to IgG1. The IgH locus is contained with a topological domain (TAD). In

activated B cells, switching from IgM to IgG1 results from an exon shuffling process in which the

V(D)J exon is first expressed with Cμ to generate IgM but, upon activation, DSBs initiated by AID

in repetitive switch (S) regions upstream of Cμ and Cγ1 are joined by C-NHEJ to delete Cμ and

replace it with Cγ1. This recombination/deletion exon shuffling process allows the same V(D)J

exon to be expressed with a different C exon (For other details, see text or Alt et al. 2013). Bottom
Panel Diagram of a hypothetical RDC DSB-based exon shuffling mechanism to allow expression

of different isoforms of RDC genes to be expressed by “hardwiring” potential somatic splice

variants by deletional recombination. This model is based on the finding that at least some RDC

genes lie within TADs and that RDC DSB frequency upon replication stress may approach that of

IgH S regions, allowing ends of different RDC DSBs within the same gene to be frequently joined,

based on their proximity within the same topological domain. This model could offer one

explanation for why many neural genes are very large and embedded with relatively small

exons (Smith et al. 2006): namely, as these genes are mostly comprised of intronic sequences,

most “randomly” introduced RDC DSBs across them fall within intronic sequences rather than in

exons, providing a basis for a replication stress-associated DSB diversification mechanism. If so,

whether or not requisite replication stress is somehow programmed during NSPC development

remains to be addressed (See text or Wei et al. 2016 for other details)
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NSPC-RDC genes, CDH13 and NRXN3, are within recurrent CNVs in human MBs

(Northcott et al. 2012; Rausch et al. 2012) and several candidate RDCs lie proximal to

mouse N-myc (Wei, Schwer and Alt, unpublished data). It is possible that RDCs

contribute to recurrent genomic variations we and others have found in MBs (Yan

et al. 2006), which may offer a mechanism to support the speculation from long ago

that proximal, recurrent DSBs during neuroblast differentiation contribute to N-myc
amplification in human neuroblastomas (Kohl et al. 1983). A number of the 27 identi-

fied NSPC RDC-genes undergo somatic genomic rearrangements, including deletions,

amplifications, and translocations in various types of cancer (see Wei et al. 2016), and

some undergo CNVs in embryonic stem cells and fibroblasts (Wilson et al. 2015;

Glover and Wilson 2016). Our HTGTS analysis of additional cell types could identify

potential spontaneous or replication stress-induced RDCs in other cell types and, more

generally, could shed light on the mechanisms underlying the genetic variations in a

range of cancers.
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