
Private Data System Enabling Self-Sovereign
Storage Managed by Executable Choreographies

Sinică Alboaie1,2 and Doina Cosovan1(B)

1 Alexandru Ioan Cuza University of Iasi, Iaşi, Romania
salboaie@gmail.com, doina.cosovan@info.uaic.ro
2 Technical University of Cluj-Napoca, Iaşi, Romania

Abstract. With the increased use of Internet, governments and large
companies store and share massive amounts of personal data in such a
way that leaves no space for transparency. When a user needs to achieve
a simple task like applying for college or a driving license, he needs to
visit a lot of institutions and organizations, thus leaving a lot of pri-
vate data in many places. The same happens when using the Internet.
These privacy issues raised by the centralized architectures along with
the recent developments in the area of serverless applications demand a
decentralized private data layer under user control.

We introduce the Private Data System (PDS), a distributed approach
which enables self-sovereign storage and sharing of private data. The
system is composed of nodes spread across the entire Internet man-
aging local key-value databases. The communication between nodes is
achieved through executable choreographies, which are capable of pre-
venting information leakage when executing across different organiza-
tions with different regulations in place.

The user has full control over his private data and is able to share
and revoke access to organizations at any time. Even more, the updates
are propagated instantly to all the parties which have access to the data
thanks to the system design. Specifically, the processing organizations
may retrieve and process the shared information, but are not allowed
under any circumstances to store it on long term.

PDS offers an alternative to systems that aim to ensure self-
sovereignty of specific types of data through blockchain inspired tech-
niques but face various problems, such as low performance. Both
approaches propose a distributed database, but with different character-
istics. While the blockchain-based systems are built to solve consensus
problems, PDS’s purpose is to solve the self-sovereignty aspects raised
by the privacy laws, rules and principles.

Keywords: Privacy Enhancing Technique · Privacy by Design · Privacy
by Default · Data self-sovereignty · Privacy · Private data · Distributed
storage · Executable choreography

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
L.Y. Chen and H.P. Reiser (Eds.): DAIS 2017, LNCS 10320, pp. 83–98, 2017.
DOI: 10.1007/978-3-319-59665-5 6



84 S. Alboaie and D. Cosovan

1 Introduction

Every time a user needs to create an account, he needs to provide a lot of private
information, like name, birth date, gender, marital status, and so on. Even more,
he needs to choose and answer to some security questions for account recovery
in case he forgets the password or simply for user validation when performing
sensitive actions. These security questions usually consist of private data as well.

This way, each user spreads his private data to a lot of organiza-
tions/companies/service providers. This raises two main issues: one is related
to data protection and the other - to data duplication. In regards to data pro-
tection, each organization has its own ways of storing and protecting the data.
Some are better than others. The user’s data is as safe as the weakest organiza-
tion to which the user provided his data. Thus an attacker can target the weakest
link to learn private information. The data duplication issue consists mainly of
the fact that changing a piece of private information (like changing the last name
by getting married) requires updating it in all the places this particular piece of
private information was saved, which is burdening and time consuming.

An existing way of solving these problems is by using single sign-on tech-
niques. But this makes the user dependent on the single sign-on provider because
losing access to the account used for single sign-on means losing access to all the
accounts authenticating the user with this single sign-on account.

We propose a solution that enables users to keep full control over their private
data. Private Data System (PDS) is a distributed scalable system composed of
three types of nodes, transparently spread across the entire Internet: audit, index
and storage nodes. Each node manages a local key-value database and each type
of node has its own purpose in the system, as explained further.

Each piece of private information is split into undecipherable chunks. Each
chunk is assigned a different partial key in a different key-value database man-
aged by a different storage node. The association between these keys is stored
under a master key in a key-value database managed by an index node. Since the
data needs to be accessible by different processing nodes, the master key is refer-
enced by different key references. The association between them is stored under
a key reference in a key-value database managed by an audit node. The key
references are the only points of access to the actual data. Hence it also contains
information regarding who owns the referenced data, who was this particular
key reference shared with, and metadata describing the referenced data.

