
A Web Tool for Type Checking and Testing
of SPARQL Queries

Jesús M. Almendros-Jiménez(B) and Antonio Becerra-Terón

Department of Informatics, University of Almeŕıa, 04120 Almeŕıa, Spain
{jalmen,abecerra}@ual.es

Abstract. In this paper a property-based testing tool for SPARQL is
described. The tool randomly generates test cases in the form of instances
of an ontology. The tool checks the well typed-ness of the SPARQL query
as well as the consistency of the test cases with the ontology axioms. Test
cases are after used to execute queries. The output of the queries is tested
with a Boolean property which is defined in terms of membership of
ontology individuals to classes. The testing tool reports counterexamples
when the Boolean property is not satisfied.

1 Introduction

Property-based testing (PBT) is a well-known technique of program testing [9]
involving the specification of properties/assertions on the output of a program to
be tested. Properties on the output describe the required relationships between
output data, which should be ensured by free bug programs. Normally, test cases
are generated as input of the program and the properties/assertions are checked
on the output of the test cases. When a counterexample is found, that is, an
input test case in which the property is not satisfied by the result, the program
has a bug. PBT can use either black-box techniques (i.e., randomly generated
test cases) or white-box techniques (i.e., test cases generated from code analysis)
for each kind of program. Among others, PBT has been studied in Java [8],
functional languages [5], XQuery [2], model transformation languages [1] and
relational databases [4].

In this paper a black-box tool for property-based testing has been designed
in which input and output data are modeled in RDF and OWL, the program is
a SPARQL query, and properties have the form of membership of individuals to
classes. A RDF/OWL ontology to XML Schema automatic mapping is carried
out by the tool in which classes and properties of the ontology TBox (i.e.,
ontology axioms) are mapped into XML Schema labels and attributes. The XML
Schema is used to generate test cases. However, in order to generate useful test
cases two additional checks are carried out. Firstly, the tool checks whether
the SPARQL query is well-typed. A method for type checking is used based on
ontology consistency. Wrongly typed queries prevent testing. Secondly, the tool

This work was supported by the EU (FEDER) and the Spanish MINECO Ministry
(Ministerio de Economı́a y Competitividad) under grant TIN2013-44742-C4-4-R.

c© Springer International Publishing AG 2017
J. Cabot et al. (Eds.): ICWE 2017, LNCS 10360, pp. 535–538, 2017.
DOI: 10.1007/978-3-319-60131-1 38



536 J.M. Almendros-Jiménez and A. Becerra-Terón

Fig. 1. Examples of buggy SPARQL queries

checks the consistency of test cases with ontology axioms. Inconsistent test cases
lead to wrong testing results.

While query testing has been studied in other contexts (e.g., SQL [6]), and
programming bugs are well stablished for SQL (e.g., [3]), as far as we know
SPARQL testing has not been studied yet. Additionally, type checking is not
currently supported by SPARQL implementations. This has as consequence emp-
ty/wrong/missing answers for queries.

2 Type Checking and Testing of SPARQL Queries

In order to illustrate the work, an example of ontology defining a social network
is considered. Testing is a mechanism to detect bugs. In our case, testing is used
for the detection of bugs in SPARQL queries. The question now is what does a
bug mean in a SPARQL query? Fig. 1 shows some examples of SPARQL queries
having a bug. Due to the lack of space, only three cases are shown, but more
examples are available at the Web site of the tool (http://minerva.ual.es:8080/
SPARQL/). Each case represents a different kind of bug in our approach.

Case (1). In this case the bug is due to typing. More concretely it is due to
the domain and range of properties. The triple pattern ?event sn:likes ?user2 is
wrong, because users like activities (in particular, events), and thus the order
on the triple is wrong. From user’s point of view, this query returns an empty
answer when the bug is present, but some hint could be given. The testing tool
uses HermiT ontology reasoner to check types, reporting the following diagnosis:
Test cases cannot be generated:
DisjointClasses (# Activity #User)
ClassAssertion (# Activity #event)
ClassAssertion (# User #event)

Case (2). In this case, the bug is due to constraints on properties (i.e., ontology
axioms for properties). The triple pattern ?message1 sn:replied by ?message1
is wrong, because replied by is an irreflexive property: a message cannot be

http://minerva.ual.es:8080/SPARQL/
http://minerva.ual.es:8080/SPARQL/


A Web Tool for Type Checking and Testing of SPARQL Queries 537

answered by itself. Thus, again the answer will be empty. Consistency of test
cases (i.e., agreement with constraints on classes and properties) is checked by
the tool through HermiT ontology reasoner:
Unable to test the property.
It was not possible to find consistent tests.

