
Full-Abstraction for Must Testing Preorders

(Extended Abstract)

Giovanni Bernardi1(B) and Adrian Francalanza2

1 IRIF, Université Paris-Diderot, Paris, France
gio@irif.fr

2 University of Malta, Msida, Malta
adrian.francalanza@um.edu.mt

Abstract. The client must preorder relates tests (clients) instead of
processes (servers). The existing characterisation of this preorder is
unsatisfactory for it relies on the notion of usable clients which, in turn,
are defined using an existential quantification over the servers that ensure
client satisfaction. In this paper we characterise the set of usable clients
for finite-branching LTSs, and give a sound and complete decision pro-
cedure for it. We also provide a novel coinductive characterisation of the
client preorder, which we use to argue that the preorder is decidable,
thus positively answering the question opened in [3,6].

1 Introduction

The standard testing theory of De Nicola–Hennessy [12,15] has recently been
employed to provide theoretical foundations for web-services [9,25] (where
processes denote servers). To better fit that setting, in [6] this theory has been
enriched with preorders for clients (tests) and peers (where both interacting
parties mutually satisfy one another). Client preorders also tie testing theory
with session type theory, as is outlined in [2]: they are instrumental in defining
semantic models of the Gay & Hole subtyping [14] for first-order session types
[3, Theorem 6.3.4] and [5, Theorem 5.2].

The testing preorders for clients and peers are contextual preorders, defined
by comparing the capacity of either being satisfied by servers or the capacity of
peers to mutually satisfy one another. This paper focuses on the client preorder
due to the must testing relation [12,15]: a client r2 is better than a client r1,
denoted r1 �∼clt

r2, whenever every server p that must pass r1 also must pass r2.
Although this definition is easy to understand, it suffers from the endemic uni-
versal quantification over contexts (servers) and, by itself, does not give any
effective proof method to determine pairs in the preorder. To solve this prob-
lem, contextual preorders usually come equipped with behavioural characterisa-
tions that avoid universal context quantification thereby facilitating reasoning.
In [6] the authors develop such characterisations for the client and the peer must
preorders; these preorders are however not fully-abstract, for they are defined
modulo usable clients, i.e., clients that are satisfied by some server.
c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
J.-M. Jacquet and M. Massink (Eds.): COORDINATION 2017, LNCS 10319, pp. 237–255, 2017.
DOI: 10.1007/978-3-319-59746-1 13

238 G. Bernardi and A. Francalanza

Fig. 1. LTS depictions of the behaviours described in Eq. (1)

Usability is a pivotal notion that appears frequently in the literature of
process calculi and web-service foundations, cf. viability in [18,26] and control-
lability in [8,24], and has already been studied, albeit for restricted or different
settings, in [6,7,18,25,26]. In general though, the characterisation of usability
is problematic, for solving it requires finding the conditions under which one
can either (a) construct a server p that satisfies a given client, or (b) show that
every p does not satisfy a given client. Whereas proving (b) is complicated by
the universal quantification over all servers, the proof of (a) is complicated by
the non-deterministic behaviour of clients. In particular, the approach in (a) is
complicated because client usability is not compositional. For instance consider
the following clients, whose behaviours are depicted in Fig. 1:

r1 = c.(a. 1 + b. 0) and r2 = c.(a. 0 + b. 1) (1)

where 1 denotes satisfaction (success). Both clients are usable, since r1 is satisfied
by the server c.a. 0, and r2 is satisfied by server c.b. 0. However, their composi-
tion r1 + r2 is not a usable client, i.e., p �must r1 + r2 for every p; intuitively,
this is because r1 and r2 impose opposite constraints on the processes that pass
one or the other (e.g., c.(a. 0 + b. 0) does not satisfy r1 + r2). A composi-
tional analysis is even more unwieldy for recursive tests. For instance, the client
μx.

(
c.(a. 1 + b.x) + c.(a. 0 + b. 1)

)
is not usable because of the non-determinism

analogous to r1 + r2, and the unsuccessful computations along the infinite trace
of interactions (c.b)∗; this argument works because infinite unsuccessful compu-
tations are catastrophic wrt. must testing.

This paper presents a sound and complete characterisation for usable clients
with finite-branching LTSs. Through the results of [6] — in particular, the equiv-
alence of usability for clients and peers stated on [6, p. 11] — our characteri-
sation directly yields a fully-abstract characterisation for the must preorder for
clients and peers. We go a step further and use this characterisation to develop
a novel coinductive and fully-abstract characterisation of �∼clt

, which we find
easier to use than the one of [6] when proving inequalities involving recursive
clients. This coinductive characterisation turns out to be informed by our study
on usability, and differs from related coinductive characterisations for the server
preorder [18,25] in a number of respects. Finally, our inductive definition for

Full-Abstraction for Must Testing Preorders 239

usable clients also provides deeper insights into the original client preorder of
[6]: we show that limiting contexts to servers offering only finite interactions
preserves the discriminating power of the original preorder. Our contributions
are:

– a fully-abstract characterisation of usable clients, Theorem2;
– a coinductive, fully-abstract characterisation of the client preorder �∼clt

, The-
orem 5;

– a contextual preorder �∼f
clt

that is equivalent to �∼clt
but relies only on non-

recursive contexts Theorem 6;
– decidability results for usable clients and the client preorder, Theorem7.

The solutions devised here addressing client usability are directly rele-
vant to controllability issues in service-oriented architectures [21,30]. Our tech-
niques may also be extended beyond this remit. The ever growing sizes of
test suites, together with the ubiquitous reliance on testing for the increasing
quality-assurance requirements in software systems, has directed the attention
to non-deterministic (or flaky) tests. Such tests arise frequently in practice and
their impact on software development has been the subject of various studies
[19,20,22]. By some measures, ≈4.56% of test failures of the TAP (Test Any-
thing Protocol) system at Google are caused by flaky tests [19]. We believe that
our concepts, models and procedures can be extended to such testing method-
ologies to analyse detrimental non-deterministic behaviour arising in test suites,
thereby reducing the gap between empirical practices and theory.

Structure of the paper: Sect. 2 outlines the preliminaries for client must test-
ing. Section 3 tackles client usability and gives a fully-abstract definition for it.
Section 4 uses this result to give a coinductive characterisation for client pre-
orders. In Sect. 5 we present expressiveness results for servers with finite interac-
tions together with decidability results for client usability and the client testing
preorder. Section 6 concludes.

2 Preliminaries

Let a, b, c, . . . ∈ Act be a set of actions, and let τ, � be two distinct actions not
in Act; the first denotes internal unobservable activity whereas the second is
used to report success of an experiment. To emphasise their distinctness, we use
α ∈ Actτ to denote Act ∪ {τ}, and similarly for λ ∈ Actτ �. We assume Act has
an involution function, with a being the complement to a.

