
The Qanary Ecosystem: Getting New Insights
by Composing Question Answering Pipelines

Dennis Diefenbach1(B), Kuldeep Singh2,3, Andreas Both4, Didier Cherix5,
Christoph Lange2,3, and Sören Auer2,3

1 Laboratoire Hubert Curien, Saint Etienne, France
dennis.diefenbach@univ-st-etienne.fr

2 Fraunhofer IAIS, Sankt Augustin, Germany
kuldeep.singh@iais.fraunhofer.de, {langec,auer}@cs.uni-bonn.de

3 University of Bonn, Bonn, Germany
4 DATEV eG, Nuremberg, Germany

contact@andreasboth.de
5 FLAVIA IT-Management GmbH, Kassel, Germany

didier.cherix@gmail.com

Abstract. The field of Question Answering (QA) is very multi-
disciplinary as it requires expertise from a large number of areas such
as natural language processing (NLP), artificial intelligence, machine
learning, information retrieval, speech recognition and semantic tech-
nologies. In the past years a large number of QA systems were proposed
using approaches from different fields and focusing on particular tasks in
the QA process. Unfortunately, most of these systems cannot be easily
reused, extended, and results cannot be easily reproduced since the sys-
tems are mostly implemented in a monolithic fashion, lack standardized
interfaces and are often not open source or available as Web services. To
address these issues we developed the knowledge-based Qanary method-
ology for choreographing QA pipelines distributed over the Web. Qanary
employs the qa vocabulary as an exchange format for typical QA com-
ponents. As a result, QA systems can be built using the Qanary method-
ology in a simpler, more flexible and standardized way while becoming
knowledge-driven instead of being process-oriented. This paper presents
the components and services that are integrated using the qa vocabulary
and the Qanary methodology within the Qanary ecosystem. Moreover,
we show how the Qanary ecosystem can be used to analyse QA processes
to detect weaknesses and research gaps. We illustrate this by focusing on
the Entity Linking (EL) task w.r.t. textual natural language input, which
is a fundamental step in most QA processes. Additionally, we contribute
the first EL benchmark for QA, as open source. Our main goal is to show
how the research community can use Qanary to gain new insights into
QA processes.

Keywords: Semantic web ⋅ Software reusability ⋅ Question answering ⋅
Service composition ⋅ Semantic search ⋅ Ontologies ⋅ Annotation model

c© Springer International Publishing AG 2017
J. Cabot et al. (Eds.): ICWE 2017, LNCS 10360, pp. 171–189, 2017.
DOI: 10.1007/978-3-319-60131-1 10

172 D. Diefenbach et al.

1 Introduction

The amount of data, information, and knowledge available on the Web and
within enterprise environments is increasing constantly. Especially in enterprise
environments a strong trend to better connected data can be observed, lead-
ing to interlinked and accessible data unlocking the company’s information for
intense data analytics and information retrieval. Novel interfaces are required for
enabling users to retrieve information in such scenarios and interact with it. Nat-
ural language interfaces are being considered to bridge the gap between large
amounts of (semi-structured) data and users’ needs. Recent industrial appli-
cations show the capabilities and advantages of natural language interfaces in
the field of Question Answering (QA). These include Apple Siri1, Microsoft Cor-
tana2, and “Ok Google”3. However, these proprietary platforms do not facilitate
experimentation with cutting-edge research approaches, they offer only limited
interfaces for integrating third-party components and they are generally not
open, reusable and extensible by developers and the research community.

Several QA systems have been developed recently in the research commu-
nity, for example, [5,8,11,17]. These systems perform well in specific domains,
but their reusability for further research is limited because of their focus on
specific technologies, applications or datasets. As a result, creating new QA
systems is currently still cumbersome and inefficient. Particularly, the research
community is not empowered to focus on improving particular components of
the QA process, as developing a new QA system and integrating a component
is extremely resource-consuming. Some first steps for developing flexible, mod-
ular QA systems have started to address this challenge, e.g., [9,13]. However,
these approaches lack several key properties required for constructing QA sys-
tems in a community effort as they are, for example, bound to a particular
technology environment and have rather static interfaces, which do not support
the evolution of the inter-component data exchange models. For this reason we
presented the qa vocabulary [18] as a flexible and extensible data model for QA
systems. Based on the vocabulary, we developed the Qanary [3] methodology for
integrating components into QA systems; it is independent from programming
languages, agnostic to domains and datasets, as well as enabled for components
on any granularity level within the QA process.

This work presents the Qanary ecosystem: the components and services cur-
rently implemented around the qa vocabulary by using the Qanary methodology.
We present a general workflow that can be used to construct and particularly
analyze as well as optimize future QA systems in a community effort using the
Qanary ecosystem. It can be broken down into two phases: (1) the identification
and integration of existing state-of-the-art approaches to solve a particular task
in the QA pipeline, and (2) the derivation of benchmarks for sub-tasks of a QA
process from well-known QA benchmarks such as the Question Answering over

1 http://www.apple.com/ios/siri/.
2 http://windows.microsoft.com/en-us/windows-10/getstarted-what-is-cortana.
3 https://support.google.com/websearch/answer/2940021?hl=en.

http://www.apple.com/ios/siri/
http://windows.microsoft.com/en-us/windows-10/getstarted-what-is-cortana
https://support.google.com/websearch/answer/2940021?hl=en