Case (3). In this case, the query is well-typed and it does not contradict con-
straints. However, the user intention has to be taken into account. The intended
meaning of the query is “Retrieve events before this year added by users older
than 40, and friends of these users”. Here, the answer could be not empty but
the programmer can find wrong answers: events added by users younger than
40. Here, there is a mistake using variables. The triple pattern ?user2 sn:age
?age is wrong because ?user1 should be older than 40, instead of ?user2. Here,
a case in which testing of output properties is useful arises. Let us suppose
that the testing tool is called with the following property: Mature(?user1) where
Mature ≡ age some integer[>= 40]. The testing tool reports (using values: ten-
nis for events, 30 and 50 for ages, jesus and antonio for users, and 2016-01-01,
2018-01-01 for dates1) the following message:
Output Property Falsifiable after 256 tests.
Counterexample:

<rdf:RDF >
<sn:Event rdf:about="#tennis">

<sn:date rdf:datatype="#dateTime">2016 -01 -01 T00 :00:00Z</sn:date>
<sn:added_by rdf:resource="#jesus"/>

</sn:Event>
<sn:User rdf:about="#antonio">

<sn:age rdf:datatype="#integer">50</sn:age>
<sn:friend_of rdf:resource="#jesus"/>

</sn:User>
<sn:User rdf:about="#jesus">

<sn:age rdf:datatype="#integer">30</sn:age>
<sn:friend_of rdf:resource="#antonio"/>

</sn:User>
</rdf:RDF>

It means that after 256 test cases, the testing tool has found a counterex-
ample for Mature(?user1). The counterexample shows an event tennis which
has been added by jesus, and antonio is a friend of jesus who is 50 years old,
and jesus is 30 year old. Thus, ?user1 which is bound to jesus is not Mature.
This counterexample serves as witness of the bug, which can be found in ?user2
sn:age ?age. Replacing this triple pattern by ?user1 sn:age ?age, the testing tool
answers as follows:
Ok: passed 256 tests.

3 Web Tool

A Web tool available at http://minerva.ual.es:8080/SPARQL/ has been devel-
oped enabling the transformation of ontologies into XML Schemas facilitating
1 Values are added to the XML Schema in our approach.

http://minerva.ual.es:8080/SPARQL/


538 J.M. Almendros-Jiménez and A. Becerra-Terón

the customization of XML Schemas, for test case generation, by automatically
pruning the XML Schemas. The tool has been implemented under the BaseX
XQuery interpreter mainly responsible of test case generation. SPARQL (Apache
Jena ARQ engine) has been embedded into XQuery thanks to Java binding capa-
bilities of BaseX. Also the ontology reasoner HermiT [7] has been embedded into
XQuery in order to check well typed-ness of SPARQL queries and consistency
of test cases.

4 Conclusions and Future Work

A limitation of our approach is that properties can only be specified for indi-
viduals with membership to classes, and not for classes and properties. This a
limitation of the current implementation but we plan to extend property defin-
ition to classes (for instance, disjointness of output classes) and properties (for
instance, sub-property relationships). With regard to SPARQL coverage, the
testing tool is able to test any SELECT query. ASK, DESCRIBE and CON-
STRUCT queries are out of the scope of the testing tool. Finally, our testing
tool generates test cases without taking into account the code, and the human
tester intervention is required. We plan to extend our work to white box test-
ing which means to automatically generate/prune the XML Schema from the
code. The testing tool will become completely automatic without human tester
intervention.

References

1. Almendros-Jiménez, J.M., Becerra-Terón, A.: Automatic generation of ecore models
for testing ATL transformations. In: Bellatreche, L., Pastor, Ó., Almendros Jiménez,
J.M., Aı̈t-Ameur, Y. (eds.) MEDI 2016. LNCS, vol. 9893, pp. 16–30. Springer, Cham
(2016). doi:10.1007/978-3-319-45547-1 2

2. Almendros-Jiménez, J.M., Becerra-Terón, A.: Automatic property-based testing
and path validation of XQuery programs. Softw. Test. Verif. Reliab. 27(1–2),
1–29 (2017)

3. Brass, S., Goldberg, C.: Semantic errors in SQL queries: a quite complete list. J.
Syst. Softw. 79(5), 630–644 (2006)

4. Chays, D., Deng, Y., Frankl, P.G., Dan, S., Vokolos, F.I., Weyuker, E.J.: An
AGENDA for testing relational database applications. Softw. Test. Verif. Reliab.
14(1), 17–44 (2004)

5. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. ACM SIGPLAN Not. 46(4), 53–64 (2011)

6. De La Riva, C., Suárez-Cabal, M.J., Tuya, J.: Constraint-based test database gen-
eration for SQL queries. In: Proceedings of the 5th Workshop on Automation of
Software Test, pp. 67–74. ACM (2010)

7. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: HermiT: an OWL 2
reasoner. J. Autom. Reasoning 53(3), 245–269 (2014)

8. Khurshid, S., Marinov, D.: TestEra: specification-based testing of Java programs
using SAT. Autom. Softw. Eng. 11(4), 403–434 (2004)

9. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012)

http://dx.doi.org/10.1007/978-3-319-45547-1_2

	A Web Tool for Type Checking and Testing of SPARQL Queries
	1 Introduction
	2 Type Checking and Testing of SPARQL Queries
	3 Web Tool
	4 Conclusions and Future Work
	References