A labelled transition system, LTS, consists of a triple 〈Proc, Actτ �, −→ 〉,
where Proc is a set of processes and −→ ⊆ (Proc × Actτ � × Proc) is a transition
relation between processes decorated with labels drawn from the set Actτ �; we
write p

λ−→ q in lieu of (p, λ, q) ∈ −→. An LTS is finite-branching if for all
p ∈ Proc and for all λ ∈ Actτ �, the set { q | p

λ−→ q } is finite. For s ∈ (Act�)�

we also have the standard weak transitions, p
s=⇒ q, defined by ignoring the

occurrences of τs.

240 G. Bernardi and A. Francalanza

Fig. 2. Syntax and Semantics of recursive CCSµ with 1.

We limit ourselves to finite-branching LTSs. Whenever sufficient, we describe
such LTSs using a version of CCS with recursion [23] and augmented with a
success operator, denoted as 1. The syntax of this language is depicted in Fig. 2
and assumes a denumerable set of variables x, y, z . . . ∈ Var. For finite I, we use
the notation

∑
i∈I pi to denote the resp. sequence of summations p1 + . . . + pn

where I = 1..n. Similarly, when I is a non-empty set, we define
⊕

i∈I pi =
∑

i∈I τ.pi to represent process internal choice. The transition relation p
λ−→ q

between terms of the language is the least one determined by the (standard)
rules in Fig. 2. As usual, μx.p binds x in p and we identify terms up to alpha
conversion of bound variables. The operation p{µx.p/x} denotes the unfolding of
the recursive process μx.p, by substituting the term μx.p for the free occurrences
of the variable x in p.

To model the interactions taking place between the server and the client
contracts, we use the standard binary composition of contracts, p || r, whose
operational semantics is given in Fig. 2. A computation consists of sequence of τ
actions of the form

p || r = p0 || r0
τ−→ p1 || r1

τ−→ . . .
τ−→ pk || rk

τ−→ . . . (2)

It is maximal if it is infinite, or whenever pn || rn is the last state then pn || rn

τ

�−→.
We say (2) is client-successful if there exists some k ≥ 0 such that rk

�−→.

Definition 1 (Client Testing preorder [6]). We write p must r if every
maximal computation from p || r is client-successful, and write r1 �∼clt

r2 if, for
every p, p must r1 implies p must r2. �
Although intuitive, the universal quantification on servers in Definition 1 compli-
cates reasoning about �∼clt

. One way of surmounting this is by defining alternative
characterisations for �∼clt

of Definition 1, that come equipped with practical proof
methods.

Full-Abstraction for Must Testing Preorders 241

2.1 Characterising the Client Preorder

In [6, Definition 3.10, p. 9], an alternative characterisation for the preorder �∼clt

is given and proven to be sound and complete. We recall this characterisation,
restating the resp. notation. The alternative characterisation relies on unsuc-
cessful traces: r

s=⇒� � r′ means that r may weakly perform the trace of external
actions s reaching state r′ without passing through any successful state; in par-
ticular neither r nor r′ are successful. Formally, r

s=⇒� � r′ is the least relation

satisfying (a) r
�

�−→ implies r
ε=⇒� � r, and (b) if r′′ s=⇒� � r′ and r

�
�−→ then (i)

r
a−→ r′′ implies r

as=⇒� � r′, and (ii) r
τ−→ r′′ implies r

s=⇒� � r′. The unsuccessful
acceptance set of r after s, are defined as

Acc� �(r, s) = {S(r′) | r
s=⇒� � r′ τ

�−→ } (3)

where S(r) = { a ∈ Act | r
a−→ } denotes the strong actions of r. Intuitively,

for the client r, the set Acc� �(r, s) records all the actions that lead r out of
potentially deadlocked (i.e. stable) states that it reaches performing unsuccessfully
the trace s. It turns out that these abstractions are fundamental to characterise
must-testing preorders and also compliance preorders [3,6,25]. In the sequel, we

shall also use r
α−→� �r′ whenever r

α−→ r′, r
�

�−→ and r′ �
�−→ hold.

Example 1. For client r3 = τ.(1 + τ. 0) we have Acc� �(r3, ε) = ∅, but for
r′
3 = r3 + τ. 0 we have Acc� �(r′

3, ε) = { ∅ }. We also have Acc� �(r′′
3 , ε) = ∅ for

r′′
3 = r3 + μx.x. �

Note that, whenever Acc� �(r, s) = ∅, then any sequence of moves with trace s
from r to a stable reduct r′ must pass through a successful state, for otherwise
we would have S(r′) ∈ Acc� �(r, s) for some r′.

Definition 2 (Usable Clients). U = { r | there exists p. p must r }. �

Example 2. Recall clients r1 and r2 from (1) in Sect. 1. We show that despite
being individually usable, the sum of these clients is not: p �must r1 + r2 for
every p. Fix a process p. If p does not offer an interaction on c, then, plainly,
p �must r1 + r2. Suppose that p

c−→ p′; to prove p �must r1 + r2, it suffices to
show that there exists a client r reached by r1 + r2 by performing action c (i.e.,
r ∈ { a. 1 + b. 0, a. 0 + b. 1 }) such that p′ �must r. Indeed, for r = a. 1 + b. 0, if
p′ must r implies p′ has to interact on a and not on b, but then such a p′ does not
satisfy the derivative r = a. 0 + b. 1, i.e., p′ �must r (because the composition
p′ || r is stable but not client-successful). Using a symmetric argument we deduce
that if p′ must a. 0 + b. 1 then p′ �must a. 1 + b. 0, and thus no process p exists
that satisfies r1+r2; note that the argument above crucially exploits the external
non-determinism of r1 + r2. The client μx.

(
c.(a. 1 + b.x) + c.b. 1

)
from Sect. 1

is unusable for similar reasons, the analysis being more involved due to infinite
computations. �

242 G. Bernardi and A. Francalanza

We let (r after � � s) = { r′ | r
s=⇒� � r′ }, and call the set (r after � � s) the

residuals of r after the unsuccessful trace s. We extend the notion of usability
and say that r is usable along an unsuccessful trace s whenever r usbl� � s,
which is the least predicate satisfying the conditions (a) r usbl� � ε when-
ever r ∈ U , and (b) r usbl� � as whenever (i) r ∈ U and (ii) if r

a=⇒ � � then⊕
(r after � � a) usbl� � s. If r usbl� � s, any state reachable from r by performing

any unsuccessful subsequence of s is usable [6]. Finally, let uaclt(r, s) = { a ∈
Act | r

sa=⇒� � implies r usbl� � sa } denote all the usable actions for a client r
after the unsuccessful trace s.