The Qanary Ecosystem: Getting New Insights by Composing QA Pipelines 173

Linked Data (QALD) challenge4. Hence, the described approach is dedicated to
support the engineering process to build components for a QA system and the
system by itself, by using the knowledge-driven approach for flexible component
integration and quality evaluations. In this paper, we show this workflow applied
to the task of EL, which is key in the QA process. Therefore, we consider com-
ponents dedicated to the tasks of named entity identification/recognition (NER)
and named entity disambiguation (NED), which are integrated into the Qanary
ecosystem. The included components are the NER tool of DBpedia Spotlight [14],
the Stanford NER tool [10] and the Federated knOwledge eXtraction Frame-
work (FOX) [20] as well as the NED components Agnostic Disambiguation of
Named Entities Using Linked Open Data (AGDISTIS) [22] and the named entity
disambiguator of DBpedia Spotlight. In addition two combined approaches for
NER and NED are also provided as components: IBM Alchemy5 and Lucene
Linker – a component that we implemented following the idea of the QA sys-
tem SINA [17]. Moreover, we devised a benchmark for entity linking (EL) based
on the well-known Question Answering over Linked Data (QALD) challenge.
Our contribution here has three aspects. First, we provide researchers with a
tool for comparing NED and NER w.r.t. QA, thus enabling them to compare
their components with the state-of-the-art just by implementing a Qanary wrap-
per around their novel functionality. Second, we provide the results of comparing
existing tools, i.e., an expressive benchmark for the quality of entity linking com-
ponents w.r.t. natural language questions, thus enabling the QA community to
gain new insights into QA processes. Third, we compute a list of questions that
are completely annotated w.r.t. the entity linking process. Hence, researchers
investigating a processing step of a QA system that comes after entity linking
can reuse these annotations to create an environment for conveniently testing
and continuously improving their components.

As a result, the QA community is empowered to easily reuse entity linking
functionality for QA systems (or for the development of other tools depending
on named entities) and reuse a profound benchmark for QA systems both for the
evaluation of new entity linking components and as input for components active
in the subsequent processing steps of a QA system (e.g., relation detection or
query computation). However, the entity linking functionality and experiments
presented in this paper are just a proof that Qanary’s knowledge-driven and
component-driven approach as well as the previously described general workflow
provides key advantages particularly in contrast to existing systems and other
benchmarks.

The next section describes related work. Section 3 gives an overview of our
recent work which laid the groundwork for the Qanary ecosystem. Section 4 gives
an overview of the components and services that are available in the Qanary
ecosystem. Section 5 describes how the Qanary ecosystem can be used to gain
new insights into QA processes w.r.t. the EL task. Section 6 concludes and points
to future research areas.

4 http://greententacle.techfak.uni-bielefeld.de/cunger/qald.
5 http://www.alchemyapi.com/.

http://greententacle.techfak.uni-bielefeld.de/cunger/qald
http://www.alchemyapi.com/

174 D. Diefenbach et al.

2 Related Work

In the context of QA, a large number of systems and frameworks have been
developed in the last years. This can be observed for example from the number
of QA systems (20 in the last 5 years) that were evaluated against the QALD
benchmark. Many QA systems use similar techniques. For example, there are
services for named entity identification (NER) and disambiguation (NED) such
as DBpedia Spotlight [14] and Stanford NER [10], which are reused across sev-
eral QA systems. These reasons led to the idea of developing component-based
frameworks that make parts of QA systems reusable. We are aware of three
frameworks that attempt to provide a reusable architecture for QA systems. The
first is QALL-ME [9] which provides a reusable architecture skeleton for building
multilingual QA systems. The second is openQA [13], which provides a mech-
anism to combine different QA systems and evaluate their performance using
the QALD-3 benchmark. The third is the Open KnowledgeBase and Question-
Answering (OKBQA) challenge6. It is a community effort to develop a QA sys-
tem that defines rigid JSON interfaces between the components. Differently from
these works we do not propose a rigid skeleton for the QA pipeline, instead we
allow multiple levels of granularity and enable the community to develop new
types of pipelines.

Recognizing named entities in a text and linking them to a knowledge base is
an essential task in QA. DBpedia Spotlight [14], Stanford NER [10], FOX [20],
and Alchemy API are a few of the tools dedicated to such tasks. Furthermore,
tools such as DBpedia Spotlight, AGDISTIS [22], Alchemy API etc. not only
identify information units in text queries but also point every named entity to
a knowledge resource for disambiguation.

We are not aware of any work that has tried to compare in a systematic
way existing approaches that tackle sub-processes of QA pipelines, for example
EL. Atdag and Labatut [1] compare a few NER tools applied to bibliographic
text, whereas researchers in [16] present NERD, a framework for evaluating NER
tools in the context of Web data where a wrapper of NER/NED services was
implemented but the independent registration of new services is not possible.
Platforms such as GERBIL [23] and GERBIL for QA7 offer benchmarks for EL
tools and full QA systems and they generate persistent URIs for experiment
results. This enables third-party evaluations and citable URIs. Their main goal
is not to gain new insights into the underlying processes but only to generate one
final metric that is publishable. For example, they do not generate a summary
indicating in which cases the corresponding tool succeeded or failed.

In contrast, the Qanary reference implementation is a full-featured frame-
work for component-oriented QA process creation, which is additionally enabled
to support benchmarking of the included distributed components. We give a
comparison of the described tools in Table 1.

6 http://www.okbqa.org/.
7 https://github.com/TortugaAttack/gerbil-qa.

http://www.okbqa.org/
https://github.com/TortugaAttack/gerbil-qa

The Qanary Ecosystem: Getting New Insights by Composing QA Pipelines 175

Table 1. Overview of tools related to benchmarks in the field of question answering
in comparison to the benchmark functionality of Qanary.

Property vs. Tool NERD Gerbil Gerbil-qa Qanary

Support for analyzing NER/NED task ∎ ∎ ◻ ∎

Support for analyzing QA process quality ◻ ◻ ⧄ ∎

Third party evaluations ◻ ∎ ∎ ∎

Fine-grained information ∎ ◻ ◻ ∎

Traceability of intermediate results ⧄ ◻ ◻ ∎

Computation of citable URIs ◻ ∎ ∎ ◻

3 The qa Vocabulary and the Qanary Methodology

To advance the QA process, researchers are combining different technologies to
optimize their approaches. However, reusability and extensibility of QA com-
ponents and systems remains a major hurdle. There are many components and
services, which are provided as standalone implementations but can be useful
in QA processes (e.g., the previously mentioned DBpedia Spotlight, AGDISTIS
etc.), but there has so far not been a methodology to integrate them within QA
pipelines. Instead substantial programming efforts had to be invested as each
component provides its own API or integration method.

