
ALMOsT-Trace: A Web Based Embeddable
Tracing Tool for ALMOsT.js

Rocio Nahime Torres and Carlo Bernaschina(B)

Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy

{rocionahime.torres,carlo.bernaschina}@polimi.it
http://www.deib.polimi.it

Abstract. Model Driven Development (MDD) requires model-to-model
and/or model-to-text transformations to produce application code from
high level descriptions. Debugging and evaluating such transformations
is in itself a complex task; complexity which can be mitigated through
the usage of advanced developer tools. We demonstrate ALMOsT-Trace,
a plug-in for ALMOsT.js, which allows developers to debug and analyze
their model transformations from within their applications. In the demo,
attendees will be able to experiment with ALMOsT-Trace by evaluating
it in IFMLEdit.org, an online tool for the rapid prototyping of web and
mobile applications, and by means of examples that can be customized
by the attendees themself.

Keywords: Agile development ·Model-driven development · Computer
aided software engineering

1 Introduction

Model Driven Development (MDD) is the branch of software engineering that
advocates the use of models, i.e., abstract representations of a system, and of
model transformations as key ingredients of software development [9]. With
MDD, developers use a general purpose (e.g. UML [1]) or domain specific (e.g.,
IFML [10]) modeling language to portrait the essential aspects of a system, under
one or more perspectives, and use (or build) suitable chains of transformations
to progressively refine the models into executable code.

Online platforms like [4] can help reduce the complexity of models and model
transformations management, execution and validation.

Traceability of artifacts during the evolution of a software project is a key
aspect for regression testing and monitoring. In model transformations the ability
to trace models between transformation steps [2,3] enables advanced analysis and
rapid error detection.

In a previous work [5] we have presented ALMOsT.js 1 (AgiLe MOdel Trans-
formations for JavaScript), an agile, in-browser framework for the rapid proto-
typing of MDD transformations, which lowers the technical skills required for
1 www.npmjs.com/package/almost/.

c© Springer International Publishing AG 2017
J. Cabot et al. (Eds.): ICWE 2017, LNCS 10360, pp. 554–558, 2017.
DOI: 10.1007/978-3-319-60131-1 42

www.npmjs.com/package/almost/


ALMOsT-Trace: A Web Based Embeddable Tracing Tool for ALMOsT.js 555

Web and Mobile developers to start be proficient with modeling and code gener-
ation. The design philosophy of ALMOsT.js stemmed from 6 requirements (#1
No installation, #2 No new language, #3 Fast start-up, #4 Parallel development,
#5 Customized output, #6 Customized generation), which could be summarized
in one: keep it simple. It allows the developer to rapidly bootstrap and evolve
an MDD project, by storing models in a flexible JSON based format and by
defining model transformation rules by means of simple JavaScript functions.
The following code shows a template example to create a rule.

// Create a rule
createRule(

// Condition function
function (element, model) { return /*condition*/ ;},
// Action function
function (element, model) { return /*result*/ ; }

);

// Create a transformer
var transform = createTransformer(rules, 'm2m');

// Execute transformer;
var output_model = transform(input_model);

We present ALMOsT-Trace, a plug-in for ALMOsT.js, able to trace elements
and relations during the execution of model transformations. The novelty of
ALMOsT-Trace is the ability to trace model during transformations in-browser,
by easily integrating the tracing tool inside the final MDD environment.

2 Framework

Following the keep it simple and plug-in based nature of ALMOsT.js the intro-
duction of ALMOsT-Trace in a project is completely optional and as for other
plug-ins [5] does not require any changes to the existing system.

ALMOsT-Trace is based on two components:

1. A drop-in replacement for the createTransformer creator function which
enhances the created transformer with tracing abilities, as shown below.

// Traced transformer
var transformer = createTracedTransformer(rules, 'm2m');

// Events
transformer.on('begin', function (model) { ... });

transformer.on('skipped', function (rule, input) { ... });

transformer.on('executed', function (rule, input, output) { ... });

transformer.on('end', function (result) { ... });



556 R.N. Torres and C. Bernaschina

Tracing aware rules can add custom tracing data to the final report, via a
trace function that is injected as last parameter in each one of them.

2. A dashboard which listens for events on a transformer and allows the devel-
oper to analyze the traces recorded during every execution. It can be easily
integrated inside any web based tool already using ALMOsT.js and enabled
on demand.

// Create the dashboard
var dashboard = createDashboard(transformer);

// Show the dashboard
dashboard.show();

At the end of the execution of each rule the tuple < rule, input, output > is
stored. This lookup table allows the dashboard to lookup all the tuples related
to each rule, input element and relation or output object components.