The communication between nodes is achieved with the help of executable
choreographies, which visit the needed nodes in the needed order, execute on
each node the needed operations, and return to the user with the results.

An interesting use case of using PDS are social networks and other systems
which, besides private data, manage also trust and reputation data [5].

We will start by reviewing the related work (Sect. 2) and introducing the sys-
tem along with its elements (Sect. 3). Then, we’ll explain how CRUD (create, read,
update, delete) and sharing/revoking operations work (Sect. 4). In the end, we
will analyze the proposed system from the privacy perspective (Sect. 5), conclude
(Sect. 6), and present future directions in regards to the proposed system (Sect. 7).



Private Data System 85

2 Related Work

Smart systems integrate technology, organizations and people in order to accom-
plish complex processes that are controlled by computer systems. For a large
number of integration points, integration is achieved through classical ESB
(Enterprise Service Bus) - type systems [8], MOM (Message-Oriented Middle-
ware) systems [9], systems based on EIP (Enterprise Integration Patterns) [11]
or through the orchestration of services through custom code or languages used
to model business processes [12].

All these methods tend to be sufficient to integrate the components belonging
to one organization. On the other hand, the integration among multiple organi-
zations should be addressed using choreographies as any centralized solution is
risky in terms of security and private data protection. Composition of systems
using orchestration tends to create centralized systems.

Although many authors perceive choreographies as a mechanism to describe
in a more formal way the contracts among several organizations [1], the academic
research proposed the concept of executable choreographies [4,6,7]. They sug-
gest transforming the descriptions of the choreographies in code that is executed
inside each organization participating in the choreography. As such, a choreogra-
phy is not only a formal description of a contract among organizations but also a
description of a workflow in an executable way. The same description (choreog-
raphy) gets to run in several organizations in a decentralized manner (without
the need for a centralized conductor) and therefore any need to translate the
choreography into other programming languages disappears.

While PDS could be implemented outside the world of the executable chore-
ographies, we believe that choreographies are suitable for the complex workflows
operating across multiple organizations. The code of the executable choreogra-
phies is verifiable at a higher level and can provide confidence that the imple-
mentation provides the privacy properties of the theoretical model.

Another advantage of the executable choreographies is that it comes with a
solution for the self sovereign identity. The Sovrin Foundation explains in [15]
why the rise of the self sovereign identities was inevitable and details the path
that had to be traversed for the community to come to this conclusion.

For PDS, the data owner must be identified and authorized. Supplementary
benefits in the data leakage preventions could be achieved if the data owner is
identified in all the other organizations contributing to a request without leak-
ing its identity (using some anonymous aliases controlled by the data owner).
The executable choreographies aim at offering these benefits without any sup-
plementary implementation effort. However, detailing the way in which the self
sovereign identities used by the data owners and processors are authenticated
and authorized is not the purpose of this paper. It is a complex enough topic to
require its own paper, so we will revisit this issue at a later date.

In regards to the advances related to data sovereignty, we would like to men-
tion [10], which proposes storing encrypted data in cloud federations and [3],
which proposes sovereign information sharing in order to integrate the informa-
tion belonging to autonomous entities. Queries are executed on the databases



86 S. Alboaie and D. Cosovan

and reveal only the results. The work is continued in [2] which enables sovereign
information sharing using web services. This work applies to service providers
which want to allow queries on their databases without sharing the content on
which the queries are executed. Our work focuses on the average user which
needs to own and store his data in a single place and provide/revoke access to
it to various service providers as needed.

Note that [14] introduces the data sovereignty notion for establishing the
nation-state where the cloud storage service providers are storing the data phys-
ically in order to ensure they are meeting their contractual geographic obliga-
tions. In this paper, we consider data sovereignty to be the ability of the user to
have full control over his data and the entities to which it is shared or revoked.

States and international organizations start to gradually introduce princi-
ples and standards, the most notable being Privacy By Design [13]. Collecting
information in parallel with the absence of technical constraints on how com-
panies can use the data intentionally or unintentionally begins to be perceived
as a risk. On the one hand, there are risks for companies because users could
refuse to adopt privacy challenged technologies. On the other hand, we have risks
regarding the whole society, the most obvious being represented by the potential
that some companies can influence society in illegal and immoral manners.

