
The BigDataEurope Platform – Supporting
the Variety Dimension of Big Data

Sören Auer, Simon Scerri, Aad Versteden, Erika Pauwels,
Angelos Charalambidis, Stasinos Konstantopoulos, Jens Lehmann,

Hajira Jabeen, Ivan Ermilov, Gezim Sejdiu, Andreas Ikonomopoulos,
Spyros Andronopoulos, Mandy Vlachogiannis, Charalambos Pappas,

Athanasios Davettas, Iraklis A. Klampanos, Efstathios Grigoropoulos,
Vangelis Karkaletsis, Victor de Boer, Ronald Siebes,

Mohamed Nadjib Mami(B), Sergio Albani, Michele Lazzarini, Paulo Nunes,
Emanuele Angiuli, Nikiforos Pittaras, George Giannakopoulos,

Giorgos Argyriou, George Stamoulis, George Papadakis, Manolis Koubarakis,
Pythagoras Karampiperis, Axel-Cyrille Ngonga Ngomo,

and Maria-Esther Vidal

The H2020 BigDataEurope Project Consortium, c/o Fraunhofer IAIS, Sankt
Augustin, Germany

{auer,scerri,jabeen,mami}@cs.uni-bonn.de

Abstract. The management and analysis of large-scale datasets –
described with the term Big Data – involves the three classic dimensions
volume, velocity and variety. While the former two are well supported by
a plethora of software components, the variety dimension is still rather
neglected. We present the BDE platform – an easy-to-deploy, easy-to-use
and adaptable (cluster-based and standalone) platform for the execution
of big data components and tools like Hadoop, Spark, Flink, Flume and
Cassandra. The BDE platform was designed based upon the require-
ments gathered from seven of the societal challenges put forward by
the European Commission in the Horizon 2020 programme and targeted
by the BigDataEurope pilots. As a result, the BDE platform allows to
perform a variety of Big Data flow tasks like message passing, storage,
analysis or publishing. To facilitate the processing of heterogeneous data,
a particular innovation of the platform is the Semantic Layer, which
allows to directly process RDF data and to map and transform arbitrary
data into RDF. The advantages of the BDE platform are demonstrated
through seven pilots, each focusing on a major societal challenge.

1 Introduction

The management and analysis of large-scale datasets – described with the term
Big Data – involves the three classic dimensions volume, velocity and variety.
While the former two are well supported by a plethora of software components,
the variety dimension is still rather neglected. We present the BigDataEurope1

1 BigDataEurope (https://www.big-data-europe.eu/) is a Coordination and Support
Action funded by the Horizon 2020 programme of the European Commission.

c© Springer International Publishing AG 2017
J. Cabot et al. (Eds.): ICWE 2017, LNCS 10360, pp. 41–59, 2017.
DOI: 10.1007/978-3-319-60131-1 3

https://www.big-data-europe.eu/

42 S. Auer et al.

(BDE) platform – an easy-to-deploy (cluster-based and standalone), easy-to-use
and adaptable platform where the variety dimension of Big Data is taken into
account right from its inception. The BDE platform is currently being applied
to the seven societal challenges put forward by the European Commission in
its Horizon 2020 research programme (Health, Food and Agriculture, Energy,
Transport, Climate, Social Sciences and Security)2.

While working with stakeholder communities of the seven societal challenges
over the last two years, we have identified the following requirements to be crucial
for the success of Big Data technologies:

R1 Simplifying use. The use of Big Data components and the development of
analytical algorithms and applications is still cumbersome. Many analytical
applications are ‘hard-wired’, requiring lavish data ‘massaging’ and complex
development in various languages and data models.
R2 Easing deployment. Various deployment schemes are required for different
Big Data applications or even during the lifecycle of one particular Big Data
application. Prototyping and development, for example, should be possible
on a single machine or small cluster, testing and staging possibly on a public
or private cloud infrastructure, while production systems might have to be
deployed on a dedicated cluster.
R3 Managing heterogeneity. Our survey of societal challenge stakeholders [3]
clearly showed that in most cases, Big Data applications originate with a
large number of heterogeneous, distributed and often relatively small datasets.
Only after their aggregation and integration true Big Data emerges. Hence,
a major challenge is managing the heterogeneity of data in terms including
data models, schemas, formats, governance schemes and modalities.
R4 Improving scalability. Finally, especially if a number of different storage
and processing tools are employed, scalability is still an issue.

The BDE platform addresses these requirements and facilitates the execution
of Big Data frameworks and tools like Hadoop, Spark, Flink and many others.
We have selected and integrated these components based upon the requirements
gathered from the seven different societal challenges. Thus, the platform allows to
perform a variety of Big data flow tasks such as message passing (Kafka, Flume),
storage (Hive, Cassandra), analysis (Spark, Flink) or publishing (GeoTriples).

The remainder of the article is structured as follows: Sect. 2 presents an
overview of the BDE platform, while Sect. 3 introduces its Semantic Layer. We
present two out of the overall seven pilots demonstrating the advantages of the
BDE platform in detail in Sect. 4. We discuss related work and conclude in Sect. 5
along with directions for future work.

2 https://ec.europa.eu/programmes/horizon2020/en/h2020-section/
societal-challenges.

https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/societal-challenges

The BigDataEurope Platform – Supporting the Variety Dimension 43

2 Platform Overview

The requirements gathered from the seven societal challenge stakeholders
revealed that the BDE platform should be generic and must be able to sup-
port a variety of Big Data tools and frameworks running together. Installing
and managing such a system on the native environments without running into
resource or software conflicts is rather hard to achieve. Figure 1 gives a high-level
overview on the BDE platform architecture, which is described in the sequel.

