
A UML Profile for OData Web APIs

Hamza Ed-douibi1(B), Javier Luis Cánovas Izquierdo1, and Jordi Cabot1,2

1 UOC, Barcelona, Spain
{hed-douibi,jcanovasi}@uoc.edu

2 ICREA, Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. More and more individuals and organizations are making
their data available online publicly, resulting in a growing market of
technologies and services to help consume data and extract its real value.
One of the several ways to publish data on the Web is via Web APIs.
Unlike other approaches like RDF, Web APIs provide a simple way to
query structured data by relying only on the HTTP protocol. Standards
and frameworks such as Open API or API Blueprint offer a way to
create Web APIs but OData stands out from the rest as it is specifically
tailored to deal with data sources. However, creating an OData Web
API is a hard and time-consuming task for data providers as they have
to choose between relying on commercial solutions, which are heavy and
require a deep knowledge of their corresponding platforms, or create a
customized solution to share their data. We propose an approach that
leverages on model-driven techniques to facilitate the development of
OData Web APIs. The approach relies on a UML profile for OData
allowing to annotate a UML class diagram with OData stereotypes. In
this paper we describe the profile and show how class diagrams can be
automatically annotated with such profile.

Keywords: UML · OData · Web API

1 Introduction

Recent years have seen an explosion of data available online via Web APIs,
coming from both the public sector and private sources. Unlike other approaches
like RDF, Web APIs provide a simple way to query structured data by relying
only on the HTTP protocol. The increasing number of Web APIs has actually
led to an explosion of specialized applications that combine data from different
sources to provide insights on specific topics not visible at first glance, thus
contributing to the growth of data economy.

While standards and frameworks such as Open API1 or API Blueprint2 offer
a way to create Web APIs, the Open Data Protocol (OData)3 is specifically
1 https://www.openapis.org/.
2 https://apiblueprint.org/.
3 http://www.odata.org/.

c© Springer International Publishing AG 2017
J. Cabot et al. (Eds.): ICWE 2017, LNCS 10360, pp. 420–428, 2017.
DOI: 10.1007/978-3-319-60131-1 28

https://www.openapis.org/
https://apiblueprint.org/
http://www.odata.org/

A UML Profile for OData Web APIs 421

Fig. 1. UML class diagram of the running example.

tailored to deal with data sources. Thus, in the last years, OData protocol has
been accepted as the favored standard to publish datasets as Web APIs. As a
result, many commercial infrastructures have integrated OData to their products
(e.g., SAP, IBM WebSphere, JBoss Data Virtualization).

OData enables the creation of data-centric Web APIs, which allow resources,
identified using Uniform Resource Locators (URIs) and defined in a data model,
to be published and edited by Web clients using simple HTTP messages. It
defines also a small URL-based query language to identify and query the data
described in the data model. The current version of OData (version 4.0) has
been approved as OASIS standard [4]. However, creating an OData Web API is
still a hard and time-consuming task for data providers as they have to choose
between relying on commercial solutions, which are heavy and require a deep
knowledge of their corresponding platforms, or create a customized solution to
share their data.

Model-Driven Engineering (MDE) is a paradigm which emphasizes the use
of models to raise the level of abstraction and automation in software devel-
opment [10]. MDE aims to address platform complexity by using models and
model transformations for the specification/generation of software artifacts.
Thus, MDE techniques have been increasingly used to automate the genera-
tion of Web applications [2,3,6–9,11,12]. While these existing MDE approaches
cover a variety of technologies (e.g. web services and ubiquitous applications),
they lack of specific support for OData (and REST APIs in general, with very
few exceptions [2,6,9]).

In this sense, our goal is to advance towards the definition of an MDE
infrastructure for the generation (and reverse engineering) of OData applica-
tions. As a first step towards this vision, this paper presents a UML profile for
OData that enables an easy definition of OData sources at the model level.