Definition 3 (Semantic client-preorder). Let r1 �clt r2 if, for every s ∈
Act� such that r1 usbl� � s, we have (i) r2 usbl� � s, (ii) for every B ∈Acc� �(r2, s)
there exists a A∈Acc� �(r1, s) such that A∩uaclt(r1, s) ⊆ B, (iii) r2

s=⇒� � implies
r1

s=⇒� � . �

Theorem 1. In any finite branching LTS, r1 �∼clt
r2 if and only r1 �clt r2.

Proof. Follows from [6, Theorem 3.13] and König’s Infinity Lemma.

Definition 3 enjoys a few pleasing properties and, through Theorem1, sheds
light on behavioural properties of clients related by �∼clt

. Concretely, it shares a
similar structure to well-studied characterisations of the (standard) must-testing
preorder of [12,15], where process convergence is replaced by client usability,
and traces and acceptance sets are replaced by their unsuccessful counterparts
(modulo usable actions). Unfortunately, Definition 3 has a major drawback: it
is parametric wrt. the set of usable clients U (Definition 2), which relies on an
existential quantifications over servers. As a result, the definition is not fully-
abstract, and this makes it hard to use as proof technique and to ground decision
procedures for �∼clt

on it.

3 Characterising Usability

We use the behavioural predicates of Sect. 2.1, together with the new predicate in
Definition 4, to formulate the characterising properties of the set of usable clients
U (Proposition 1). We use these predicates to construct a set Ubhv that coincides
with U (Theorem 2); this gives us an inductive proof method for determining
usability.

Definition 4. We write r ⇓� whenever for every infinite sequence of internal
moves r

τ−→ r1
τ−→ r2

τ−→ . . ., there exists a state ri such that r1
�−→. �

Recalling Eq. (3), let Acc� �(r) = Acc� �(r, ε). Proposition 1 crystallises the
characteristic properties of usable clients, providing a blue print for our alterna-
tive definition Definition 5. Instead of giving a direct proof of this proposition,
we obtain it indirectly as consequence of our other results.

Full-Abstraction for Must Testing Preorders 243

Proposition 1. For every r ∈ Proc, r ∈ U if and only if

1. r ⇓�, and
2. if A ∈ Acc� �(r), then there exists a ∈ A.

(
r

a=⇒� � implies
⊕

(r after � � a) ∈ U)
.

��
The proposition above states that a client r is usable if and only if, for every
potentially deadlocked state r′ reached via silent moves by r, there exists an
action a that leads r′ out of the potential deadlock, i.e., into another state r′′

where r′′ is certainly usable.

Example 3. We use Proposition 1 to discuss the (non) usability of clients from
previous example. Recall r3 = τ.(1 + τ. 0), r′

3 = r3+τ. 0 and r′′
3 = r3+μx.x from

Example 1. Since we have r3 ⇓� and Acc� �(r3) = ∅, r3 satisfies both condition
of Proposition 1, with the second one being trivially true. As a consequence r3 is
usable, and indeed 0 must r3. On the contrary, we have Acc� �(r′

3) = { ∅ }, thus
r′
3 violates Proposition 1(2) and thus r′

3 is unusable. Client r′′
3 is unusable as

well, but violates Proposition 1(1) instead. Conversely, client r′′′
3 = r3 + τ.(1 +

μx.x) satisfies both conditions of Proposition 1, and it is usable. For instance,
0 must r′′′

3 .
A more involved client is r1 + r2 from Example 2. There we proved that

r1 + r2 �∈ U , and indeed r1 + r2 does not satisfy Proposition 1(2). This is true
because Acc� �(r1 + r2) = { { c } }, and r′ �∈ U , where

r′ =
⊕(

(r1 + r2) after � � c
)

= τ.(a. 1 + b. 0) + τ.(a. 0 + b. 1).

In turn, the reason why r′ is not usable is that Acc� �(r′) = { { a, b } }, and
Proposition 1(2) requires us to consider every set in { { a, b } } — we have only
{ a, b } to consider — and show that for some action a′ ∈ { a, b },

⊕
(r′ after � �

a′) ∈ U . It turns out that neither action in { a, b } satisfies this condition. For
instance, in the case of action b, we have

⊕
(r′ after � � b) = τ. 1 + τ. 0 and

Acc� �(τ. 1 + τ. 0) = { ∅ }, so
⊕

(r′ after � � b) violates Proposition 1(2) and as a
result

⊕
(r′ after � � b) �∈ U . The reasoning why action a is not a good candidate

either is identical. �

Definition 5. Let F : P(Proc) −→ P(Proc) be defined by letting r ∈ F(S)
whenever

1. r ⇓�, and
2. if A ∈ Acc� �(r), then there exists an a∈A.

(
r

a=⇒� � implies
⊕

(r after � � a)∈S
)
.

We let Ubhv = μx.F(x), the least fix-point of F . �

The function F is continuous over the CPO 〈P(Proc),⊆〉, thus Kleene fixed point
theorem [31, Theorem 5.11] ensures that μx.F(x) (the least fix-point of F) exists
and is equal to

⋃∞
n=0 Fn(∅) where F0(S) = S and Fn+1(S) = F(Fn(S)).

The bulk of the soundness result follows as a corollary from the next lemma,
which also lays bare the role of non-recursive servers in proving usability of
clients.

244 G. Bernardi and A. Francalanza

Lemma 1. For every n ∈ N and r ∈ Proc, r ∈ Fn(∅) implies that there exists
a non-recursive server p such that p must r. ��

An inductive argument is used to prove that Ubhv is complete wrt. U , where we
define the following measure over which to perform induction. We let MC (r, p)
denote the set of maximal computations of a composition r || p and, for every
computation c ∈ MC (r, p), we associate the number #itr(c) denoting the num-
ber of interactions that take place between the initial state of c, and the first
successful state of the computation c (#itr(c) = ∞ whenever c is unsuccessful).
Let itr(r, p) = max{#itr(c) | c ∈ MC (r, p) }. For instance, if r = μx.a.x + b. 1,
we have itr(r, a.a.b. 0) = 3, but itr(r, μx.a.x + b. 0) = ∞.

Lemma 2. Let T be a tree with root v. If T is finite branching and it has a
finite number of nodes, then the number of paths v −→ . . . is finite. ��
Lemma 3. In a finite branching LTS, p must r implies the number itr(r, p) is
finite.