To address this challenge, and to promote reusability and extensibility of
QA components, we introduced the qa vocabulary [18]. This vocabulary can
represent information that is generated during the execution of a QA pipeline
when processing a question given as speech or text input. Consider, for example,
the question “When was Barack Obama born?”. Typical information generated
by components of a QA pipeline are the positions of named entities (NE) (such as
“Barack Obama”), the ontological relations used to express the relational phrase
in the question (that “born” refers to dbo:birthPlace8), the expected answer type
(here: a date), the generated SPARQL query, the language of the question and
possible ontologies that can be used to answer it.

The rationale of qa is that all these pieces of information can be expressed as
annotations to the question. Hence, these exposed pieces of information can be
provided as an (RDF) knowledge base containing the full descriptive knowledge
about the currently given question.

qa is built on top of the Web Annotation Data Model (WADM)9, a vocabu-
lary to express annotations. The basic constructs of the WADM are annotations
with at least a target indicating what is described and a body indicating the
description.

8
PREFIX dbo: <http://dbpedia.org/ontology/>.

9 W3C Candidate Recommendation 2016-09-06, http://www.w3.org/TR/annotation
-model.

http://dbpedia.org/ontology/
http://www.w3.org/TR/annotation-model
http://www.w3.org/TR/annotation-model

176 D. Diefenbach et al.

PREFIX oa: <http ://www.w3.org/ns/oa#>
<anno> a oa:Annotation ;

oa:hasTarget <target> ;
oa:hasBody <body> .

In qa, a question is assumed to be exposed at some URI (e.g. URIQuestion that
can be internal and does not need to be public) and is of type qa:Question. Simi-
larly other QA concepts (qa:Answer, qa:Dataset, etc.) are defined in the vocabulary;
please see [18] for further details. As a result, when using qa, the knowledge of
the QA system is now representable independently from a particular program-
ming language or implementation paradigm because everything is represented as
direct or indirect annotations of a resource of type qa:Question. The qa vocabulary
is published at the persistent URI https://w3id.org/wdaqua/qanary# under the
CC0 1.0 license10.

The qa vocabulary led to the Qanary methodology [3] for implementing
processes operating on top of the knowledge about the question currently
processed within a QA system, leading to the possibility of easy-to-reuse QA
components. All the knowledge related to questions, answers and intermediate
results is stored in a central Knowledge Base (KB). The knowledge is represented
in terms of the qa vocabulary in the form of annotations of the relevant parts of
the question.

Within Qanary the components all implement the same service interface.
Therefore, all components can be integrated into a QA system without manual
engineering effort. Via it’s service interface a component receives information
about the KB (i.e., the endpoint) storing the knowledge about the currently
processed question of the user. Hence, the common process within all components
is organized as follows:

1. A component fetches the required knowledge via (SPARQL) queries from the
KB. In this way, it gains access to all the data required for its particular
process.

2. The custom component process is started, computing new insights of the
user’s question.

3. Finally, the component pushes the results back to the KB (using SPARQL).

Therefore, after each process step (i.e., component interaction), the KB should
be enriched with new knowledge (i.e., new annotations of the currently processed
user’s question). This way the KB keeps track of all the information generated
in the QA process even if the QA process is not predefined or not even known.
A typical QA pipeline consists of several steps such as NER, NED, relation
identification, semantic analysis, query computation and result ranking. Most
recently we provided a reference implementation of Qanary [19]. We call this
implementation message-driven; it follows the architectural pattern that we have
previously described for search engines in [4]. The processing steps might be
implemented in different components with dedicated technology provided by
distinguished research groups. The message-driven implementation of Qanary [4]

10 https://creativecommons.org/publicdomain/zero/1.0/.

https://w3id.org/wdaqua/qanary
https://creativecommons.org/publicdomain/zero/1.0/

The Qanary Ecosystem: Getting New Insights by Composing QA Pipelines 177

laid foundations for the QA ecosystem. The advantage of such an ecosystem is
that it combines different approaches, functionality, and advances in the QA
community under a single umbrella.

4 The Qanary Ecosystem

The Qanary ecosystem consists of a variety of components and services that can
be used during a QA process. We describe in the following what components
and services are available.

The Qanary ecosystem includes various components covering a broad field
tasks within QA systems. This includes different components performing NER
like FOX [20] and Stanford NER [10] and components computing NED such
as DBpedia Spotlight and AGDISTIS [22]. Also industrial services such as the
Alchemy API are part of the ecosystem.

Furthermore, Qanary includes a language detection module [15] to identify
the language of a textual question. A baseline automatic speech recognition
component is also included in the reference implementation. It translates audio
input into natural language texts and is based on Kaldi11. Additionally it should
be noted that a monolithic QA system component [7] was developed in the
course of the WDAqua project12 and is integrated in Qanary. Additional exter-
nal QA components are included in the ecosystem. In particular, Qanary includes
two components from the OKBQA challenge13 namely the template generation
and disambiguation component. All components are implemented following the
REST principles. Hence, these tools/approaches become easy to reuse and can
now be invoked via transparent interfaces. To make it easy to integrate a new
component we have created a Maven archetype that generates a template for
a new Qanary component14. The main services are encapsulated in the Qanary
Pipeline. It provides, for example, a service registry. After being started, each
component registers itself to the Qanary Pipeline central component following
the local configuration15 of the component. Moreover, the Qanary Pipeline pro-
vides several web interfaces for machine and also human interaction (e.g., for
assigning a URI to a textual question, retrieving information about a previous
QA process, etc.). Particularly, as each component automatically registers itself
to the Qanary Pipeline, a new QA system can be created and executed just
by on-demand configuration (a concrete one is shown in Fig. 1). Hence, the ref-
erence implementation already provides the features required for QA systems
using components distributed over the Web.