The remainder of this paper is structured as follows. Section 2 shows the
running example used along the paper. Section 3 presents the OData profile and
Sect. 4 presents the rules to generate default profile definitions. Finally, Sect. 5
concludes the paper and presents some future work.

2 Running Example

We define a simple OData Web API of an online store as running example. This
example is inspired in the official reference example of the OData community4.
Figure 1 shows an excerpt of the UML class diagram for the Web API data model,
4 http://services.odata.org/V4/OData/OData.svc/$metadata.

http://services.odata.org/V4/OData/OData.svc/$metadata

422 H. Ed-douibi et al.

Listing 1. A simple OData Metadata Documents for the products service
1 <edmx:Edmx xmlns:edmx="http :// docs.oasis -open.org/odata/ns/edmx" Version

="4.0" >
2 <edmx:DataServices >
3 <Schema xmlns="http :// docs.oasis -open.org/odata/ns/edm" Namespace ="com

.example.ODataDemo" Alias=" ODataDemo">
4 <EntityType Name=" Product">
5 <Key ><PropertyRef Name="ID"/></Key >
6 <Property Name="ID" Type="Edm.Int32" Nullable ="false "/ >...
7 <NavigationProperty Name=" Categories" Type=" Collection(ODataDemo.

Cotegory)" Partner =" Products"/>
8 </EntityType >
9 <EntityType Name=" Category">

10 <Key ><PropertyRef Name="ID"/></Key >
11 <Property Name="ID" Type="Edm.Int32" Nullable =" false"/>
12 <Property Name="Name" Type="Edm.String"/>
13 <NavigationProperty Name=" Products" Type=" Collection(ODataDemo.

Product)" Partner =" Categories"/>
14 </EntityType >
15 <EntityType Name=" FeaturedProduct" baseType =" Product ">...</

EntityType >
16 <EntityType Name=" Advertisement ">...</ EntityType >
17 <EntityContainer Name=" ODataDemoService">
18 <EntitySet Name=" Products" EntityType =" ODataDemo.Product">
19 <NavigationPropertyBinding Path=" Categories" Target =" Categories

"/>
20 </EntitySet >
21 ...
22 </EntityContainer >
23 </Schema >
24 </edmx:DataServices >
25 </edmx:Edmx >

which includes the classes: Product to represent products, Category to classify
products, FeaturedProduct for premium products to be featured in commer-
cials, and Advertisement which records the data about those commercials.

In OData data models are not expressed in UML but as XML metadata doc-
uments describing an Entity Data Model (EDM) using the Conceptual Schema
Definition Language (CSDL) [5]. Web clients use this document to understand
how to query and interact with the API using standard HTTP methods. List-
ing 1 shows an excerpt of the metadata document for the data model shown in
Fig. 1. The Schema element describes the entity model exposed by the OData Web
APIs and includes the entity types Product and Category, FeaturedProduct,
and Advertisement, which also includes properties and navigation properties to
describe primitive attributes and associations, respectively. The Schema element
includes also an EntityContainer element defining the entity sets exposed by the
service and therefore the entities that can be queried. In the following section, we
will describe the OData profile which enables the generation of such file.

3 A UML Profile for OData

To formalize domain-specific knowledge, we can either create a new metamodel
or extend an existing modeling language. Given the similarities between OData

A UML Profile for OData Web APIs 423

and available concept in UML (specifically, UML class diagrams), we opted to
use the UML extension mechanisms (providing stereotypes, tagged values, and
constraints to adapt the UML metamodel to different platforms or domains) as
the basis for our OData modeling language. Therefore, this section presents our
OData profile for UML.

We organize the OData profile into two parts, namely: (i) the Entity Data
Model (EDM) which describes the data exposed by an OData Web API, and
(ii) the advanced configuration model, which defines additional characteristics
or capabilities of OData Web APIs (i.e. what parts of the EDM can be modified,
what permissions are needed,...).

Fig. 2. OData profile: (a) the service wrapper and (b) data types elements.