Fig. 1. High-level BDE platform architecture

Hardware Layer. We decided to use Docker3 as packaging and deployment
methodology so as to manage the variety of underlying hardware resources effi-
ciently alongside the varying software requirements for different stakeholders.
Docker allows to package an application into a standardized unit for develop-
ment. Docker containers wrap a software in a complete file system that contains
everything needed to run, making sure that the software always runs as intended,
regardless of the server environment. Therewith, dockers offers a lightweight vir-
tual environment by sharing the same operating system kernel. The images of
containers are constructed from a layered file system, sharing common files, thus
making the disk usage and image downloads efficient. It is based on open stan-
dards and able to run on major operating systems. We have dockerized a large
number of Big Data components4. None of them posed major problems to be run
in a Docker container. Based on our experience and the popularity of Docker,
we are confident that all components can be dockerized in reasonable time.

3 https://www.docker.com.
4 https://github.com/big-data-europe/README/wiki/Components.

https://www.docker.com
https://github.com/big-data-europe/README/wiki/Components

44 S. Auer et al.

Resource Management. Docker Swarm5 is an orchestration tool that allows
to deploy Docker containers on a cluster in a transparent way. With its built-in
scheduler, it offers most of the features required by the platform, i.e., scalability,
interlinking the containers, networking between different containers, resource
management between containers, load balancing, fault tolerance, failure recovery,
log-based monitoring etc. Docker Swarm operates as a resource manager directly
on top of the hardware layer. This hardware layer can vary from small set of
machines in the premises of an organization to the infrastructure of some big
cloud provider. On top of Docker Swarm, applications can be deployed easily as
a single Docker container, or through Docker Compose6 as a collection (cluster)
of communicating containers that can be scaled and scheduled dynamically.

Support Layer. The technical aim of the BDE Platform is to reuse components
wherever possible and build tools which are necessary to fit the societal chal-
lenge needs. In this regard, we discovered that when starting a Docker Compose
application, the defined services will be started all at once. This is not always
the intended behaviour, since some applications may depend on each other, or
on a human intervention. For example, a Flink worker requires the Flink mas-
ter to be available before it can register with the master. Another example
is a Flink MapReduce algorithm that requires a file to be available on HDFS
before starting the computation. At the moment, these dependencies cannot be
expressed in Docker Compose. Awaiting the general solution of the Docker com-
munity, we have developed a semantic alternative. We provide an init daemon
service that, given an application-specific workflow, orchestrates the initializa-
tion process of the components. The init daemon service is a microservice built
on the mu.semte.ch platform and provides requests through which the compo-
nents can report their initialization progress. The init daemon is aware of the
startup workflow and, thus, it can validate whether a specific component can
start based on the initialization status reported by the other components. The
workflow needs to be described per application. It specifies the dependencies
between services and indicates where human interaction is required. The UIs
described in the next section together with the base Docker images and the init
daemon service provide additional support to the user. It facilitates the tasks
of building, deploying and monitoring Big Data pipelines on the BDE platform.
This support is illustrated in Fig. 1 as an additional layer in the platform archi-
tecture.

User Interfaces. In order to lower the usage barrier of Big Data technolo-
gies, we have implemented several UIs, including a pipeline builder, a pipeline
monitor, an integrator UI and a Swarm UI (see Fig. 2). The UIs serve different
purposes, but in general make it easier for the user to build, deploy and mon-
itor applications on the BDE platform. Most of the UI applications are built

5 https://www.docker.com/products/docker-swarm.
6 https://docs.docker.com/compose.

http://mu.semte.ch/
https://www.docker.com/products/docker-swarm
https://docs.docker.com/compose

The BigDataEurope Platform – Supporting the Variety Dimension 45

on mu.semte.ch, a microservices framework backed by Linked Data. Each of the
applications is described in more detail in the next sections.

Workflow Builder. This interface allows users to create and edit workflows.
The workflow steps reflect the dependencies between the container images or
manual actions in the application. Example dependencies are:

– The Spark master needs to be started before the Spark worker such that the
worker can register itself at the master.

– The input data needs to be loaded in HDFS before the MapReduce algorithm
starts computing.

The order of the steps can be rearranged by dragging-and-dropping the step
panels. Once finished the workflow can be exported and fed into the init daemon.
Workflow monitor. Once an application is running on the BDE platform, this
interface allows a user to follow-up the initialization process. It displays the
workflow as defined in the pipeline builder application. For each step in the
workflow, the corresponding status (not started, running or finished) is shown
as retrieved from the init daemon service. The interface automatically updates
when a status changes, due to an update through the init daemon service by one
of the pipeline components. The interface also offers the option to the user to
manually abort a step in the pipeline if necessary.
Swarm UI. The Swarm UI allows to clone a Git repository containing a pipeline
(i.e., containing a docker-compose.yml) and to deploy this pipeline on a Swarm
cluster. Once the pipeline is running, the user can inspect the status and logs of
the several services in the pipeline. Users can also scale up/down one or more
services or start/stop/restart them.
Integrator UI. Most components (e.g. Spark, Flink, HDFS) provide dashboards
to monitor their status. Each of the components runs in a separate Docker
container with its own IP address, ports and varying access paths. The Integrator
UI displays all component dashboards in a unified interface.