11 http://kaldi-asr.org.
12 http://www.wdaqua.eu.
13 http://www.okbqa.org/.
14 github.com/WDAqua/Qanary/wiki/How-do-I-integrate-a-new-component-in-

Qanary%3F.
15 The configuration property spring.boot.admin.url defines the endpoint of the central

component (and can be injected dynamically).

http://kaldi-asr.org
http://www.wdaqua.eu
http://www.okbqa.org/
http://github.com/WDAqua/Qanary/wiki/How-do-I-integrate-a-new-component-in-Qanary%3F
http://github.com/WDAqua/Qanary/wiki/How-do-I-integrate-a-new-component-in-Qanary%3F

178 D. Diefenbach et al.

Fig. 1. Snapshot of the Web interface for defining a textual question and a sequence
of components to process it (here only NED/NER components where registered).

Fig. 2. The Qanary reference architecture implementation highlighting the NER/NED
components.

The Qanary Ecosystem: Getting New Insights by Composing QA Pipelines 179

An additional interface allows for benchmarking a QA system created on
demand using Gerbil for QA16, thus allowing third-party evaluation and citeable
URIs. Figure 2 illustrates the complete reference architecture of Qanary and a
few of its components. Additional services include a user interface called Trill [6]
for a fully working QA system. A running demo can be found at http://www.
wdaqua.eu/qa. The code is maintained in the repository at https://github.com/
WDAqua/Qanary under the MIT License17.

5 Gaining New Insights into the QA Process:
The EL Task

To show how Qanary can be used to gain new insights into QA processes we focus
here on the EL task. We present the qa vocabulary used to represent the informa-
tion produced by NER and NED tools. Moreover, we describe the components
of the Qanary ecosystem that are integrated using the Qanary methodology and
that can be used for the EL task. We describe how we constructed a benchmark
for EL out of QALD. The analysis of the benchmark will show: what are the best
tools to tackle QALD, where are current research gaps, and for which questions
do single tools fail and why.

Finally, we present a new dataset that can be used as a gold standard for a
sub-task of the QA process.

The following workflow is not restricted to the EL task but can be applied
to any other sub-task of the QA process to gain new insights into QA processes.

5.1 The Qanary Vocabulary for the EL Task

The qa vocabulary is designed to be extensible so as not to constrain the cre-
ativity of the QA community developers. All information that can possibly be
generated and that might need to be shared across QA components can be
expressed using new annotations. This principle follows the understanding that
standards that allow communication between QA components must be defined
by the community. Taking into consideration the state-of-the-art (e.g., [2,10,22]),
the qa vocabulary was extended with standard concepts for NER and NED rep-
resentations. This in particular uniforms the representation of the input and
output of every integrated component, making it easy to compare and analyze
the integrated tools. Note that this does not only hold for tools that can be used
for EL but for every tool integrated into the Qanary ecosystem.

To describe an entity spotted within a question we introduced a dedicated
annotation:
qa:AnnotationOfSpotInstance a owl:Class;

rdfs:subClassOf qa:AnnotationOfQuestion.

16 http://gerbil-qa.aksw.org.
17 https://opensource.org/licenses/MIT.

http://www.wdaqua.eu/qa
http://www.wdaqua.eu/qa
https://github.com/WDAqua/Qanary
https://github.com/WDAqua/Qanary
http://gerbil-qa.aksw.org
https://opensource.org/licenses/MIT

180 D. Diefenbach et al.

If in the question “When was Barack Obama born?” a spotter detects “Barack
Obama” as an NE, this fact can be expressed by the following annotation, where
oa:SpecificResource and oa:hasSelector are concepts of the WADM to select a part
of a text.
<anno1> a qa:AnnotationOfSpotInstance .
<anno1> oa:hasTarget [

a oa:SpecificResource ;
oa:hasSource <URIQuestion >;
oa:hasSelector [

a oa:TextPositionSelector;
oa:start"9"^^ xsd:nonNegativeInteger ;
oa:end "21"^^ xsd:nonNegativeInteger

]
] .

For named entities, we define the new concept qa:NamedEntity and a corresponding
annotation subclass (i.e., annotations of questions whose body is an instance of
qa:NamedEntity):
qa:NamedEntity a owl:Class ;
qa:AnnotationOfInstance a owl:Class ;

owl:equivalentClass [
a owl:Restriction ;
owl:onProperty oa:hasBody ;
owl:someValuesFrom qa:NamedEntity
] ;

rdfs:subClassOf qa:AnnotationOfQuestion.

If an NED tool detects in the question “When was Barack Obama born?”
that the text “Barack Obama” refers to dbr:Barack Obama18, then this can be
expressed (using oa:hasBody) as:
<anno1> a qa:AnnotationOfInstance ;

oa:hasTarget [
a oa:SpecificResource ;
oa:hasSource <URIQuestion > ;
oa:hasSelector [

a oa:TextPositionSelector ;
oa:start"9"^^ xsd:nonNegativeInteger ;
oa:end "21"^^ xsd:nonNegativeInteger

]
] ;
oa:hasBody dbr:Barack_Obama.

Note that using annotations provides many benefits thanks to the inclusion of
additional metadata such as the creator of the information, the time and a trust
score. However, this information is omitted here for readability.

5.2 Reusable NER and NED Components

The following components integrated into the Qanary ecosystem solve the task
of NER, NED or the combined task of EL.