3.1 The Entity Data Model

OData Service Wrapper. An OData Web API exposes a single entity model
which may be distributed over several schemas, and should include an entity
container that defines the resources exposed by the Web API. Figure 2a shows
the extension of UML to define these elements. We consider that the entity
model is defined in one schema, represented by the element Model of a UML
class diagram. Thus, ODService stereotype extends the metaclass Model and
includes: the version the OData specification, the namespace of the schema (e.g.,
com.example.ODataDemo), an alias for the schema namespace (e.g., ODataDemo),
and the name of the entity container (e.g., ODataService).

Data Types. An OData entity model defines data types in terms of structural
types, enumerations, and primitive types. There are two kinds of structural
types: entity types and complex types. An entity type is a named structured
type which defines the properties and relationships of an entity. Entity types
are mapped to the concept Class in a UML model. A complex type is a named
structural type consisting of a set of properties. Complex types are mapped to
the concept Data type in a UML model.

424 H. Ed-douibi et al.

Figure 2b shows the stereotypes related to data types and their mapping with
UML concepts. The abstract stereotype ODStructuralType defines the common
features of all the structural types and includes a name, a property indicating
whether the structural type cannot be instantiated (i.e., abstract property), and
a property indicating whether undeclared properties are allowed (i.e., openType
property5).

ODStructuralType supports also the concept of inheritance by allowing the
declaration of a base structural type (i.e., basetype association). The stereotypes
ODEntityType and ODComplexType inherit from ODStructureType and extend
the metaclasses Class and DataType, respectively. Additionally ODEntityType
includes the hasStream property, indicating if the entity is a media entity
(e.g., photograph). The stereotype ODPrimitiveType extends the metaclass
PrimitiveType and includes a name which corresponds to the associated OData
primitive type (e.g., Binary, Boolean, etc.). The stereoType ODEnumType extends
the metaclass Enumeration and includes a name, a boolean property indicat-
ing whether more than one member may be selected at a time (i.e., IsFlags
property), and the corresponding OData type.

The profile also allows modeling the entity sets and singletons exposed by the
OData service. While an entity set can expose instances of the specified entity
type, a singleton allows addressing a single entity directly from the entity con-
tainer. These two concepts are materialized with the stereotypes ODEnititySet
and ODSingleton which extend the metacalass Class.

Properties and Associations. Properties define the structure and the rela-
tionships in OData. Structural properties define the attributes of an entity type
or a complex type where as navigation properties define associations between
entity types. In UML the element Property is a StructuralFeature which, when
related by ownedAttribute to a Classifier (other than Association), represents an
attribute, and when related by memberEnd of an Association, represents an asso-
ciation end. Both structural properties and navigation properties are mapped to
the concept Property in a UML model.

Figure 3 shows the stereotypes defining properties and associations. The
stereotypes ODProperty and ODnavigationProperty represent a structural
property and a navigation property, respectively. They both extend the meta-
class Property. The stereotype ODProperty includes a name and several con-
straints to provide additional constraints about the value of the structural prop-
erty (e.g., nullable, maxLength properties). Additionally, the stereotype ODKey
inherits from ODProperty and defines a property as the key of the entity type
(required for a an OData entity type). The stereotype ODNavigationProperty
includes a name, a containment property, and a nullable property. The stereo-
type ODNavigationPropertyBinding extends also the metaclass Property and
defines a navigation binding for the corresponding entity set.

5 Open types entities allows clients to persist additional undeclared properties.

A UML Profile for OData Web APIs 425

Fig. 3. Properties and associations stereotypes.

To ensure the validity of the applied stereotypes, we have enriched the profile
with a set of constraints written using the Object Language (OCL) [1]. For
instance, since the stereotypes related to properties and navigations properties
extend all the metaclass Property, ODPropertyConstraint ensures that the
stereotype ODProperty is applied to a UML property element representing an
attribute.