3 Semantic Layer

The ability to cross-link large-scale data with each other and with structured
Semantic Web data, and the ability to uniformly process Semantic Web and
other data adds value both to the Semantic Web and the Big Data communities;
it extends the scope of the former to include a vast data domain and increases
the opportunities for the latter to process data in novel ways and combinations.

3.1 Semantic Data Lake

The term Data Lake, in the context of Big Data, appeared in recent years7 to
describe the repository of datasets that are provided for processing and analysis
in their very original formats. It is often regarded as the opposing concept of

7 https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes.

http://mu.semte.ch/
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes

46 S. Auer et al.

Fig. 2. BDE Platform UI screenshots. Top: Integrator UI, focusing on Spark Master
Dashboard. Bottom left: Swarm UI showing the services and the status of a pipeline
named webCAT. Bottom right: Workflow Monitor showing a case of a pipeline named
Sensor demo consisting of a set of stages – installing HDFS, installing Spark, populating
HDFS with data, etc.

Data Warehouse in the sense that, in the later, data is ready for analysis only a
posteriori of a mandatory data reorganization phase. This difference is captured
by two opposing data access strategies: data on-read and data on-write, respec-
tively. Data on-read corresponds to the Data Lake where the schema of the data
is looked at only when the data is actually used. Data on-write, on the other
hand, corresponds to the Data Warehouse where data is organized according to
a rigid schema before processing. Another substantial difference between Data
Lakes and Data Warehouses is the type of processing the data is undergoing in
each case. A Data Lake, as per its definition, contains data that is open to any
kind of processing, be it natural language processing, machine learning, ad-hoc
(semi-)structured querying, etc. In a Data Warehouse, on the other side, data is
accessible only using a specific suite of tools, namely ad-hoc OLAP queries and
BI standards. In the BDE platform, we put emphasis on easing and broadening
and, whenever possible, harmonizing the use of Big Data technologies. The adop-
tion of the Data Lake concept is, therefore, less of a choice, it is rather a logical
consequence. This brings us back to our main goal: addressing the problem of
variety and heterogeneity of the data.

While a Data Lake allows heterogeneous data to be stored and accessed,
dealing with this data is cumbersome, time-consuming and inefficient, due to
the different data models, instance structures and file formats. To address this,
the idea of semantifying Data Lakes was recently proposed. The idea is to equip
datasets in the lake with mappings to vocabularies, ontologies or a knowledge
graph, which can then be used as a semantic access layer to the underlying data.

The BigDataEurope Platform – Supporting the Variety Dimension 47

Fig. 3. Ontario multi-layer architecture for ontology-based data access to the Data
Lake.

Ontario. The BDE platform comprises a Semantic Data Lake implementation,
named Ontario. Ontario builds a Semantic Layer on top of the Data Lake, which
is responsible for mapping data into existing Semantic vocabularies/ontologies.
A successful mapping process, termed Semantic Lifting, provides a ‘uniform’
view over the whole data. As a result, the user can deal with the heterogeneous
data in the lake as if it was in one unique format. Data can then be extracted,
queried or analysed using a unique high-level declarative query language. The
primary challenge is then to trigger a process with three main steps:

1. Query analysis and decomposition: The query is broken down into sub-queries.
An execution plan is generated.

2. Selection of relevant data sources: Relevant datasets are selected starting from
the generated sub-queries and using the mappings we have predefined.

3. Extraction of the results: The sub-queries are translated into the syntax of
the selected datasets, executed and their results are put together in a certain
way (following the plan generated in 1: merge, join, etc.) that the original
query is accurately answered.

The main characteristics of Ontario are that the query execution process does
not require any data materialization or shipping, and is fully transparent to the
user. Data extraction rather happens fully on-the-fly upon a reception of a query.
Data Model. Data in Ontario is conceptually modelled around RDF classes.

Each class can be seen as a star-shaped graph centred on the RDF subjects of
the same type. The predicates of a class C consist of all the predicates found
connected to the class C, even if they were dispersed across different data sources.
Thus, the data in the Semantic Data Lake is conceptually represented as a set
of class instances. Thanks to the Semantic Mappings associated to each dataset
in the lake, every data instance has a class, even if it is not RDF.
Architecture. Ontario adopts a Wrapper-Mediator architecture (cf. Fig. 3) with
one extra middle-layer:

– Mediator: Decomposes the SPARQL query into a set of star-shaped groups.
Star-shaped groups are planned into a bushy tree execution plan.

48 S. Auer et al.

– Meta-Wrapper: Each star-shaped group is submitted to a Meta-Wrapper.
– Wrapper: Translates the star-shaped group into a query of the syntax of the

final data source.

Wrappers are selected by the Meta-Wrappers to obtain a sub-set of the final data.
Those result sub-sets returned by the wrappers are joined together according to
the bushy tree execution plan forming the final query answer.

Fig. 4. Bushy execution plan and Meta-Wrapper invocation.

Example. We are interested in getting the number of distinct publications and
number of distinct deaths due to the disease Tuberculosis in India. To obtain the
answer, three datasets of different formats need to be queried: PubMed in XML,
GHO in CSV and LinkedCT in RDF.

Fig. 5. An example of a SPARQL query on the left, and the corresponding star-shaped
groups the Mediator generates on the right.