18
PREFIX dbr: <http://dbpedia.org/resource/>.

http://dbpedia.org/resource/

The Qanary Ecosystem: Getting New Insights by Composing QA Pipelines 181

– Stanford NER (NER) is a standard NLP tool that can be used to spot
entities for any ontology, but only for languages where a model is available
(currently English, German, Spanish and Chinese) [10].

– FOX (NER) integrates four different NER tools (including the Stanford
NER tool) using ensemble learning [20].

– DBpedia Spotlight spotter (NER) uses lexicalizations, i.e., ways to
express named entities, that are available directly in DBpedia [14].

– DBpedia Spotlight disambiguator (NED), the NED part of DBpedia
Spotlight, disambiguates entities by using statistics extracted from Wikipedia
texts [14].

– AGDISTIS (NED) is a NED tool that uses the graph structure of an
ontology to disambiguate entities [22].

– ALCHEMY (NER + NED): Alchemy API19 is a commercial service
(owned by IBM) exposing several text analysis tools as web services.

– Lucene Linker (NER + NED) is a component that we implemented
following the idea of the SINA QA system [17], which employs information
retrieval methods.

Note that thanks to the integration as Qanary components all these tools
can be interwoven, i.e., each NER tool can be combined with each NED tool
just by configuration.

5.3 A QALD-based Benchmark for EL in QA

To compare the different entity linking approaches, we created a benchmark
based on the QALD (Question Answering over Linked Data) benchmark used
for evaluating complete QA systems. The QALD-6 training set20, which is the
recent successor of QALD-5 [21], contains 350 questions, including the questions
from previous QALD challenges. For each question, it contains a SPARQL query
that retrieves the corresponding answers. For example, the following SPARQL
query corresponds to the question “Which soccer players were born on Malta?”.
PREFIX dbr: <http :// dbpedia.org/resource/>
PREFIX dbo: <http :// dbpedia.org/ontology/>
SELECT DISTINCT ?uri WHERE {

?uri a dbo:SoccerPlayer.
?uri dbo:birthPlace dbr:Malta.

}

EL tools should provide functionality to interlink the named entities present
in the question with DBpedia (or other data), i.e., they should be able to iden-
tify “Malta” and link to it the resource http://dbpedia.org/resource/Malta.
Our benchmark compares the URIs generated by an EL tool with the resource
URIs in the SPARQL query (i.e., those in the http://dbpedia.org/resource/

19 http://alchemyapi.com.
20 Training Questions of Task 1: http://qald.sebastianwalter.org/index.php?

x=challenge&q=6.

http://dbpedia.org/resource/Malta
http://dbpedia.org/resource/
http://alchemyapi.com
http://qald.sebastianwalter.org/index.php?x=challenge&q=6
http://qald.sebastianwalter.org/index.php?x=challenge&q=6

182 D. Diefenbach et al.

Fig. 3. Metrics used in the EL benchmark

namespace)21, which are obviously required for answering the question. Hence
the gold standard for each question is given by all resource URIs in the SPARQL
query.22

The metrics for a question q are calculated as defined in the QALD bench-
mark and are reported in Fig. 323. The metrics over all questions are defined as
the average of the metrics over the single questions. The corresponding bench-
mark component is available at https://github.com/WDAqua/Qanary.

Note that this procedure can be generalized and applied to many sub-
processes of a QA pipeline. For example, one might establish a benchmark to
recognize relations or classes, a benchmark to identify the type of the SPARQL
query required to implement a question (i.e., a SELECT or an ASK query), a
benchmark for identifying the answer type (i.e., list, single resource, . . .) and
so on.

We used our benchmarking resource described above to evaluate EL tools.
We have identified different strategies to annotate entities in questions. These
include using the spotters Stanford NER, FOX, DBpedia Spotlight Spotter, the
NED tools AGDISTIS, and the DBpedia Spotlight disambiguator, as well as the
(monolithic w.r.t. NER and NED) EL tools Alchemy and Lucene Linker. Each
of them is implemented as an independent Qanary component, as presented
in Sect. 5.2. According to the Qanary methodology the computed knowledge
about a given question is represented in terms of the qa vocabulary and can be
interpreted by the benchmark component.

For the benchmark all three NER components are combined with each of the
two NED components. All questions of QALD-6 are processed by each of the six

21 Note that resources of the type http://dbpedia.org/ontology/* would match a DBpe-
dia property or class and therefore are not considered here.

22 This definition of the gold standard ignores the order of the URIs. In practice this
definition rarely causes problems, but in theory one could construct counter-examples
that pinpoint the limitations. Imagine the question “What German actors were not
born in Germany?”, and imagine that the word “German” got linked to the entity
dbr:Germany and “Germany” to dbr:Germans - clearly a wrong linking, but “correct”
w.r.t. our gold standard definitions. However, in QALD (release 6) there are no
questions in which such a mix-up is likely to happen.

23 In the corner cases where the number of system answers or the number of gold stan-
dard answers is zero we follow the same rules that are used in the QALD evaluation;
see https://github.com/ag-sc/QALD/blob/master/6/scripts/evaluation.rb.

https://github.com/WDAqua/Qanary
http://dbpedia.org/ontology/*
https://github.com/ag-sc/QALD/blob/master/6/scripts/evaluation.rb

The Qanary Ecosystem: Getting New Insights by Composing QA Pipelines 183

resulting configurations, and by the two monolithic tools. The benchmark was
executed exclusively using the service interface of the Qanary Pipeline.

Table 2 shows the benchmark results. The “Fully detected” column indicates
the number of questions q where some resources were expected and the EL config-
uration achieved Recall(q) = 1. The column “Correctly Annotated” indicates for
how many questions we obtained Precision(q) = Recall(q) = 1. Finally, the table
shows for each configuration the precision and recall metrics over all questions.

Table 2. Benchmark of the QALD-6 data using the Qanary reference implementation.