While forward tuples lookups (from rules and input to the output) are näıve
to implement, backward lookups (from output to rules and input) are not. If
during the aggregation phase two or more objects are merged together it is
not possible to identify them from their root reference, it is instead required to
search for outputs in the tuples collection which contain a particular subpart
that survived unaltered till the end of the aggregation.

While reference-based types (Object, Array, ...) are easy to identify, it is
enough to compare the reference, primitive types (number, string, ...) cannot be
identified by means of a simple comparison, it is not possible to distinguish a
number from another which contains the same value.

Enhanced rules map all the primitive values to their Object wrapper coun-
terpart (Number, String, ...) the wrappers will generate the same result dur-
ing aggregation, but will be uniquely identifiable. The enhanced transformer is
responsible to restore each one of the wrapper objects to their original form
before returning the result to the caller, preserving though the drop-in nature
of ALMOsT-Trace.

By analyzing the stored tuples in the lookup table the dashboard of
ALMOsT-Trace generates four different reports:

1. Rule execution statistics
All the defined rules are listed and for each one of them it is possible to know:
(a) the number of evaluations (b) the number of executions (c) the enabling
elements or relations (d) the output related to the execution against each
enabling element.

2. Input Model statistics
All the elements and relations defined in the input model are listed and for
each of them it is possible to know: (a) the number of enabled rules (b) the
output related to the execution of the enabled rules against the element or
relation itself.

3. Output Model statistics
For model to model and model to text transformations all the elements, rela-
tions, folders or files defined in the output are listed and for each one of



ALMOsT-Trace: A Web Based Embeddable Tracing Tool for ALMOsT.js 557

them it is possible to know: (a) the rules which generated them (b) the input
against which the rules have been executed to generate the element, relation,
folder or file itself.

4. Output Object statistics
For custom transformations (transformations with an output format defined
by the developer) the final output JSON Object is presented in an expandable
tree-view. For each Object attribute or Array item it is possible to know if they
were generated directly from a rule or if they are the result of an aggregation
step. For each attribute or item that can be identified in one of the rules
outputs the corresponding < rule, input > pair is shown.

3 Conclusions

This demo presents ALMOsT-Trace, a transformations tracing plug-in for
ALMOsT.js [5]. We show how it can be integrated inside an existing project
and how it can be used to analyze the model transformations execution. Atten-
dees will be able to experiment with ALMOsT-Trace by seeing its impact inside
IFMLEdit.org [6–8], a web based model driven tool, and by means of examples
that the can be customized by the attendees themself.

The future work will focus on the experimentation and further assessment
of ALMOsT-Trace in order to validate its impact on the development cycle, in
both industry and academia.

References

1. UML unified modeling language. www.uml.org/. Accessed 17 Mar 2017
2. MeTAGeM-trace: improving trace generation in model transformation by leverag-

ing the role of transformation models. Sci. Comput. Program. 98, Part 1, 3–27
(2015). Fifth Issue of Experimental Software and Toolkits (EST): A Special Issue
on Academics Modelling with Eclipse (ACME 2012)

3. Aranega, V., Mottu, J.M., Etien, A., Dekeyser, J.L.: Using Trace to Situate Errors
in Model Transformations

4. Basciani, F., Di Rocco, J., Di Ruscio, D., Di Salle, A., Iovino, L., Pierantonio, A.:
MDEForge: an extensible web-based modeling platform. In: CloudMDE@MoDELS

5. Bernaschina, C.: ALMOsT.js: an agile model to model and model to text trans-
formation framework. In: International Conference on Web Engineering (ICWE)
2017

6. Bernaschina, C., Brambilla, M., Koga, T., Mauri, A., Umuhoza, E.: Integrating
modeling languages and web logs for enhanced user behavior analytics. In: Inter-
national Conference on World Wide Web (WWW) 2017

7. Bernaschina, C., Brambilla, M., Mauri, A., Umuhoza, E.: A big data analysis frame-
work for model-based web user behavior analytics. In: International Conference on
Web Engineering (ICWE) 2017

www.uml.org/


558 R.N. Torres and C. Bernaschina

8. Bernaschina, C., Comai, S., Fraternali, P.: IFMLEdit.org: model driven rapid pro-
totyping of mobile apps. In: International Conference on Mobile Software Engi-
neering and Systems (MOBILESoft) 2017

9. Kleppe, A., Warmer, J., Bast, W.: MDA Explained - The Model Driven Archi-
tecture: Practice and Promise. Addison Wesley object technology series. Addison-
Wesley, Reading (2003)

10. OMG: Interaction flow modeling language (ifml), version 1.0. (2015). http://www.
omg.org/spec/IFML/1.0/

http://www.omg.org/spec/IFML/1.0/
http://www.omg.org/spec/IFML/1.0/

	ALMOsT-Trace: A Web Based Embeddable Tracing Tool for ALMOsT.js
	1 Introduction
	2 Framework
	3 Conclusions
	References