3.2 Advanced Configuration of OData Web APIs

OData defines annotations to specify additional characteristics or capabilities of
a metadata element (e.g., entity type, property) or information associated with a
particular result (e.g., entity or property). For example, an annotation could be
used to define whether a property is read-only. Annotations consist of a term (i.e.,
the namespace-qualified name of the annotation), a target (the element to which
the term is applied), and a value. A set of related terms in a common namespace
comprises a vocabulary. Our profile supports the three standardized vocabularies
defined by OData, namely: the core vocabulary, capacity, and measures.

Figure 4 shows an excerpt of the profile defined for representing annota-
tions. The stereotype ODAnnotations extends the metaclasses Model, Class,
and Property, and has an association with ODVocabulary, thus allowing adding
annotations according to the vocabularies. ODVocabulary is the root class of

Fig. 4. Annotation and vocabulary stereotypes.

426 H. Ed-douibi et al.

the hierarchy of vocabularies supported by the OData profile (i.e., core, capa-
bilities, and measures vocabularies). OData profile defines (i) the ODCore hier-
archy which includes the core vocabularies such as documentation (e.g., the
class Description), permissions (i.e., the class Permissions, and localization
(i.e., the data type IsLanguageDependent); (ii) the ODCapabilities hierarchy
which is used to explicitly specify Web API capabilities (e.g., TopSupported for
query capabilities or InsertRestriction for data modification); and (iii) the
ODMeasures hierarchy to describe monetary amounts and measured quantities
(e.g., ISOCurency).

4 Default Profile Generation

Our OData profile can be used to annotate any new or preexisting UML class
diagram. Nevertheless, to simplify the application of our profile, we have also
developed a model-to-model transformation that given an standard UML model,
returns an annotated one by relying on a set of default heuristics that embed our
knowledge on typical uml-to-odata design decisions. This annotated model can
be regarded as just an initial option to bootstrap the process that the designer
can then modify at will.

Table 1 summarizes our mapping strategies. From left to right, the columns
of the table show (1) the involved UML element; (2) the conditions to apply
an stereotype (if any), (3) the stereotype to be applied; and (4) the values of
the stereotype properties. In a nutshell, each class is mapped to an entity type
and is exposed as entity set, each attribute is mapped to a property, and each
navigable association is mapped to a navigation property. Figure 5 shows the
running example including some of the generated OData profile annotations.
This first version of the class diagram can later be customized and used in other
model-driven processes to fast prototyping OData Web APIs.

Fig. 5. UML class diagram of the running example annotated by the generator.

A UML Profile for OData Web APIs 427

Table 1. Rules of the OData profile annotation generator.

UML element Condition Stereotype Value

m: Model - ODService s - s.version = "4.0"

- s.entityContainerName=

m.name+"Service"

- s.schemaNamespace =

"com.example."+m.name

- s.schemaAlias = m.name

c: Class - ODEntityType et -et.name = c.name

-if c.abstract == true then

et.abstract = true

-if c.generalization contains t

then et.basetype=ot (ot is the

entity type of t)

ODEntitySet es - es.name = the plural form of

c.name

p: Property p is an class

attribute OR a data

type attribute

ODProperty op - op.name = p.name

- if p.lower == 1 then op.nullable

= false

-op.defaultValue = p.default

p is an class

attribute marked as

key

ODKey ok - ok.name = p.name

p is an navigable

association end

ODNavigationProperty np - np.name = p.name

- if p.lower == 1 then np.nullable

= false

- if p.aggregation ==composite

then np.containsTarget = true

ODNavigationPropertyBinding npb - npb.path = p.name

- npb.target = the name of the

corresponding entity set of the

association end

dt: DataType - ODComplexType ct - ct.name = dt.name

- if dt.abstract == true then

ct.abstract = true

- if dt.generalization contains t

then ct.base=ot (ot is the

complex type of t)

pt: PrimitiveType - ODPrimtiveType opt - opt.value = the corresponding

primitive type of pt.name

e: Enumeration - ODEnumType oe - oe.name = e.name

5 Conclusion

In this paper we have presented a UML profile to model OData Web APIs and
the corresponding annotation generator for any UML class diagram. We believe
our approach is the first step to boost the model-based development of OData
Web APIs, offering developers the opportunity to leverage on the plethora of
modeling tools to define forward and reverse engineering to generate, visualize
and manipulate OData sources. The OData profile along with the default profile
generator are available as an Open Source Eclipse plugin6. The plugin repository
includes also the steps to reproduce the running example.