Listing 1.1. Example of RML Mapping Rules
<#ObservationMappings>

rml:logicalSource [
rml:source "hdfs://.../GHO/observations.csv";
rml:referenceFormulation ql:CSV];

rr:subjectMap [rr:template"http://ex.com/{@OID}"];
rr:predicateObjectMap [

rr:predicate gho:Country;
rr:objectMap [rml:reference"country";];

rr:predicateObjectMap [
rr:predicate gho:Disease;
rr:objectMap [rml:reference"disease";];

...

The BigDataEurope Platform – Supporting the Variety Dimension 49

The respective query used is shown in Fig. 5 left. The Mediator decomposes the
SPARQL query into star-shaped groups and generates a corresponding bushy
tree execution plan, as shown in Fig. 4. Each star-shaped group is submitted
to a Meta-Wrapper. Each Meta-Wrapper checks the mapping rules, which are
expressed in RML8 in our implementation, and selects the relevant Wrappers, as
depicted in Fig. 6. A snippet from the mapping rules used is shown in Listing 1.1.
We can read that observations exist in the CSV file located in HDFS. The CSV
columns are mapped to Ontology terms, e.g. country to gho:Country, disease
to gho:disease, etc. Using those Mappings, the Wrapper is able to convert
the star-shaped group, sent from the Meta-Wrapper, into an executable query.
For example, in Fig. 6, the Wrapper converts the star-shaped group into an SQL
query, as the CSV file is queried using Apache Spark SQL9. Wrappers’ individual
results are joined according to the execution plan generated earlier.

Fig. 6. Examples of Data Lake wrappers for PubMed, LinkedCT and GHO datasets.

3.2 Big Data Analytics for RDF

One of the key features of Big Data is its complexity and heterogeneity. While
most of the big data applications can deal with concurrent computations of
different kinds of data, there is still the need to combine these data from differ-
ent simultaneous resources in a meaningful manner. RDF provides a model for
encoding semantic relationships between items of data so that these relation-
ships can be interpreted computationally. This section presents the Semantic
ANalytics StAck (SANSA)10 which is a Big Data platform that provides tools
for implementing machine learning algorithms directly on RDF data. SANSA is
divided into different layers described below (Fig. 7).

8 http://rml.io.
9 http://spark.apache.org/sql.

10 http://sansa-stack.net/.

http://rml.io
http://spark.apache.org/sql
http://sansa-stack.net/

50 S. Auer et al.

Fig. 7. Conceptual view of the BDE Scalable Semantic Analytics Stack (SANSA).

Listing 1.2. Example of reading an
RDF file in SANSA
import
net.sansa_stack.rdf.spark.io.NtripleReader

val input ="hdfs://.../file.nt"

val triplesRDD =
NTripleReader.load(spark, new File(input))
triplesRDD.take(5).foreach(println(_))

Listing 1.3. Example to load an OWL file
// In RDD
FunctionalSyntaxOWLAxiomsRDDBuilder.build(sc,

"path/to/functional/syntax/file.owl")
// Using Dataset
FunctionalSyntaxOWLAxiomsDatasetBuilder.build(

spark,"path/to/functional/syntax/file.owl")
// Manchester syntax RDD
ManchesterSyntaxOWLAxiomsRDDBuilder.build(sc,

"path/to/manchester/syntax/file.owl")
// Manchester syntax Dataset
ManchesterSyntaxOWLAxiomsDatasetBuilder.build(sc,

"path/to/manchester/syntax/file.owl")

Read/write Layer. This layer provides the facility to read and write RDF data
from HDFS or local drive and represent it in the distributed data structures of
the frameworks.
Querying Layer. Querying an RDF graph is a major source of information

extraction and searching facts from the underlying linked data. In order to effi-
ciently answer runtime SPARQL queries for large RDF data, we are exploring
different representation formats, namely graphs, tables and tensors.

Listing 1.4. Example to query an RDF file using SPARQL
val graphRdd = NTripleReader.load(spark, new File(input))
val partitions = RdfPartitionUtilsSpark.partitionGraph(graphRdd)
val rewriter = SparqlifyUtils3.createSparqlSqlRewriter(spark, partitions)
val qef = new QueryExecutionFactorySparqlifySpark(spark, rewriter)

Our aim is to have cross representational transformations for efficient query
answering. Spark’s GraphX is not very efficient, due to complex querying related
to graph structure. On the other hand, an RDD based representation is efficient

The BigDataEurope Platform – Supporting the Variety Dimension 51

for queries like filters or applying user defined functions on specific resources,
data frames have been found efficient for calculating the support of rules.
Inference Layer. The core of the inference process is to continuously apply

schema related rules on the input data to infer new facts. This process can
derive new facts from the knowledge base, detect inconsistencies from the KBs,
and extract new rules to help in reasoning. Rules describing general regularity
can help to understand the data better.