Pipeline Fully Correctly Precision Recall F1-measure

configuration detected annotated

StanfordNER +
AGDISTIS

200 195 0.76 0.59 0.59

StanfordNER +
Spotlight disamb

209 189 0.77 0.62 0.61

FOX + AGDISTIS 189 186 0.83 0.56 0.56

FOX + Spotlight
disambiguator

199 192 0.86 0.59 0.58

Spotlight Spotter +
AGDISTIS

209 204 0.75 0.62 0.62

Spotlight spotter +
disambiguator

242 213 0.76 0.71 0.68

Lucene linker 272 0 0.01 0.78 0.03

Alchemy 143 139 0.91 0.42 0.42

5.4 Discussion

We presented the Qanary methodology, which allows to interweave the analysed
tools. Thanks to the qa vocabulary we can collect (from the SPARQL endpoint)
the results produced by every configuration. A detailed overview showing for
each question if the pipeline configurations lead to a recall resp. F-measure of 1
can be found at:

● https://raw.githubusercontent.com/WDAqua/Qanary/master/
ICWE-results/
● Recall 1.csv and
● F-measure 1.csv.

We analysed both this data and the results presented in Table 2 to draw some
conclusions on the performance of the used tools with respect to QALD.

For some QALD-6 questions none of the pipeline configurations is able to
find the required resources, for example:

https://raw.githubusercontent.com/WDAqua/Qanary/master/ICWE-results/
https://raw.githubusercontent.com/WDAqua/Qanary/master/ICWE-results/
https://raw.githubusercontent.com/WDAqua/Qanary/master/ICWE-results/Recall_1.csv
https://raw.githubusercontent.com/WDAqua/Qanary/master/ICWE-results/F-measure_1.csv

184 D. Diefenbach et al.

– Q1: “Give me all cosmonauts.” with the following resources requested in the
SPARQL query: dbr:Russia, dbr:Soviet Union. For this question one should be
able to understand that cosmonauts are astronauts born either in Russia or
in the Soviet Union. Detecting such resources would require a deep under-
standing of the question. Q201 is similar: “Give me all taikonauts.”.

– Q13: “Are tree frogs a type of amphibian?”; requested resources: dbr:Hylidae,
dbr:Amphibian.
The problem here is that the scientific name of “tree frogs” is Hylidae and
there is no such information in the ontology except in the free text of the
Wikipedia abstract.

– Q311: “Who killed John Lennon?”; requested resource: dbr:Death of John

Lennon.
The problem is that one would probably assume that the information is
encoded in the ontology as a triple like “John Lennon”, “killed by”, “Mark
David Chapman” but this is not the case. Even if in the question the actual
NE is “John Lennon”, DBpedia happens to encode the requested information
in the resource “Death of John Lennon”. A similar case is Q316 (“Which types
of grapes grow in Oregon?”), where the resource dbr:Oregon wine is searched.

Spotter comparison. An unexpected result is that FOX as a spotter has a lower
recall than the Stanford NER tool, even though FOX also includes the results of
Stanford NER. This can be seen from comparing the recall of the configurations
that combine these tools with AGDISTIS or the DBpedia Spotlight disambigua-
tor. The reason is that, for example, in Q101 (“Which German cities have more
than 250,000 inhabitants?”) the word “German” is tagged by the Stanford NER
tool as “MISC” (miscellaneous). However, FOX only supports the tags “PERS”
(person), “ORG” (organisation), and “LOC” (location). This explains why FOX
has a lower recall but a higher precision than Stanford NER.

The spotters based on NLP (e.g., Stanford NER and FOX) perform worse
than the DBpedia Spotlight Spotter, which is mainly based on vocabulary match-
ing. Syntactic features do not suffice to identify “Prodigy” in Q114 (“Give me
all members of Prodigy.”) or “proinsulin” in Q12 (“Is proinsulin a protein?”).
Moreover, there are cases like Q109 (“Give me a list of all bandleaders that play
trumpet.”), where bandleaders is not an NE in the NLP sense but is modeled
as a resource in the DBpedia ontology. Similarly, in Q133 (“Give me all Aus-
tralian nonprofit organizations.”), the resource dbr:Australia is expected for the
adjective “Australian”.

NED comparison. The results show that the DBpedia Spotlight disambiguator
performs better than AGDISTIS w.r.t. QA. AGDISTIS works on co-occurrences
of NE. These occur often in longer texts but are rare in questions. If only one NE
is spotted, AGDISTIS can only decide based on the popularity of the resources
but not on the context as DBpedia Spotlight does.

EL comparison. The best spotter, the DBpedia Spotlight spotter, and the best
NED, the DBpedia Spotlight disambiguator, also perform best in the EL task.

The Qanary Ecosystem: Getting New Insights by Composing QA Pipelines 185

Only the Lucene Linker has a higher recall but must be followed by a disam-
biguation tool in the next step to increase precision. The Alchemy API shows
the lowest recall.

Our evaluation does not permit the conclusion that the combination of DBpe-
dia Spotlight spotter and disambiguator should be recommended in general.
The best choice may depend on the questions and on the particular form of
dataset. The DBpedia Spotlight disambiguator, for example, is tightly connected
to Wikipedia; even its algorithm cannot be ported to other ontologies. Alchemy,
despite showing a very low F1-score and recall, could be a useful resource for
QA over other datasets, such as Freebase or Yago. This is one of the many rea-
sons that makes Qanary in general a valuable resource. For a new QA scenario,
Qanary empowers developers to quickly combine existing tools and more easily
determine the best configuration. Moreover, a detailed analysis of the configura-
tions can help to detect the main problems of the different strategies to further
improve the complete QA process or just individual components. Hence, using
Qanary provides insights on the quality of each component w.r.t. the current use
case, leading to an optimization of the system based on the given data.