Proof. If p must r, every c ∈ MC (r, p) reaches a successful state after a finite
number of reductions. Since the number of interactions is not more than the
number of reductions:

for every c ∈ MC (r, p). #itr(c) ∈ N (4)

A set of successful computations from r || p, e.g., MC (r, p), may also be seen
as a computation tree, where common prefixes reach the same node in the tree.
In general, such a tree may have infinite depth. Consider the computation tree
T obtained by truncating all the maximal computations of r || p at their first
successful state, and let TMC (r, p) be the set of all the computations obtained
this way. It follows that

{#itr(c) | c ∈ MC (r, p) } = {#itr(c) | c ∈ TMC (r, p) } (5)

From itr(r, p) = max{#itr(c) | c ∈ MC (r, p) }, (4) and (5) we know that that
itr(r, p) is finite if the set { c | c ∈ TMC (r, p) } is finite. This will follow from
Lemma 2 if we prove that the tree T has a finite number of nodes. By the
contrapositive of König’s Lemma [16,17], since every node in the tree T above is
finitely branching, and there are no infinite paths, then T necessarily contains a
finite number of nodes. By Lemma 2, { c | c ∈ TMC (r, p) } must also be finite,
and hence we can put a (finite) natural number itr(r, p) ∈ N as an upper bound
on the number of interactions required to reach success. ��

If the LTS is not image-finite then Lemma 3 is false. To see why, consider the
infinite branching client r and the server p depicted in Fig. 3. Since r engages in
finite sequences of a actions which are unbounded in size, and the p offers any
number of interactions on action a, we have that p must r, but the set MC(r, p)
contains an infinite amount of computations, and the number itr(r, p) is not finite.
Dually, even if the LTS of a composition r || p is finite branching and finite state,

Full-Abstraction for Must Testing Preorders 245

Fig. 3. Servers and clients to discuss the hypothesis in Lemma 3

it is necessary that p must r for itr(r, p) to be finite. Lemma 3 lets us associate a
rank to every usable client r, defined as rank(r) = min{ itr(r, p) | p must r }.
The well-ordering of N ensures that rank(r) is defined for every usable r. When
defined, the rank of a client r gives us information about its usability,1 where
we can stratify U as follows:

U =
⋃

i∈N
U i, where U i = { r ∈ Proc | rank(r) = i } (6)

Lemma 4. For every i ∈ N, r ∈ U i implies r ∈ F(F j(∅)) for some j ≤ i. ��
We are now ready to prove the main result of this section.

Theorem 2 (Full-abstraction usability). The sets U and Ubhv coincide.

Proof. To show U ⊆ Ubhv, pick an r ∈ U . By (6), r ∈ U i for some i ∈N, and by
Lemma 4 we obtain r∈Fj(∅)⊆Ubhv for some j ∈ N

+. To show Ubhv ⊆U , pick an
r ∈Ubhv. Definition 5 ensures that Ubhv ⊆ ⋃∞

n=0 Fn(∅), thus r ∈ Fn(∅) for some
n ∈ N. Lemma 1 implies that r ∈U . The reasoning applies to any r ∈Ubhv, thus
Ubhv⊆U . ��

4 The Client Preorder Revisited

By combining the definition of �clt with Ubhv of Definition 5, Theorem 2 yields
a fully-abstract characterisation of the client preorder �∼clt

. In general, however,
this characterisation still requires us to consider an infinite number of (unsuc-
cessful) traces to establish client inequality. In this section, we put forth a novel
coinductive definition for the client preorder and exploit the finite-branching
property of the LTS to show that this definition characterises the contextual
preorder �∼clt

, Theorem 5. We also argue that this new characterisation is easier
to use in practice than Definition 3, a claim that is substantiated by showing how
this coinductive preorder can be used to prove the second result in this section,
namely that servers offering a finite amount of interactions are sufficient and
necessary to distinguish clients, Theorem 6. Subsequently, in Theorem 7, we also
show that the coinductive preorder is decidable for our client language.

1 Function min is not defined for empty sets, thus rank(r) is undefined whenever r is
unusable.

246 G. Bernardi and A. Francalanza

Example 4. The use of �clt is hindered, in practice, by the universal quantifica-
tion over traces in its definition. Consider, for instance, clients r4 and r5,

r4 = a. 1 + μy.(a.r′′
3 + b.y + c. 1) and r5 = (μz.(b.z + c. 1)) + d. 1

where r′′
3 = (τ.(1 + τ. 0)) + μx.x from Example 1. One way to prove r4 �∼clt

r5
amounts in showing that r4 �clt r5, even though this task is far from obvious.
Concretely, the definition of �clt requires us to show that for every trace s ∈ Act�

where r4 usbl� � s holds, clauses (i), (ii) and (iii) of Definition 3 also hold. In this
case, there are an infinite number of such unsuccessful traces s to consider and,
a priori, there is no clear way how to do this in finite time. Specifically, there
are (unsuccessful) traces that r4 can perform while remaining usable at every
step, such as s = bn, but also (unsuccessful) traces that r4 cannot perform
(which trivially imply r4 usbl� � s according to the definition in Sect. 2.1), such
as s = d(bn), s = (db)n or s = (ac)n.

The definition of r4 usbl� � s does however rule out a number of traces to
consider, and Definition 5 helps us with this analysis. For instance, for s = a,
we have ¬(r4 usbl� � a) because

⊕
(r4 after � � a) = (τ. 1+τ.r′′

3 + τ. 0+τ.μx.x)
and, by using similar reasoning to that in Example 3 for r′′

3 , we know that
¬((r4 after � � a) ⇓�) which implies

⊕
(r4 after � � a) �∈ Ubhv and, by Theorem2,

we have
⊕

(r4 after � � a) �∈ U . ��
To overcome the problems outlined in Example 4, we identify three proper-

ties of the preorder �∼clt
, stated in Lemma 5, which partly motivate the condi-

tions defining the transfer function G in Definition 6. Conditions (ii) and (iii) are
explained in greater detail as discussions to points (2) and (3c) of Definition 6
below.

Lemma 5. r1 �∼clt
r2 implies (i) if r2

τ−→� �r′
2 then r1 �∼clt

r′
2; (ii) if r2

�
�−→ then

r1
�

�−→ (iii) if r2
a−→� � then

(
r1

a=⇒� � and
⊕

(r1 after � � a) �∼clt

⊕
(r2 after � � a)

)
.

��
Definition 6. Let G : P(Proc × Proc) −→ P(Proc × Proc) be the function such
that (r1, r2) ∈ G(R) whenever all the following conditions hold:

1. if r2
τ−→� �r′

2 then r1 R r′
2

2. if r2
�

�−→ then r1
�

�−→
3. if r1 ∈ Ubhv then

(a) r2 ∈ Ubhv

(b) if B ∈ Acc� �(r2) then there exists an A ∈ Acc� �(r1) such that A ∩
uabhv(r1) ⊆ B

(c) if r2
a−→� � then

(
r1

a=⇒� � and
⊕

(r1 after � � a) R
⊕

(r2 after � � a)
)

where uabhv(r) = { a | r
a=⇒� � implies

⊕
(r after � � a) ∈ Ubhv }. Let �clt =

νx.G(x) where νx.G(x) denotes the greatest fixpoint of G. The function G is
monotone over the complete lattice 〈P(Proc×Proc),⊆〉 and thus νx.G(x) exists.