Listing 1.5. Example of inferencing an RDF Graph in SANSA
val graph = RDFGraphLoader.loadFromFile(new File(input).getAbsolutePath, spark, 4)
val reasoner = profile match { // create reasoner

case TRANSITIVE => new TransitiveReasoner(spark, properties, parallelism)
case RDFS => new ForwardRuleReasonerRDFS(spark, parallelism)
case RDFS_SIMPLE =>

val r = new ForwardRuleReasonerRDFS(spark, parallelism)
r.level = RDFSLevel.SIMPLE
r

case OWL_HORST => new ForwardRuleReasonerOWLHorst(spark)
}
val inferredGraph = reasoner.apply(graph) // compute inferred graph

We use an adaptive rule engine that will be able to optimize itself based on the
rules available in the KB. This helps in developing an execution plan from a set
of inference rules enabling applications to fine tune the rules for scalability.
Machine Learning Layer. In addition to above mentioned tasks, one of the very
important tasks is to perform machine learning or analytics to gain insights of
the data for relevant trends, predictions or detection of anomalies. There exists
a wide range of machine learning (supervised and unsupervised) algorithms for
the structured data. However, the challenging task is to distribute the data and
to devise distributed versions of these algorithms to fully exploit the underlying
frameworks. This distribution effort can be further divided into two separate cat-
egories; One is parallelizing the algorithms, and the other is ensemble learning or
parallel modeling techniques. We are exploring different algorithms namely, ten-
sor factorization, association rule mining, decision trees and clustering. The aim
is to provide a set of out-of-the-box algorithms to work with the structured data.
As an example consider the implementation of a partitioning algorithm for RDF
graphs given as NTriples. The algorithm uses the structure of the underlying
undirected graph to partition the nodes into different clusters.

Listing 1.6. Example for Clustering RDF
import net.sansa_stack.ml.spark.clustering.RDFByModularityClustering
val numIterations = 100
val input ="path_to_your_RDFgraph"
val output ="path_name_for_clusters"
RDFByModularityClustering(spark, numIterations, input, output)

SANSA’s clustering procedure follows a standard algorithm for partitioning
undirected graphs aimed to maximize a modularity function. Usage examples
and further information can be found at http://sansa-stack.net/faq/.

http://sansa-stack.net/faq/

52 S. Auer et al.

Listing 1.7. SPARQL query that retrieves
uniform event summaries.
PREFIX geo:<http://www.opengis.net/ont/geosparql#>
PREFIX ev:<http://bde.eu/man-made-changes/ont#>
PREFIX nev:<http://cassandra.semagrow.eu/events#>
SELECT ?id ?title ?loc ?name ?desc {

?e rdf:type ev:NewsEvent ;
ev:hasId ?id ;
ev:hasTitle ?title ;
ev:hasArea/geo:hasGeometry/geo:asWKT ?loc .

?s nev:event_id ?id ;
nev:description ?desc ;
nev:event_date ?date .

OPTIONAL{?s nev:tweet_post_ids ?tweet_post_ids}
FILTER regex(?title, ’zaatari’,’i’) .

}

Listing 1.8. Federated query retriev-
ing events from Strabon & Cassandra.
SELECT ?id ?title ?loc ?name ?desc
{ ?e rdf:type ev:NewsEvent ;

ev:hasId ?id ;
ev:hasTitle ?title ;
ev:hasArea/geo:hasGeometry/geo:asWKT

?loc .
FILTER regex(?title, ’zaatari’,’i’) .

} @ Strabon
{ ?s nev:event_id ?id ;

nev:description ?desc ;
nev:event_date ?date .

OPTIONAL { ?s nev:tweet_post_ids
?tweet_post_ids }

} @ Cassandra

3.3 Semagrow Query Federation

Another component of the BDE Platform relevant to the semantics of the data
being processed, is the Semagrow federation engine. Semagrow is a SPARQL
query processing system that federates multiple remote endpoints. Semagrow
hides schema heterogeneity by applying the appropriate vocabulary transfor-
mations and also uses metadata about the contents of the remote data sources
to optimize querying plans [2]. Client applications are presented with a sin-
gle SPARQL endpoint, and Semagrow transparently optimizes queries, executes
sub-queries to the remote endpoints, dynamically integrating results in heteroge-
neous data models, and joins the partial results into the response to the original
query and into the original query’s schema.

In the context of integrating Semagrow in the BDE Platform, we have re-
designed both the query planner and the execution engine so that it can be
extended to support different querying languages. In cases where the target lan-
guage is less expressive than SPARQL, Semagrow itself undertakes the required
additional computations. For instance, when Apache Cassandra endpoints are
included in the federation, the Semagrow query planner is aware of the fact that
CQL, the Apache Cassandra query language, does not support joining across
tables. The resulting plan is built in such a way that the tuples to be joined
are fetched by different CQL queries to the same endpoint and joined at the
Semagrow side. But this does not mean that only individual query patterns
are fetched: “star” queries that fetch multiple properties of the same entity are
expressible in CQL and the Semagrow planner takes into account that such
patterns may be bundled together in one query [6]. Consider, for example, the
SPARQL query in Listing 1.7 that involves geo-location from events stored in
Strabon, a geospatial triple store that supports stSPARQL, and event summaries
harvested from Twitter stored in Apache Cassandra.

Semagrow provides a transparent way to access and cross-join data from both
sources. This is achieved by decomposing the initial SPARQL query into valid
subqueries taking the capabilities and expressivity of each store into account,
deciding the order of execution by estimating the cost of each alternative exe-

The BigDataEurope Platform – Supporting the Variety Dimension 53

cution, and lastly translating each subquery into an appropriate query that the
underlying system can understand. In our example the query in Listing 1.7 will
be split into two subqueries, depicted in Listing 1.8 as blocks annotated with the
name of the store to be executed. Note also that the subquery to be executed in
Apache Cassandra is further translated into a valid CQL query. In order to scale
out the query execution across different blades of a distributed infrastructure,
we are re-implementing the execution engine over Apache Flink. (possibly on
different machines) rather than different threads on the same machine.