Commercial exploitation of private data has come to create the impression
that people are exploited commercially in ways that do not adequately com-
pensate for the risks they take. A more transparent model that allows fair and
equitable use of personal data is needed. Considering all these aspects, the arti-
cle proposes a software architecture in which private data’s storage places are
under the strict control of the user or his delegates.

3 System Elements

In this section, we define the terminology used for the Private Data System
throughout this paper. First, we define the following roles:

Data Owner (DO) represents the identity which owns the data.

Data Processor (DP) represents the identity which processes the data; the
identity to which the data was shared.

Second, we define the following types of data:

Private Data (PD) represents the private data which is to be stored in the
system; if a piece of private data PD is split into n undecipherable chunks, then
PDi, i = 0, n is an undecipherable chunk of data.

Metadata (MD) specifies the relationship between the Private Data and Data
Processors by labeling the data according to the Data Owner and ontologies.

Third, since the system is based on key-value databases, we define the fol-
lowing keys for data storage, associations, and references:



Private Data System 87

Master Key (MK) represents and anonymizes a piece of private information.

Partial Key (PK) represents and anonymizes one undecipherable chunk from
the set of undecipherable chunks in which a piece of private information was
split. Thus, the MK is associated to the set of PKs which represent the set of
undecipherable chunks needed to recombine the piece of private information.

Key Reference (KR) represents a reference to/an alias of a piece of private
information (a reference to a Master Key).

Key Reference Hash (KRH) is obtained by applying a hash function on the
Key Reference value and adding the address of the processing node which is to
receive the results.

In the end, we define the following types of nodes:

Processing Node (PN) stores Key References and needs to retrieve and
process the private data referenced by them. Processing nodes are forbidden
by law to store the retrieved data on long term.

Audit Node (AN) manages a key-value database which stores the association
between Key References and the Master Keys they reference along with the
information describing the data referenced by the Master Key (Data Owner,
Data Processor, and Metadata). In the database, the key is a Key Reference
and the value is a tuple consisting of the Master Key, the Metadata, the Data
Owner, and the Data Processor.

Index Node (IN) manages a key-value database which stores the association
between Master Keys and its corresponding Partial Keys. In the database, the
key is the Master Key and the value is the list of Partial Keys needed to recon-
struct the piece of private information represented by the Master Key.

Storage Node (SN) manages a key-value database which stores the association
between Partial Keys and Partial Messages. In the database, the key is the
Partial Key and the value is the undecipherable chunk of data represented by
this particular Partial Key.

4 System Operations

In this section we detail the way in which CRUD (Create, Read, Update, Delete)
operations as well as copying, sharing, and revoking access to data are performed
in the proposed system. For simplicity, we are going to use the following notations
throughout this paper:

– [E1, E2, ..., En] is a list containing the elements E1, E2, ..., En.
– (E1, E2, ..., En) is a tuple containing the elements E1, E2, ..., En.
– {K1 : V1,K2 : V2, ...,Kn : Vn} is a dictionary in which the value V1 is stored

under the key K1, the value V2 is stored under the key K2, ..., and the value
Vn is stored under the key Kn.



88 S. Alboaie and D. Cosovan

– N1 → N2 : M means the node N1 sends to the node N2 the message M ,
which corresponds to performing a step in the executable choreography.

– DB[K] := V means the value V is stored under the key K in the key-value
database DB by the node managing DB.

– V := DB[K] means the value V associated to the key K is retrieved from
the key-value database DB by the node managing DB.

– N1 : A means the node N1 performs the action A.
– M := gen() means the message M is generated (either randomly or according

to an algorithm); this is an action.
– PD1, PD2, ..., PDn := split(PD) means the private data PD is split into n

undecipherable chunks of data PD1, PD2, ..., PDn; this is an action.
– PD := recombine(PD1, PD2, ..., PDn) means the n undecipherable chunks

of data PD1, PD2, ..., PDn are recombined in order to obtain the initial piece
of private data PD which was split to obtain them; this is an action.