As future work we aim at extending our profile in order to capture addi-
tional OData behavioral concepts such as functions and actions. We would also
6 https://github.com/SOM-Research/OData.

https://github.com/SOM-Research/OData

428 H. Ed-douibi et al.

like to integrate this profile with other web-based modeling languages like IFML
(e.g. by enabling the use of OData-like data sources as part of the interface
modeling components) in order to create a rich modeling environment combin-
ing front-end and back-end development. Finally, we plan to complement the
profile support with model-to-text and model-to-model transformations to offer,
for instance, the (semi)automatic code-generation of OData services from the
annotated models.

Acknowledgment. This work has been supported by the Spanish government
(TIN2016-75944-R project).

References

1. Cabot, J., Gogolla, M.: Object constraint language (OCL): a definitive guide. In:
Formal Methods for Model-Driven Engineering, pp. 58–90 (2012)

2. Ed-Douibi, H., Izquierdo, J.L.C., Gómez, A., Tisi, M., Cabot, J.: EMF-REST:
generation of restful APIs from models. In: SAC Symposium, pp. 1446–1453 (2016)

3. Fraternali, P.: Tools and approaches for developing data-intensive web applications:
a survey. CSUR 31(3), 227–263 (1999)

4. Pizzo, M., Handl, R., Zurmuehl, M.: Odata version 4.0 part 1: protocol. Technical
report, OASIS (2014)

5. Pizzo, M., Handl, R., Zurmuehl, M.: Odata version 4.0 part 3: Common Schema
Definition Language (CSDL). Technical report, OASIS (2014)

6. Rivero, J.M., Heil, S., Grigera, J., Gaedke, M., Rossi, G.: MockAPI: an agile app-
roach supporting API-first web application development. In: ICWE Conference,
pp. 7–21 (2013)

7. Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.): Web Engineering: Mod-
elling and Implementing Web Applications. Human-Computer Interaction Series.
Springer, London (2008)

8. Schwinger, W., Retschitzegger, W., Schauerhuber, A., Kappel, G., Wimmer, M.,
Pröll, B., Cachero Castro, C., Casteleyn, S., De Troyer, O., Fraternali, P., et al.: A
survey on web modeling approaches for ubiquitous web applications. IJWIS 4(3),
234–305 (2008)

9. Segura, Á.M., Cuadrado, J.S., de Lara, J.: ODaaS: towards the model-driven engi-
neering of open data applications as data services. In: EDOCW Workshop, pp.
335–339 (2014)

10. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25
(2003)

11. Valderas, P., Pelechano, V.: A survey of requirements specification in model-driven
development of web applications. TWEB 5(2), 10 (2011)

12. Vallecillo, A., Koch, N., Cachero, C., Comai, S., Fraternali, P., Garrigós, I., Gómez,
J., Kappel, G., Knapp, A., Matera, M., Meliá, S., Moreno, N., Pröll, B., Reiter,
T., Retschitzegger, W., Rivera, J.E., Schauerhuber, A., Schwinger, W., Wimmer,
M., Zhang, G.: MDWEnet: a practical approach to achieving interoperability of
model-driven web engineering methods. In: MDWE Workshop, @ICWE (2007)

	A UML Profile for OData Web APIs
	1 Introduction
	2 Running Example
	3 A UML Profile for OData
	3.1 The Entity Data Model
	3.2 Advanced Configuration of OData Web APIs

	4 Default Profile Generation
	5 Conclusion
	References