4 BDE Platform Showcases

The main goal of the BigDataEurope project is to produce an easy-to-develop,
-use and -adapt platform for wildly varying Big Data challenges. To validate this,
we develop pilot implementations in seven different domains, corresponding to
the seven Societal Challenges (SC) of Horizon2020. These pilots are defined and
developed by user partners in each of these challenges in collaboration with the
technical team. A particular pilot comprises key data assets and domain-specific
enabling technology in this domain and a BDE pilot implementation supports
domain-specific workflows, exploration and visualization technologies. This has
resulted in a versatile, but coherent set of demonstrators, which illustrate how
relevant large-scale datasets or data-streams for the respective seven SC com-
munities can be processed by the BDE infrastructure and provide novel insights
that are promised by the Big Data community. We present two of these pilots,
the BDE components used as well as an evaluation of the specific pilot and refer
the reader to BDE deliverables11 for details on all pilots.

Note that for the functional and non-functional requirements of the generic
infrastructure part the FURPS model [5] is followed, classifying the software
quality attributes with respect to Functionality, Usability, Reliability, Perfor-
mance and Scalability. The details of each of these requirements are different
for each challenge and were evaluated separately. At the same time, the generic
BDE infrastructure was evaluated independently of these challenges according
to the FURPS model. For each pilot, challenge-specific key evaluation questions
were answered by the challenge partners. These were specified from generic eval-
uation questions corresponding to FURPS items. An example of such a question
for SC1 is ‘Are there currently vulnerabilities in the BDE infrastructure that
might reveal any sort of communication to a 3rd party (e.g. queries and results,
or IP addresses)?’, relating to the functionality item.

4.1 SC1 Health, Demographic Change and Wellbeing

The first pilot12 in SC1 “Health, demographic change and wellbeing” implements
the Open PHACTS Discovery Platform [10] for drug discovery on the BDE
infrastructure.
11 https://www.big-data-europe.eu/results/.
12 https://www.big-data-europe.eu/pilot-health/.

https://www.big-data-europe.eu/results/
https://www.big-data-europe.eu/pilot-health/

54 S. Auer et al.

The Open PHACTS Discovery Platform has been developed to reduce barri-
ers to drug discovery in industry, academia and for small businesses. Researchers
in drug discovery use multiple different data sources; Open PHACTS inte-
grates and links these together so that researchers can easily see the relation-
ships between compounds, targets, pathways, diseases and tissues. The Open
PHACTS platform is a good example of a Big Data solution for efficient query-
ing over a wide variety of large data sources that are integrated via an elaborate
and mostly human curated process. The platform is founded on semantic web
and linked data principles and uses industrial strength tools such as Virtuoso13

to provide fast and robust access to the integrated chemistry and biological data
sources. This integration effort resulted in a set RDF link sets, which map the
large numbers of identifiers from these various sources and are stored in Virtu-
oso to answer queries from users. To simplify and scale access, an abstraction
layer using the Puelia14 implementation of the Linked Data API Specification15

is added to translate REST-full requests to instantiated SPARQL queries. The
REST API is documented via the OpenAPI specification16 (formerly Swagger)
and available on the Open PHACTS Github repository17.
The Open PHACTS pilot. The advantage of making the Open PHACTS func-

tionality available as an instance on the BDE infrastructure is threefold:

– To improve security, an organisation might prefer to have the Open PHACTS
functionality available on their own secure local cluster. The BDE infrastruc-
ture allows an open, almost ‘one-click install’ which makes this an affordable
option for smaller companies and other organisations with a limited budget.

– The BDE approach, and in particular the Docker stack, provides a modu-
lar architecture where components can easily be replaced. For example, the
current Open PHACTS platform uses the commercial cluster version of Vir-
tuoso. The BDE stack makes it easy to replace this with another RDF store,
for example, the open source 4Store or the Ontario and SANSA stack.

– The modularisation also makes it relatively simple to adapt for a different
domain. One only has to have data available as RDF, create the link sets
between the sources and describe the SPARQL templates which, via Puelia,
provide the REST interface for the desired functionality.

In order to realise the Open PHACTS platform on the BDE infrastructure,
all third party software and the functionally independent components from the
Open PHACTS platform are ‘dockerized’ (cf. Sect. 2). Two third party tools used
by Open PHACTS are already available as Docker containers, namely Mem-
Cached and MySQL. For data storage and management, as an alternative to

13 https://virtuoso.openlinksw.com/.
14 https://code.google.com/archive/p/puelia-php/.
15 https://code.google.com/archive/p/linked-data-api/wikis/Specification.wiki.
16 https://www.openapis.org/.
17 https://github.com/openphacts/OPS LinkedDataApi/blob/develop/

api-config-files/swagger-2.0.json.

https://virtuoso.openlinksw.com/
https://code.google.com/archive/p/puelia-php/
https://code.google.com/archive/p/linked-data-api/wikis/Specification.wiki
https://www.openapis.org/
https://github.com/openphacts/OPS_LinkedDataApi/blob/develop/api-config-files/swagger-2.0.json
https://github.com/openphacts/OPS_LinkedDataApi/blob/develop/api-config-files/swagger-2.0.json

The BigDataEurope Platform – Supporting the Variety Dimension 55

the commercial version of Virtuoso, it is possible to use the open source ver-
sion (which is also available as a Docker container18) or 4Store integrated with
the SANSA stack (cf. Subsect. 3.2). The remaining internally developed compo-
nents19 are:

– OPS LinkedDataApi, a Docker component containing the Puelia related code
and the Swagger documentation generator.