4.1 Creating/Storing Private Data

The storage of private data is achieved in three phases, illustrated at a higher
level in Fig. 1 and detailed in the following schema:

Phase 1

1. PN → AN : DO,MD
2. AN : MK := gen()
3. AN : KR := gen()
4. AN [KR] := (MK,MD,DO,DP )
5. AN → PN : KR,MK

Phase 2

1. PN : PD1, PD2, ..., PDn := split(PD)
2. PN : chooses randomly n SNs
3. PN → SNi : PDi, i = 1, n
4. SNi : PKi := gen(), i = 1, n
5. SNi[PKi] := PDi, i = 1, n
6. SNi → PN : PKi, i = 1, n

Phase 3

1. PN → IN : MK,PK1, PK2, ..., PKn

2. IN [MK] := [PK1, PK2, ..., PKn]
3. PN [alias] := KR

When a processing node needs to store private data, it starts the first phase
by sending to an audit node the metadata describing the information it wants
to store along with its identity (considered both data owner because it stores its
information and data processor because it is the identity which is going to use
the associated reference key for data retrieval). The audit node first generates a



Private Data System 89

Fig. 1. Storing private data

master key and a key reference, then stores the generated master key, the received
metadata, and the received data owner (as both data owner and data processor)
under the generated key reference in its key-value database. The audit node
completes this phase by sending the generated master key and the key reference
to the processing node.

In the second phase, the processing node splits the private information into
n undecipherable chunks PD1, PD2, ..., PDn and chooses randomly n storage
nodes so that each storage node is responsible for storing a single undecipherable
chunk of private data. Each storage node, upon receiving its undecipherable piece
of private data, generates a partial key, stores its chunk of information under
that key, and sends to the processing node the generated partial key.

In the third phase, the user sends to an index node the master key and its
corresponding partial keys. The processing node stores the key reference under
an alias because it is needed for subsequent private information retrieval.

4.2 Reading/Retrieving Private Data

If a processing node needs to access a private information, it must have a key
reference. The way the processing node uses the key reference to retrieve the
associated private information can be followed in Fig. 2 and is described in detail
in the following schema:

Phase 1

1. PN → AN : DP,KR



90 S. Alboaie and D. Cosovan

Phase 2

1. MK := AN [KR]
2. HKR := (location(PN), hash(KR))
3. AN → IN : DP,MK,HKR

Phase 3

1. PK1, PK2, . . . , PKn := IN [MK]
2. IN → SNi : DP,HKR,PKi, i = 1, n
3. PDi := SNi[PKi], i = 1, n
4. SNi → PN : HKR,PDi, i = 1, n
5. PN : PD := recombine(PD1, PD2, ..., PDn), where PDi, i = 1, n must have

the same HKR as PD

The key reference might reference either a piece of private information of
the processing node or a piece of private information shared to the processing
node by another processing node. By sending his key reference to the audit node
along with his (processing node’s) identity, the processing node completes the
first phase.

In phase two, the audit node retrieves the master key corresponding to the
received key reference. Next, it computes HKR, which is a hash on the retrieved
key reference prefixed with the location of the processing node. Then, the audit
node sends the processing node’s identity, the retrieved master key, and the
computed HKR to the index node. This way, the index node doesn’t learn the
association between key references and master keys, but at the same time prop-
agates HKR, which is information required by the processing node to identify
the request being answered. Note that the processing node might issue multiple
data retrieval operations at the same time and, without HKR, the processing
node wouldn’t know which undecipherable chunks correspond to which pieces of
private data he requested at the same time.

In the third phase, the index node retrieves from its database the partial
keys corresponding to the master key and sends each partial key along with
the processing node’s identity and HKR to the corresponding storage nodes.
Each storage node retrieves the undecipherable value (PDi) corresponding to
the received partial key (PKi) and sends to the processing node the retrieved
undecipherable chunk and the HKR. The processing node, upon receiving the
undecipherable chunks, groups them by HKR and recombines the grouped com-
ponents in order to obtain the private piece of information. This information can
be processed, but the law prevents the processing node to store it.