A combination of tools solving the same task in an ensemble learning app-
roach is now possible and is recommended as the benchmark results already
indicate. Note that such an analysis is not possible using existing benchmarking
tools such as Gerbil or Gerbil for QA since they only provide a final overall
score. On the other hand such an analysis is needed to detect existing research
gaps and push the advancement of QA further. Hence, following the Qanary
methodology the research community is enabled to develop new QA processes
and components in a joint engineering effort and to validate the given quality
metrics within the specific QA scenario. This again proves the potential impact
of Qanary within the engineering process of QA systems.

Fig. 4. Example data of Q178: “Was Margaret Thatcher a chemist?”

186 D. Diefenbach et al.

5.5 Dataset of Annotated Questions for Processing in QA systems

We provide a new dataset with questions of the QALD-6 benchmark, which
are completely annotated with disambiguated named entities (DBpedia resource
URIs) computed by applying our benchmarking to the EL configurations
described in Sect. 5.3. This dataset contains 267 questions (out of 350 ques-
tions in the QALD-6 training set) because the components could not annotate
the rest. A Turtle file, representing the results in terms of the qa vocabulary,
is published at https://github.com/WDAqua/Qanary under the CC0 license. A
typical fragment of the provided data is provided in Fig. 4.

We imagine the following usage scenarios for this dataset. It can be used as
input for steps in a QA process following the EL task that require annotated
named entities, such as relation detection or query computation. Consequently,
QA components that depend on the output of the EL task can now be evaluated
without depending on concrete EL components (and without the results being
influenced by possible flaws). Hence, in conjunction with the SPARQL queries
already defined in QALD-6, we established a new gold standard for evaluating
parts of a QA process. We also provide the component for computing this dataset
(cf., Sect. 5.3); it can be extended if improved EL configurations are available or
when a new version of the QALD benchmark is released.

6 Conclusion and Future Work

We have presented the status of the Qanary ecosystem, which includes a variety
of components and services that can be used by the research community. These
include typical components for sub-tasks of a QA pipeline as well as a number
of related services.

Since all messages exchanged between components are expressed using the
qa vocabulary, all information generated during a QA process can be easily kept.
Thanks to this uniform message format it is now possible to easily compare exist-
ing tools and integrate new ones. Moreover, the Qanary methodology allows to
integrate independent, distributed components, implemented in different pro-
gramming languages in a loosely-coupled fashion. This allows the creation of
comprehensive QA systems in a community effort.

Driven by the demand for better QA technology, we propose a general work-
flow to develop future QA systems. It mainly breaks down into two parts: (1) the
identification and integration of existing state-of-the-art approaches to solve a
particular sub-task in the QA pipeline, and (2) the derivation of a benchmark
from benchmarks for QA such as QALD. Additionally a new gold standard for
the sub-task can be provided. In contrast to other approaches the qa vocabulary
allows to analyse a QA process. Hence, full traceability of the information used
in the QA process is ensured, enabling, for example, the optimization of the
assigned components. Additionally, the Qanary methodology allows to create
such processes in a flexible way. This allows researchers to focus on particular
tasks taking advantage of the results of the research community and contributing
to it directly in a reusable way.

https://github.com/WDAqua/Qanary

The Qanary Ecosystem: Getting New Insights by Composing QA Pipelines 187

We have demonstrated this workflow in the case of EL. This way we realized a
set of reusable components as well as the first benchmark for EL in the context of
QA. All together we have shown how Qanary can be used to gain deep insights
in QA processes. While having such insights the engineering process can be
steered efficiently towards the improvement of the QA components. Hence, the
presented engineering approach is particularly well suited for experimental and
innovation-driven approaches (e.g., used by research communities).

The Qanary ecosystem is maintained and used within the WDAqua ITN
project24 (2015–2018 [12]), where Qanary is the reference architecture for new
components. All artifacts are published under permissive open licenses: MIT for
the software, CC0 for the datasets and the vocabulary.

One of our future task is to populate the Qanary ecosystem with any compo-
nent significant to the QA community. According to the literature, the tasks of
relation and answer type detection are of particular relevance, but not yet suf-
ficiently covered by existing components. Additionally, as Qanary provides easy
access to different implementations having the same purpose, ensemble learn-
ing components for all steps within a QA process are becoming possible and will
increase the flexibility as well as boost overall QA quality. Hence, our overall goal
is to provide a fully-featured ecosystem for creating QA components and con-
currently supporting the measuring and improvement of particular QA systems
w.r.t. the considered use cases. This aim provides several research challenges,
e.g., the (semi-)automatic creation of self-optimizing QA systems.

Acknowledgments. Parts of this work received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sk�lodowska-
Curie grant agreement No. 642795, project: Answering Questions using Web Data
(WDAqua). We would like to thank Elena Demidova for proof-reading.

References

1. Atdag, S., Labatut, V.: A comparison of named entity recognition tools applied
to biographical texts. In: 2nd International Conference on Systems and Computer
Science (ICSCS) (2013)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a
nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D.,
Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0 52

3. Both, A., Diefenbach, D., Singh, K., Shekarpour, S., Cherix, D., Lange, C.: Qanary
– a methodology for vocabulary-driven open question answering systems. In: The
Semantic Web. Latest Advances and New Domains: 13th International Conference,
ESWC 2016, Heraklion, Crete, Greece, 29 May–2 June 2016, Proceedings (2016)

4. Both, A., Ngonga Ngomo, A.-C., Usbeck, R., Lukovnikov, D., Lemke, C., Speicher,
M.: A service-oriented search framework for full text, geospatial and semantic
search. In: Proceedings of the 10th International Conference on Semantic Systems,
SEM 2014, pp. 65–72. ACM (2014)

24 http://wdaqua.eu.