– Open PHACTS Explorer, an HTML5 & CSS3 application for chemical infor-
mation discovery and browsing. It is used to search for chemical compound
and target information using a web search interface.

– IdentityMappingService, a Docker container of the native Open PHACTS
service queryExpander, which includes the IdentityMappingService (IMS) and
the VoID Validator.

The current pilot can be deployed on Linux and Windows, and the instructions
can be found on the BDE Github repository20. BDE project Deliverable 6.3 [4]
provides an evaluation of all the pilots and shows that this pilot adheres to the
specified requirements, that the software can be easily deployed, and that the
code is well documented. Community feedback has guided the next pilot cycle to
(a) broaden the community beyond drug research to include other data and (b)
add functionality to support extended domain requirements. In the next pilot
cycle the existing datasets will be updated with new data from their sources,
and functionality and data-sources to address the domain of food safety will be
investigated.

4.2 SC7: Secure Societies

The SC7 pilot21 combines the process of detecting changes in land cover or land
use in satellite images (e.g., monitoring of critical infrastructures) with the dis-
play of geo-located events in news sites and social media. Integrating remote
sensing with social sensing sources is crucial in the Space and Security domain,
where useful information can be derived not only from Earth Observation prod-
ucts, but also from the combination of news articles with the user-generated
messages of social media. The high-level architecture of the pilot is presented in
Fig. 8. In total, it comprises 11 BDE platform components, which can be grouped
into the following three workflows:

– The change detection workflow consists of the three components at the bot-
tom of Fig. 8. The Image Aggregator receives the area and the time interval of
interest from the UI and retrieves corresponding satellite images from ESA’s
Sentinel Scientific Data Hub (SciHub)22. The images are ingested into HDFS

18 https://hub.docker.com/r/stain/virtuoso/.
19 Available from: https://hub.docker.com/r/openphacts/.
20 https://github.com/big-data-europe/pilot-sc1-cycle1.
21 https://www.big-data-europe.eu/pilot-secure-societies.
22 https://scihub.copernicus.eu.

https://hub.docker.com/r/stain/virtuoso/
https://hub.docker.com/r/openphacts/
https://github.com/big-data-europe/pilot-sc1-cycle1
https://www.big-data-europe.eu/pilot-secure-societies
https://scihub.copernicus.eu

56 S. Auer et al.

Fig. 8. High-level architecture of the SC7 pilot.

to be processed by the Change Detector, which relies on Spark in order to
apply a set of established operators efficiently and in parallel for comparing
satellite images.

– The event detection workflow comprises the four components at the top of
Fig. 8. The News Crawler periodically checks various public news streams
(Twitter, specific Twitter accounts, RSS feeds of Reuters23. These are stored
in Cassandra in a way that abides by the corresponding privacy regulations.
The Event Detector is periodically executed in order to cluster the news items
into events using Spark for efficiency. In this process, special care is taken to
associate every event with one or more geo-locations. The location names that
are extracted from the text are associated with their geo-coordinates through
a query in the Lookup Service, which indexes 180,000 location names from
the GADM dataset24 using Lucene.

– The activation workflow consists of the four components in the middle of
Fig. 8. GeoTriples [8] receives the detected areas with changes in land cover
or use and summaries of detected events in order to convert their descriptions
into RDF. These are stored in the spatio-temporal triplestore Strabon [7],
which efficiently executes GeoSPARQL and stSPARQL queries. Semagrow
federates Cassandra and Strabon, offering a unified access interface to Sex-
tant [9], the user interface of the pilot. To meet all user requirements, Sextant
has been significantly extended, allowing users to call both the change and
the event detection workflows and to visualize their outcomes.

Figure 9 shows an example of refugee camps located in Zaatari, Jordan. The
results from the change detection and the event detection workflows are displayed
23 http://www.reuters.com/tools/rss.
24 http://www.gadm.org.

http://www.reuters.com/tools/rss
http://www.gadm.org

The BigDataEurope Platform – Supporting the Variety Dimension 57

Fig. 9. Visualization of the change detection (displayed in orange on the map) and
event detection results (clustered events and tweets in the right panel).

Table 1. Comparison of the BDE Stack with other Big Data distributions (SFR =
Single failure recovery; MFR = Multiple failure recovery, SF = Self healing).

Hortonworks Cloudera MapR Bigtop BDE platform

File system HDFS HDFS NFS HDFS HDFS

Installation Native Native Native Native Lightweight
virtualization

Plug & play
components

� � � � �

High
availability

SFR (yarn) SFR (yarn) MFR, SF SFR (yarn) MFR

Cost Commercial Commercial Commercial Open-source Open-source

Scaling Freemium Freemium Freemium Free Free

Extensibility Difficult � � � �
Integration
testing

� � � � �

Operating
systems

Linux Linux Linux Linux All

Management
tool

Ambari Cloudera
manager

MapR control � system Docker swarm
UI+ Custom

on Sextant using SemaGrow to retrieve information from Cassandra and Strabon
in a uniform way (i.e., through the queries in Listings 1.7 and 1.8).

In general, variety is manifested in this pilot in the form of the different types
of satellite images (e.g., SAR and optical ones) as well as the textual content
from news agencies and social media. To address variety, useful information

58 S. Auer et al.

is extracted from these types of data by the change and the event detection
workflows and is subsequently converted into searchable RDF triples by the
activation workflow. Additionally, SemaGrow federates efficiently and effectively
the access to the information that is stored in Cassandra (part of the original
news text) and Strabon (RDF data).