Thus HKR’s purpose is to serve as an identifier so that a processing node
which retrieves multiple private information pieces at the same time can associate
the received undecipherable pieces of information to the requested key references.

4.3 Updating Private Data

The first two phases are identical for data retrieving and data updating, but
starting with the third step of the third phase, things are performed differently
as can be observed in the following schema:



Private Data System 91

Fig. 2. Retrieving private data

Phase 1

1. PN → AN : DP,KR

Phase 2

1. MK := AN [KR]
2. HKR := (location(PN), hash(KR))
3. AN → IN : DP,MK,HKR

Phase 3

1. PK1, PK2, ..., PKn := IN [MK]
2. IN → SNi : DP,HKR,PKi, i = 1, n
3. SNi → PN : HKR, i = 1, n
4. PN : PD1, PD2, ..., PDn := split(PD)
5. PN → SNi : PDi, i = 1, n
6. SNi[PKi] := PDi, i = 1, n

The storage nodes, upon receiving the partial keys from the index node,
instead of retrieving the undecipherable chunks of private data corresponding
to the partial keys and sending them along with HKR to the processing node
for recombination as performed by the storing operation, for the updating oper-
ation they send the HKR alone to the processing node. Upon receiving the
HKR from the storage nodes, the processing node splits the new information in
undecipherable chunks and sends one chunk to each storage node which sent the
HKR corresponding to this piece of private information. Then, the storage nodes
update the values stored under the partial keys in their key-value database in
accordance to the newly received undecipherable chunks.



92 S. Alboaie and D. Cosovan

Fig. 3. Updating private data

The reason we decided to go with this approach rather than use an invalida-
tion and a store operation is because we want all the existing key references to
remain valid and, even more, to point to the updated private data.

The data flow between the nodes which are part of the system during an
update operation can be observed in Fig. 3.

4.4 Deleting Private Data

Figure 4 illustrates the data flow and the following schema illustrates the actions
performed during a delete operation:

1. PN → AN : KR,DO
2. MK := AN [KR]
3. AN → IN : MK
4. IN : invalidate IN [MK]

In order to perform a delete operation, a processing node sends to the audit
node its identity (which must be the identity of the data owner) and its key
reference of the data to be deleted. If the audit node would invalidate the received
key reference, this would mean only revoking access to the private data for the
data owner, while all the data processors which received access to this private
data at some point in time would still be able to access the data. Thus, instead
of doing this, the audit node sends the received key reference to the index node
for it to invalidate the associated master key. In this way, neither the data owner,
nor the data processors will be able to access this piece of private data anymore



Private Data System 93

Fig. 4. Deleting private data

because all the key references they have for this piece of private data point to
the same master key.

4.5 Sharing Access to Private Data

The sharing operation is described in Fig. 5 and follows the following steps:

1. PN1 → AN : KR1,DP2

2. MK,MD,DO := AN [KR1]
3. AN : KR2 := gen()
4 AN [KR2] := (MK,MD,DO,DP2)
5 AN → PN2 : KR2,MD

Fig. 5. Sharing access to private data

In order to share a piece of information, a processing node (PN1) must send
to an audit node its key reference (KR1) of the private information it wants to
share along with the identity of the processing node that is to receive access to
the private information (DP2). When this happens, the audit node retrieves the



94 S. Alboaie and D. Cosovan

master key (MK) corresponding to the received key reference (KR1), generates a
new key reference (KR2), and saves the retrieved master key (MK), the retrieved
metadata (MD), the retrieved data owner (DO) and the received data processor
(DP2) under the newly generated key reference (KR2). Of course, the initial
association (between KR1 and MK) remains in the database, as well.

Note that every association between a key reference and a master key also
has information regarding the identity of the organization owning the data (Data
Owner) and the identity of the organization with which data is shared (Data
Processor). If data owner is the same with data processor, then this association
is the initial key reference created when the private information was first stored.

Next, the audit node sends the newly generated key reference (KR2) along
with the received metadata (MD) to the processing node which is to receive
access (PN2) to the private data. In this way, neither data owner knows the
data processor’s key reference, nor the data processor knows the data owner’s
key reference.