��

Full-Abstraction for Must Testing Preorders 247

The definition of G follows a similar structure to that of the resp. definitions
that coinductively characterise the must preorder for servers [18,25]. Definition 6,
however, uses predicates for clients, i.e., unsuccessful traces and usability, in place
of the predicates for servers, i.e., traces and convergence. Note, in particular, that
we use the fully-abstract version of usability, Ubhv, from Definition 5 and adapt
the definition of usable actions accordingly, uabhv(r). Another subtle but crucial
difference in Definition 6 is condition (2). The next example elucidates why such
a condition is necessary for �clt to be sound.

Counterexample 3. Let Gbad be defined as G in Definition 6, but without
part (2). In this case, we prove that the pair of clients (1, τ. 1) is contained
in the greatest fixed point of Gbad, and then proceed to show that this pair is not
contained in �∼clt

. Let R = { (1, τ. 1) }. It follows that R ⊆ Gbad(R) if all the
conditions for Gbad are satisfied: condition (1) in is trivially true, condition (3a)
is true because 0 must 1 and 0 must τ. 1, condition (3b) holds trivially because
Acc� �(τ. 1) = ∅, whereas condition (3c) is satisfied because τ. 1 does not perform
any strong actions. It therefore follows that (1, τ. 1) ∈ μx.Gbad(x). Contrarily,
1 ��∼ clt τ. 1 because the divergent server τ∞ distinguishes between the two clients:
whereas τ∞ must 1 since the client succeeds immediately, we have τ∞ �must τ. 1
because the composition τ. 1 || τ∞ has an infinite unsuccessful computation due
to the divergence of τ∞. �

A more fundamental difference between Definition 6 and the coinductive
server preorders in [18,25] is that, in Definition 6(3c), the relation R has to
relate internal sums of derivative clients on both sides. Although non-standard,
this condition is sufficient to compensate for the lack of compositionality of
usable clients (see clients r1 and r2 (1) from Sect. 1). Using the standard weaker
condition makes the preorder �clt unsound wrt. �∼clt

, as we proceed to show in
the next example.

Counterexample 4. Let Gbad be defined as G in Definition 6, but replacing the
condition (3c) with the relaxed condition in (3bad) below, which requires each
derivative r′

2 to be analysed in isolation. We show that the greatest fixpoint of
Gbad, �bad

clt , contains client pairs that are not in �∼clt
.

if r2
a−→� �r′

2 then
(
r1

a=⇒� � and
⊕

(r1 after � � a) R r′
2

)
(3bad)

Consider the clients r6 = c.r′
6 and r7 = (r1 + r2) + τ. 1 where

r′
6 = τ.ra

6 + τ.rb
6 ra

6 = a. 0 + τ. 1 rb
6 = b. 0 + τ. 1

and r1 and r2 are the clients defined in (1) above. On the one hand, we have
that r6 ��∼ clt r7, because c. 0 must r6 whereas c. 0 �must r7. On the other
hand, we now show that r6 �bad

clt r7. Focusing on condition Definition 6(3), we
start by deducing that r6 ∈ Ubhv (either directly using Definition 5 or indirectly
through c. 0 must r6, recalling Theorem2). Now, Definition 6(3a) is true because

248 G. Bernardi and A. Francalanza

0 must r7, thus r7 is usable, and thanks to Theorem2 we have r7 ∈ Ubhv. Also
point (3b) is satisfied, because Acc� �(r7) = Acc� �(r6) = { { a } }.2 To prove that
the (relaxed) condition (3bad) holds, we have to show that

rc
6 �bad

clt a. 1 + b. 0 and rc
6 �bad

clt a. 0 + b. 1, with rc
6 = r′

6 + τ.ra
6 + τ.rb

6

(7)

Let r′
7 = a. 1 + b. 0. We only show the proof for the inequality rc

6 �bad
clt r′

7, since
the proof for the other inequality is analogous. We focus again on conditions
(3a), (3b), and (3bad). Condition (3a) is true because 0 must rc

6, and thus
rc
6 ∈ U = Ubhv, and because r′

7 ∈ U = Ubhv as well (e.g., a. 0 must r′
7). Condition

(3b) holds because Acc� �(r′
7) = { { c } } and Acc� �(rc

6) = { { b }, { c } }. Finally for

(3bad) we only have to check the case for r′
7

b−→� � 0, which requires us to show
that τ. 0 �bad

clt 0; this latter check is routine. As a result, we have rc
6 �bad

clt r′
7. Since

we can also show that rc
6 �bad

clt a. 0 + b. 1 holds, we obtain (7), and consequently
r6 �bad

clt r7. �

After our digression on Definition 6, we outline why �clt coincides with �∼clt
.

A detailed proof can be found in the full version of this paper [4].

Lemma 6. Whenever r1 �clt r2, for every s ∈ Act�, r1 usbl� � s implies r2 usbl� �
s and also that for every B ∈ Acc� �(r2, s), there exists an set A ∈ Acc� �(r1, s)
such that A ∩ uaclt(r2, s) ⊆ B; and that if r2

s=⇒� � then r1
s=⇒� � . ��

Theorem 5. In any finite branching LTS r1 �∼clt
r2 if and only if r1 �clt r2.

Proof. We have to show the set inclusions, �∼clt
⊆ �clt and �clt ⊆ �∼clt

. Lemma 5
and Theorem 1 imply that �∼clt

⊆ G(�∼clt
), and thus, by the Knaster-Tarski theo-

rem, we obtain the first inclusion. The second set inclusion follows from Theo-
rem 1 and Lemma 6. ��
Example 5. Recall clients r4 = a. 1 + μy.(a.r′′

3 + b.y + c. 1) and r5 = (μz.(b.z +
c. 1)) + d. 1 from Example 4, used to argue that the alternative relation �clt is
still a burdensome method for reasoning on �∼clt

. By contrast, We now contend
that it is simpler to show r4 �∼clt

r5 by proving r4 �clt r5, thanks to Theorem 5
and the Knaster-Tarski theorem. By Definition 6, it suffices to provide a witness
relation R such that (r4, r5) ∈ R and R ⊆ G(R). Let R = { (r4, r5), (r′

4, r
′
5) }

where r′′
3 = (τ.(1 + τ. 0))+μx.x from Example 1, r′

4 = μy.(a.r′′
3 + b.y + c. 1), and

r′
5 = μz.(b.z + c. 1). Checking that R satisfies the conditions in Definition 6 is

routine work. To prove condition (3b), though, note that Acc� �(r5)=Acc� �(r′
5)=

{ { b, c } } and that Acc� �(r4)={ { a, b, c } }. However uabhv(r4)={ b, c } and thus
the required set inclusion ({ a, b, c }∩{ b, c })⊆{ b, c } holds. �

The coinductive preorder of �clt may also be used to prove that two clients are
not in the contextual preorder �∼clt

: by iteratively following the conditions of Def-
inition 6 one can determine whether a relation including the pair of clients exists.
2 The restriction of the left hand side of the inclusion of Definition 6(3b) by uabhv(r6)

is superfluous.