5 Discussion and Conclusions

Table 2 outlines how the BDE Stack fulfills the initially derived requirements
and indicates what measures support each requirement. In certain ways the BDE
platform was inspired by the LOD2 Stack [1], which however used Debian pack-
aging as deployment technology, since Docker was not yet available. Table 1 gives
an overview of how the BDE Stack compares to major Big Data distributions
Hortonworks, Cloudera, MapR and BigTop. The Plug-and-play components row
describes how customized workflows can be realized. Extensibility means whether
its possible to add custom components. The scaling refers to the requirement to
pay additional licensing fees for cluster deployments. The comparison shows, that
the BDE platform is complementary in many ways and especially with its exten-
sibility, adaptability, consequent Docker-containerization and deployment as well

Table 2. BDE platform measures for addressing the requirements.

Requirement BDE platform measure

R1 Simplifying use M1.1 Integration of Web UIs for the overall platform
and individual components

M1.2 Visual Big Data workflow authoring and
monitoring

M1.3 Unified and integrated semantic representation
of data

R2 Easing deployment M2.1 Dockerization of components

M2.2 Deployment orchestration using Docker Swarm

M2.3 Support for various deployment schemes
(individual machine, cloud, cluster)

R3 Managing heterogeneity M3.1 Ingestion of heterogeneous data through RDF
mapping and transformation

M3.2 Direct operation of analytical algorithms for Big
Data components on top of RDF data representations

M3.3 Extensibility of the platform with custom,
domain specific components

R4 Improving scalability M4.1 Federated, parallelized query execution with
Ontario and Semagrow

M4.2 Pushing down of analytical queries on semantic
representations to optimized Big Data analytics
components with SANSA

The BigDataEurope Platform – Supporting the Variety Dimension 59

its semantic layer goes far beyond the state-of-the-art. However, the interplay
and integration with other Big Data platforms (especially Apache BigTop) is
not only possible but increasingly advancing with related standardization efforts
such as ODPi (https://odpi.org).

The advantages of semantics in distributed architectures appeal to both the
Semantic Web community and to the Big Data processing community. The con-
tribution the Semantic Web is SPARQL query processing that can scale over
more voluminous query responses than what is currently possible. This makes
Semantic Web approaches and representations a viable solution for new domains
and applications, such as Earth observation (cf. Subsect. 4.2), where not only the
underlying data but also the volume of the response is often orders of magnitude
larger than the implicit limits of current SPARQL endpoints. For the Big Data
processing community, the ability to join results from heterogeneous data stores
allows integrating data and metadata. As an example, in the BigDataEurope
SC5 climate modelling pilot numerical data in Hive and its provenance meta-
data in a triple store is joined in order to provide filters that refer not only to
the data itself but also to provenance metadata regarding this data’s origin.

References

1. Auer, S., Bryl, V., Tramp, S. (eds.): Linked Open Data – Creating Knowledge Out
of Interlinked Data. LNCS, vol. 8661. Springer, Cham (2014)

2. Charalambidis, A., Troumpoukis, A., Konstantopoulos, S.: Semagrow: optimizing
federated SPARQL queries. In: SEMANTiCS (2015)

3. Big Data Europe. WP2 deliverable: Report on interest groups workshops III (2016)
4. Big Data Europe. WP6 deliverable: Pilot evaluation and community specific assess-

ment (2016)
5. Grady, R.B.: Practical Software Metrics for Project Management and Process

Improvement. Prentice Hall, Upper Saddle River (1992)
6. Konstantopoulos, S., Charalambidis, A., Mouchakis, G., Troumpoukis, A.,

Jakobitch, J., Karkaletsis, V.: Semantic web technologies and big data infrastruc-
tures: SPARQL federated querying of heterogeneous big data stores. In: ISWC
Demos and Posters Track (2016)

7. Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: a semantic geospatial
DBMS. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J.,
Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist,
E. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 295–311. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-35176-1 19

8. Kyzirakos, K., Vlachopoulos, I., Savva, D., Manegold, S., Koubarakis, M.:
Geotriples: a tool for publishing geospatial data as RDF graphs using R2RML
mappings. In: ISWC Posters & Demonstrations Track (2014)

9. Nikolaou, C., Dogani, K., Bereta, K., Garbis, G., Karpathiotakis, M., Kyzirakos,
K., Koubarakis, M.: Sextant: visualizing time-evolving linked geospatial data. J.
Web Sem. 35, 35–52 (2015)

10. Williams, A.J., Harland, L., Groth, P., Pettifer, S., Chichester, C., Willighagen,
E.L., Evelo, C.T., Blomberg, N., Ecker, G., Goble, C., Mons, B.: Open PHACTS:
semantic interoperability for drug discovery. Drug Discov. Today 17(21–22), 1188–
1198 (2012)

https://odpi.org
http://dx.doi.org/10.1007/978-3-642-35176-1_19

	The BigDataEurope Platform -- Supporting the Variety Dimension of Big Data
	1 Introduction
	2 Platform Overview
	3 Semantic Layer
	3.1 Semantic Data Lake
	3.2 Big Data Analytics for RDF
	3.3 Semagrow Query Federation

	4 BDE Platform Showcases
	4.1 SC1 Health, Demographic Change and Wellbeing
	4.2 SC7: Secure Societies

	5 Discussion and Conclusions
	References