http://dx.doi.org/10.1007/978-3-540-76298-0_52
http://wdaqua.eu

188 D. Diefenbach et al.

5. Cabrio, E., Cojan, J., Aprosio, A.P., Magnini, B., Lavelli, A., Gandon, F.: QAKiS:
an open domain QA system based on relational patterns. In: Glimm, B., Huynh,
D. (eds.) Proceedings of the ISWC 2012 Posters & Demonstrations Track, vol. 914,
CEUR Workshop Proceedings (2012). CEUR-WS.org

6. Diefenbach, D., Amjad, S., Both, A., Singh, K., Maret, P.: Trill: a reusable front-
end for QA systems. In: ESWC P&D (2017)

7. Diefenbach, D., Singh, K., Maret, P.: Wdaqua-core0: a question answering com-
ponent for the research community. In: ESWC, 7th Open Challenge on Question
Answering over Linked Data (QALD-7) (2017)

8. Dima, C.: Answering natural language questions with intui3. In: CLEF (Working
Notes) (2014)

9. Ferrández, Ó., Spurk, C., Kouylekov, M., Dornescu, I., Ferrández, S., Negri, M.,
Izquierdo, R., Tomás, D., Orasan, C., Neumann, G., Magnini, B., González, J.L.V.:
The QALL-ME framework: a specifiable-domain multilingual question answering
architecture. Web Semant. Sci. Serv. Agents World Wide Web 9(2), 137–145 (2011)

10. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by Gibbs sampling. In: Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, ACL 2005 (2005)

11. Freitas, A., Oliveira, J., Curry, E., O’Riain, S., da Silva, J.: Treo: combining entity-
search, spreading activation and semantic relatedness for querying linked data. In:
1st Workshop on Question Answering over Linked Data (QALD-2011) (2011)

12. Lytra, I., Vidal, M.-E., Lange, C., Auer, S., Demidova, E.: WDAqua - answering
questions using web data. In: Mannens, E., Dragoni, M., Nixon, L., Corcho, O.
(eds.) EU Project Networking (2016)

13. Marx, E., Usbeck, R., Ngonga Ngomo, A., Höffner, K., Lehmann, J., Auer, S.:
Towards an open question answering architecture. In: 10th International Confer-
ence on Semantic Systems (2014)

14. Mendes, P.N., Jakob, M., Garćıa-Silva, A., Bizer, C.: DBpedia spotlight: shedding
light on the web of documents. In: Proceedings of the 7th International Conference
on Semantic Systems, I-Semantics 2011 (2011)

15. Nakatani, S.: Language detection library for Java (2010). https://github.com/
shuyo/language-detection

16. Rizzo, G., Troncy, R.: NERD: a framework for unifying named entity recognition
and disambiguation extraction tools. In: 13th Conference of the European Chapter
of the Association for Computational Linguistics (2012)

17. Shekarpour, S., Marx, E., Ngonga Ngomo, A.-C., Auer, S.: SINA: semantic inter-
pretation of user queries for question answering on interlinked data. Web Semant.
Sci. Serv. Agents WWW 30, 39–51 (2015)

18. Singh, K., Both, A., Diefenbach, D., Shekarpour, S.: Towards a message-driven
vocabulary for promoting the interoperability of question answering systems. In:
2016 IEEE Tenth International Conference on Semantic Computing (ICSC) (2016)

19. Singh, K., Both, A., Diefenbach, D., Shekarpour, S., Cherix, D., Lange, C.: Qanary-
the fast track to create a question answering system with linked data technology.
In: The Semantic Web: ESWC 2016 Satellite Events, Heraklion, Crete, Greece, 29
May–2 June 2016, Revised Selected Papers (2016)

20. Speck, R., Ngonga Ngomo, A.-C.: Ensemble learning for named entity recognition.
In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D.,
Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014. LNCS, vol. 8796,
pp. 519–534. Springer, Cham (2014). doi:10.1007/978-3-319-11964-9 33

http://CEUR-WS.org
https://github.com/shuyo/language-detection
https://github.com/shuyo/language-detection
http://dx.doi.org/10.1007/978-3-319-11964-9_33

The Qanary Ecosystem: Getting New Insights by Composing QA Pipelines 189

21. Unger, C., Forascu, C., Lopez, V., Ngonga Ngomo, A., Cabrio, E., Cimiano, P.,
Walter, S.: Question answering over linked data (QALD-5). In: CLEF (Working
Notes) (2015)

22. Usbeck, R., Ngonga Ngomo, A.-C., Röder, M., Gerber, D., Coelho, S.A., Auer,
S., Both, A.: AGDISTIS - graph-based disambiguation of named entities using
linked data. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock,
C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC
2014. LNCS, vol. 8796, pp. 457–471. Springer, Cham (2014). doi:10.1007/
978-3-319-11964-9 29

23. Usbeck, R., Röder, M., Ngonga Ngomo, A., Baron, C., Both, A., Brümmer, M.,
Ceccarelli, D., Cornolti, M., Cherix, D., Eickmann, B., Ferragina, P., Lemke, C.,
Moro, A., Navigli, R., Piccinno, F., Rizzo, G., Sack, H., Speck, R., Troncy, R.,
Waitelonis, J., Wesemann, L.: GERBIL: general entity annotator benchmarking
framework. In: 24th International Conference on World Wide Web (2015)

http://dx.doi.org/10.1007/978-3-319-11964-9_29
http://dx.doi.org/10.1007/978-3-319-11964-9_29

	The Qanary Ecosystem: Getting New Insights by Composing Question Answering Pipelines
	1 Introduction
	2 Related Work
	3 The qa Vocabulary and the Qanary Methodology
	4 The Qanary Ecosystem
	5 Gaining New Insights into the QA Process: The EL Task
	5.1 The Qanary Vocabulary for the EL Task
	5.2 Reusable NER and NED Components
	5.3 A QALD-based Benchmark for EL in QA
	5.4 Discussion
	5.5 Dataset of Annotated Questions for Processing in QA systems

	6 Conclusion and Future Work
	References