Full-Abstraction for Must Testing Preorders 249

This approach is useful when guessing a discriminating server is not straightfor-
ward; in failing to define a such relation R one obtains information on how to
construct the discriminating server.

Example 6. Recall the clients r6 and r7 considered in Counterexample 4. By
virtue of the full-abstraction result, we can show directly that r6 ��∼ clt r7 by
following the requirements of Definition 6 and arguing that no relation exists
that contains the pair (r6, r7) while satisfying the conditions of the coinductive
preorder. Without loss of generality, pick a relation R such that r6 R r7:we have
to show that R ⊆ G(R). Since r6 ∈ Ubhv, r7

c−→� � and r6
c=⇒� � , Definition 6(3c)

requires that we show that

rc
6 R τ.r′

7 + τ.r′′
7 where rc

6 =
⊕

(r6 after � � c) and (τ.r′
7 + τ.r′′

7)=
⊕

(r7 after � � c)
(8)

and rc
6, r′

7 and r′′
7 are the clients defined earlier in Counterexample 4. Since we

want to show that R �⊆ G(R), the condition Definition 6(3a) requires that, if
rc
6 ∈ Ubhv, then (τ.r′

7 + τ.r′′
7) ∈ Ubhv. However, even though rc

6 ∈ Ubhv, we have
(τ.r′

7 + τ.r′′
7) �∈ Ubhv, violating Definition 6(3a) and thus showing that no such R

satisfying both (r6, r7) ∈ R and R ⊆ G(R) can exist. We highlight the fact that
whereas (7) of Counterexample 4 resulted in r6 �bad

clt r7, (8) is instrumental to
conclude that r6 ��clt r7. Note also that the path along c leading to a violation of
the requirements of Definition 6 is related to the discriminating server c. 0 used
in Counterexample 4 to justify r6 ��∼ clt r7. �

5 Expressiveness and Decidability

We show that servers with finite interactions suffice to preserve the discriminat-
ing power of the contextual preorder �∼clt

in Definition 1, which has ramifications
on standard verification techniques for the preorder, such as counter-example
generation [11]. We also show that, for finite-state LTSs, the set of usable clients
is decidable. Using standard techniques [27] we then argue that, in such cases,
there exists a procedure to decide whether two finite-state clients are related
by �∼clt

.

5.1 On the Power of Finite Interactions

We employ the coinductive characterisation of the client preorder, Theorem5, to
prove an important property of the client preorder of Definition 1, namely that
servers that only offer a finite amount of interactions to clients are necessary
and sufficient to distinguish all the clients according to our touchstone preorder
�∼clt

of Definition 1. Let CCSf ::= 0 | 1 | α.p | p + q | τ∞, and

�∼f
clt

= { (r1, r2) | for every p ∈ CCSf . p must r1 implies p must r2 }
U f = { r | there exists p ∈ CCSf . p must r }

250 G. Bernardi and A. Francalanza

In what follows, we find it convenient to use the definitions above: CCSf

excludes recursively-defined processes, but explicitly adds the divergent process
τ∞ because of its discriminating powers (see Counterexample 3). Accordingly,
�∼f

clt
and U f restrict the resp. sets to the syntactic class CCSf .

Corollary 1. The sets U and U f coincide.

Proof. The inclusion U f ⊆ U is immediate. Suppose that r ∈ U . By Theorem 2
we have r ∈ Ubhv. By Lemma 1, there exists a non-recursive p ∈ CCSf such that
p must r, thus r ∈ U f follows. ��
Theorem 6. In any finite-branching LTS r1 �∼f

clt
r2 if and only if r1 �∼clt

r2.

Proof. The inclusion �∼clt
⊆ �∼f

clt
follows immediately from the resp. definitions.

On the other hand, Theorem5 provides us with a proof technique for showing the
inclusion �∼f

clt
⊆ �∼clt

: if we show that �∼f
clt

⊆ G(�∼f
clt
) then �∼f

clt
⊆ �clt = �∼clt

. In view
of the Knaster-Tarski theorem it suffices to show that �∼f

clt
⊆ G(�∼f

clt
). In turn, this

requires us to prove the three conditions stated in Definition 6. The argument for
the first two conditions is virtually the same to that of Lemma5. Similarly, the
arguments for the third condition follow closely those used in Theorem1 (albeit
in a simpler setting of unsuccessful traces of length 1). The only new reasoning
required is that servers that exists because of r1 ∈ U also belong to CCSf , which
we know from Corollary 1. ��
An analogous result should also hold for the server-preorder, for the proofs of
completeness in [6, Theorem 3.1] rely on clients that can be written in the
language CCSf .

5.2 Deciding the Client Preorder

Figure 4 describes the pseudo-code for the eponymous function isUsable(r, acm),
which is meant to determine whether a client r is usable. It adheres closely to
the conditions of Definition 5 for Ubhv, using acm as an accumulator to keep
track of all the terms that have already been explored. Thus, if an r is revisited,
the algorithm rejects it on the basis that a loop of unsuccessful interactions
(leading to an infinite sequence of unsuccessful interactions that makes the client
unusable) is detected (lines 2–3). If not, the algorithm checks for the conditions
in Definition 5 (lines 4–9). In particular, line 4 checks that infinite sequences of
internal moves are always successful (using function convtick defined on lines
11–17) and that partially deadlocked clients reached through a finite number
of unsuccessful internal moves, Acc� �(r) �= ∅, contain at least one action that
unblocks them to some other usable client (lines 7–8). This latter check employs
the function existsUnblockAction (defined on lines 19–26) which recursively calls
isUsable to determine whether the client reached after an action is indeed usable.
isUsable(r, acm) of Fig. 4 relies on the LTS of r being finite-state in order to
guarantee termination via the state accumulation held in acm. This is indeed
the case for our expository language CCSμ of Fig. 2. Concretely, we define the

Full-Abstraction for Must Testing Preorders 251

Fig. 4. An algorithm for deciding inclusion in the set U

set of internal-sums for the derivatives that a client r reaches via all the finite
traces ∈ Act�, and show that this set is finite. Let

sumsRdx(r) = {
⊕

(r after � � s) | for some s ∈ Act� },

Lemma 7. For every r ∈ CCSμ, the set sumsRdx(r) is finite. ��

Proof. Let Reachr = { r′ | r
s=⇒ r′ for some s ∈ Act� } denote the set of

reachable terms from client r, and PwrRr = {⊕
B | B ∈ P(Reachr) } denote

the elements of the powerset of Reachr, expressed as internal summations of
the elements of P(Reachr). By definition, we have that sumsRdx(r) ⊆ PwrRr.
Hence, it suffices to prove that Reachr is finite to show that PwrRr is finite,
from which the finiteness of sumsRdx(r) follows. The proof of the finiteness of
Reachr is the same as that of Lemma 4.2.11 of [29] for the language serial-CCS,
which is homologous to CCSμ of Fig. 2 modulo the satisfaction construct 1. ��

252 G. Bernardi and A. Francalanza

Theorem 7. For every r ∈ Proc we have that

(i) r ∈ U iff isUsable(r, ∅) = true,
(ii) r �∈ U iff isUsable(r, ∅) = false.

Proof. For the only-if case of clause (i), we use Theorem 2 and show instead that
r ∈ Ubhv implies isUsable(r, ∅) = true; we do so by numerical induction on n ∈ N

+

where r ∈ Fn(∅). For the if case, we dually show that isUsable(r, ∅) = true implies
r ∈ Ubhv, by numerical induction on the least number n ∈ N

+ of (recursive)
calls to isUsable that yield the outcome true. We note that in either direction
of clause (i), there is a direct correspondence between the respective inductive
indices (e.g., for the base case n = 1, r ∈ F1(∅) = F(∅) implies that r ⇓� and
that Acc� �(r) = ∅).

For the second clause (ii), the statements
(
r �∈ U implies isUsable(r, ∅) =

true
)

and
(
isUsable(r, ∅) = false implies r �∈ U)

contradict the first clause
(i) which we just proved. The required result thus holds if we ensure that
isUsable(r, ∅) is defined for any r ∈ Proc. This follows from Lemma 7. ��

From Theorems 5, 7 and Lemma 7, we conclude that Definition 6 can be used
to decide �∼clt

for languages such as CCSμ of Fig. 2. We can do this by adapting the
algorithm of [27, Chapter 21.5], and proving that in our setting [27, Theorems
21.5.9 and 21.5.12] are true. In particular, using the terminology of [27] we have
that reachableG(X) is finite, essentially because the resp. LTS is finite-state, and
thus the decidability of �clt follows from Theorem 21.5.12.

6 Conclusion

We present a study that revolves around the notion of usability and preorders
for clients (tests). Preorders for clients first appeared for compliance testing [2],
and were subsequently investigated in [3,6] for must testing [12] and extended to
include peers. The characterisations given in [6] relied fundamentally on the set
of usable terms U which made them not fully-abstract and hard to automate.
This provided the main impetus for our study. In general, recursion poses obsta-
cles when characterising usable terms, but the very nature of must testing —
which regards infinite unsuccessful computations as catastrophic — let us treat
recursive terms in a finite manner (see Definition 5).

We focus on the client preorder, even though [6] presents preorders for both
client and peers; note however that [6, Theorem 3.20] and Theorem 2 imply full-
abstraction for the peer preorder as well. Our investigations and the resp. proofs
for Theorem 2, Theorems 5 and 6 are conducted in terms of finitely-branching
LTSs, which cover the semantics used by numerous other work describing client
and server contracts [6,8,9,18] — we only rely on an internal choice construct to
economise on our presentation, but this can be replaced by tweaking the resp.
definitions so as to work on sets of processes instead. As a consequence, the
results obtained should also extend to arbitrary languages enjoying the finite-
branching property. Theorem7 relies on a stronger property, namely that the

Full-Abstraction for Must Testing Preorders 253

language is finite-state. In [29], it is shown that this property is also enjoyed by
larger CCS fragments, and we therefore expect our results to extend to these
fragments as well.

6.1 Related Work

Client usability depends both on language expressiveness and on the notion of
testing employed. Our comparison with the related work is organised accordingly.

Session types [14] do not contain unsuccessful termination, 0, restrict internal
(resp. external) choices to contain only pair-wise distinct outputs (resp. inputs)
and are, by definition, strongly convergent [25] (i.e., no infinite sequences of τ -
transitions). E.g., τ.!a. 1 + τ.!b.?c. 1 corresponds to a session type in our language
(modulo syntactic transformations such as those for internal choices), whereas
τ.!a. 0 + τ.!b.?c. 1, τ.!a. 1 + τ.!a.?b. 1 and ?a. 1 + ?a.!b. 1 do not. Since they
are mostly deterministic — only internal choices on outputs are permitted —
usability is relatively easy to characterise. In fact [7, Section 5] shows that every
session type is usable wrt. compliance testing (even in the presence of higher-
order communication) whereas, in [26, Theorem 4.3], non-usable session types
are characterised wrt. fair testing. First-order session types are a subset of our
language, and hence, Theorem2 is enough to (positively) characterise usable
session types wrt. must testing; we leave the axiomatisation of U in this setting
as future work.

Contracts [25] are usually formalised as (mild variants of) our language CCSμ.
In the case of must testing, the authors in [6, Theorem 6.9, Lemma 7.8(2)] char-
acterise non-usable clients (and peers) for the sublanguage CCSf as the terms
that can be re-written into 0 via equational reasoning. Full-abstraction for usable
clients wrt. compliance testing has been solved for strongly convergent terms in
[25, Proposition 4.3] by giving a coinductive characterisation for viable (i.e.,
usable wrt. compliance) contracts. If we restrict our language to strongly con-
vergent terms, that characterisation is neither sound nor complete wrt. must
testing. It is unsound because clients such as μx.a.x are viable but not usable.
It is incomplete because of clients such as r = 1 + τ. 0; this client is usable wrt.
must because, for arbitrary p, any computation of p || r is successful (since we
have r

�−→ immediately). On the other hand, r is not viable wrt. compliance
testing of [25] (where every server is strongly convergent), because for any server
p we observe the computation starting with the reduction p || r

τ−→ p || 0, and
once p stabilises to some p′, the final state p′ || 0 contains an unsuccessful client.
This argument relies on subtle discrepancies in the definitions of the testing
relations: in must testing it suffices for maximal computations to pass through a
successful state, whereas in compliance testing the final state of the computa-
tion (if any) is required to be successful. This aspect impinges on the technical
development: although our Definition 5(2) resembles [25, Definition 4.2], the two
definitions have strikingly different meanings: we are forced to reason wrt. unsuc-
cessful actions and unsuccessful acceptance sets whereas [25, Definition 4.2] is
defined in terms of (standard) weak actions and acceptance sets (note that Def-
inition 5(1) holds trivially in the strongly convergent setting of [25]). We note

254 G. Bernardi and A. Francalanza

also that our Definition 5 is inductive whereas [25, Definition 4.2] is coinduc-
tive. More importantly, our work lays bare the non-compositionality of usable
terms and how it affects other notions that depend on it, such as Definition 6
(and consequently Theorem5). We are unaware of any full-abstraction results
for contract usability in the case of should-testing [8,24,28].

Future work: In the line of [10], we plan to show a logical characterisation of the
client and peer preorder. We also intend to investigate coinductive characterisa-
tions for the peer preorder of [6] and subsequently implement decision procedures
for the server, client, and peer preorders in Caal [1]. Usability is not limited to
tests. We expect it to extend naturally to runtime monitoring [13], where it can
be used as a means of lowering runtime overhead by not instrumenting unusable
monitors.

Acknowledgements. This research was supported by the COST Action STSMs
IC1201-130216-067787 and IC1201-170214-038253. The first author was supported by
the EU FP7 ADVENT project. The second author is partly supported by the RANNIS
THEOFOMON project 163406-051. The authors acknowledge the Dagstuhl seminar
17051 and thank L. Aceto, M. Bravetti, A. Gorla, M. Hennessy, C. Spaccasassi and
anonymous reviewers for their help and suggestions.

References

1. Andersen, J.R., Andersen, N., Enevoldsen, S., Hansen, M.M., Larsen, K.G., Olesen,
S.R., Srba, J., Wortmann, J.K.: CAAL: concurrency workbench, Aalborg edition.
In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399,
pp. 573–582. Springer, Cham (2015). doi:10.1007/978-3-319-25150-9 33

2. Barbanera, F., de’Liguoro, F.: Two notions of sub-behaviour for session-based clien-
t/server systems. In: PPDP (2010)

3. Bernardi, G.: Behavioural equivalences for web services. Ph.D. thesis, TCD (2013)
4. Bernardi,G., Francalanza, A.: Full-abstraction for must testing preorders (extended

abstract). https://www.irif.fr/gio/papers/BFcoordination2017.pdf
5. Bernardi, G., Hennessy, M.: Modelling session types using contracts. In: SAC

(2012)
6. Bernardi, G., Hennessy, M.: Mutually testing processes. LMCS 11(2), 1–23 (2015)
7. Bernardi, G., Hennessy, M.: Using higher-order contracts to model session types.

LMCS 12(2), 1–43 (2016)
8. Bravetti, M., Zavattaro, G.: A foundational theory of contracts for multi-party

service composition. Fundam. Inf. 89(4), 451–478 (2008)
9. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.

ACM Trans. Program. Lang. Syst. 31(5), 1–61 (2009)
10. Cerone, A., Hennessy, M.: Process behaviour: formulae vs. tests. In: EXPRESS

(2010)
11. Clarke, E., Veith, H.: Counterexamples revisited: principles, algorithms, applica-

tions. In: Dershowitz, N. (ed.) Verification: Theory and Practice. LNCS, vol. 2772,
pp. 208–224. Springer, Heidelberg (2003). doi:10.1007/978-3-540-39910-0 9

12. De Nicola, R., Hennessy, M.: Testing equivalences for processes. TCS 34(1–2),
83–93 (1984)

http://dx.doi.org/10.1007/978-3-319-25150-9_33
https://www.irif.fr/gio/papers/BFcoordination2017.pdf
http://dx.doi.org/10.1007/978-3-540-39910-0_9

Full-Abstraction for Must Testing Preorders 255

13. Francalanza, A.: A theory of monitors. In: Jacobs, B., Löding, C. (eds.) FoSSaCS
2016. LNCS, vol. 9634, pp. 145–161. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49630-5 9

14. Gay, S.J., Hole, M.: Subtyping for session types in the pi calculus. Acta Inf. 42(2–
3), 191–225 (2005)

15. Hennessy, M.: Algebraic Theory of Processes. MIT Press, Cambridge (1988)
16. Knuth, D.E.: The Art of Computer Programming, Volume 1 (3rd Ed.): Funda-

mental Algorithms. Addison Wesley Longman Publishing Co., Inc., Redwood City
(1997)

17. König, D.: Über eine schlussweise aus dem endlichen ins unendliche. Acta Litt. ac.
sci. Szeged 3, 121–130 (1927)

18. Laneve, C., Padovani, L.: The Must preorder revisited. In: Caires, L., Vasconcelos,
V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 212–225. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-74407-8 15

19. Luo, Q., Hariri, F., Eloussi, L., Marinov, D.: An empirical analysis of flaky tests.
In: FSE (2014)

20. Marinescu, P., Hosek, P., Cadar, C.: Covrig: a framework for the analysis of code,
test, and coverage evolution in real software. In: ISSTA (2014)

21. Martens, A.: Analyzing web service based business processes. In: Cerioli, M. (ed.)
FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-31984-9 3

22. Memon, A.M., Cohen, M.B.: Automated testing of GUI applications: models, tools,
and controlling flakiness. In: ICSE (2013)

23. Milner, R.: Communication and Concurrency. Prentice-Hall, Upper Saddle River
(1989)

24. Mooij, A.J., Stahl, C., Voorhoeve, M.: Relating fair testing and accordance for
service replaceability. J. Log. Algebr. Program. 79(3–5), 233–244 (2010)

25. Padovani, L.: Contract-based discovery of web services modulo simple orchestra-
tors. TCS 411(37), 3328–3347 (2010)

26. Padovani, L.: Fair subtyping for multi-party session types. MSCS 26(3), 238–302
(2016)

27. Pierce, B.: Types and Programming Languages. MIT Press, Cambridge (2002)
28. Rensink, A., Vogler, W.: Fair testing. Inf. Comput. 205(2), 125–198 (2007)
29. Spaccasassi, C.: Language support for communicating transactions. Ph.D. thesis,

TCD, (2015)
30. Weinberg, D.: Efficient controllability analysis of open nets. In: Bruni, R., Wolf, K.

(eds.) WS-FM 2008. LNCS, vol. 5387, pp. 224–239. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-01364-5 14

31. Winskel, G.: The Formal Semantics of Programming Languages: An Introduction.
MIT Press, Cambridge (1993)

http://dx.doi.org/10.1007/978-3-662-49630-5_9
http://dx.doi.org/10.1007/978-3-662-49630-5_9
http://dx.doi.org/10.1007/978-3-540-74407-8_15
http://dx.doi.org/10.1007/978-3-540-31984-9_3
http://dx.doi.org/10.1007/978-3-540-31984-9_3
http://dx.doi.org/10.1007/978-3-642-01364-5_14

	Full-Abstraction for Must Testing Preorders
	1 Introduction
	2 Preliminaries
	2.1 Characterising the Client Preorder

	3 Characterising Usability
	4 The Client Preorder Revisited
	5 Expressiveness and Decidability
	5.1 On the Power of Finite Interactions
	5.2 Deciding the Client Preorder

	6 Conclusion
	6.1 Related Work

	References