4.6 Revoking Access to Private Data

The revocation operation is described in Fig. 6 and follows the following steps:

1. PN → AN : KR1,DO,DP2

2. MK := AN [KR1]
3. search KR2 which contains MK,DO,DP2 as values
4. invalidate AN [KR2]

The data owner can revoke access to a private information by issuing a revo-
cation request to the audit node. The revocation request contains the identity
of the data owner and of the data processor to which access is being revoked
as well as the data owner’s key reference (KR1). Note that we receive the data
owner’s key reference, while the revocation needs to be done on data processor’s
key reference (KR2). This happens because each processing node knows its key
reference, but it doesn’t know the key references of the data processors which

Fig. 6. Revoking access to private data



Private Data System 95

have access to its data. So, the audit node needs to retrieve the master key corre-
sponding to the received key reference (KR1) and search the key reference to be
revoked (KR2) knowing that it has associated the retrieved master key and the
received data owner and data processor. After learning the value of the reference
key to be revoked, the audit node simply invalidates it. Nothing is deleted.

4.7 Copying Private Data

By design, any copy operation on the private data should be done only through
the sharing operation. Data derived from the private data should be stored in
the PDS and assigned to the original data owner.

5 System Analysis from the Privacy Perspective

In this section we are going to analyze how powerful each type of node defined
in the system is and how much information they can gather by themselves or by
colluding with other types of nodes.

Each storage node has access to only one undecipherable chunk of each pri-
vate piece of information it stores. Each chunk is saved under a partial key which
has no meaning to the storage node. The storage node doesn’t know which other
storage nodes the other chunks of the same pieces of private information store,
nor under which partial keys. Even more, the storage node doesn’t know what
type of information it stores. It may be a social security number, a password,
a name, a birth date, and so on. A single storage node can’t attack the system
and neither can a collection of colluding storage nodes.

Index nodes store only the associations between master keys and partial keys.
So, they know the partial keys whose corresponding undecipherable chunks can
be recombined to form a private piece of information, but they don’t know the
values of the actual chunks, nor the type of information that will be obtained
after recombining the chunks. A single index node can’t attack the system and
neither a collection of colluding index nodes.

Audit nodes have information regarding the meaning of the data, the owner of
the data, and the identities with which the data was shared, but they don’t have
information regarding the way the data was split in chunks (the correspondence
between master key and partial keys) and the locations where the data chunks
are stored. So, a single audit node or a group of colluding audit nodes can’t
recombine the private data. However, audit nodes are able to create reference
keys at their discretion and share them with legal or illegal organizations.

Processing nodes have access to the private data as they need it for normal
operations. Privacy by Design principles are intended to regulate the usage of
private data without reducing functionality. The main goal of the PDS is to
make it obvious when a company is misusing the private data outside the pur-
pose accepted by the user, but without reducing access to the private data. For
example, if an organization collects private data by using PDS, it becomes visible
if it is copying or using private data for other purposes than intended.



96 S. Alboaie and D. Cosovan

Only processing nodes and audit nodes know what the pieces of information
referenced by key references mean. Encryption is not needed because the attack-
ers see a huge pool of partial undecipherable messages. Traffic can’t be used to
obtain information because the traffic data is encrypted using TLS and can’t be
used to deduce information regarding which nodes communicate because of the
huge amount of concurrent swarms flying from node to node.

If an index node colludes with all the storage nodes storing chunks of the same
piece of private information, then together they can recombine the message, but
without knowing its meaning, who owns it and with whom it was shared with, it
is of no value to them. In order for the data to be of value, they need to collude
also with the audit node, which stores the metadata, the data owner and the
data processor of this particular piece of information.

6 Conclusions

In normal conditions only processing nodes should be able to read plaintext data.
All the other node types involved in the PDS should not be capable of accessing
private data. In special conditions, audit nodes should be able to read the data
as well in order to enable legal access to the private data owned by other data
owners for crime prevention or other legal usages. We imagine audit organizations
offering public services that are controlled by the law and industry regulations.
The level of access to the systems storing this metadata should be similar to
the one for financial services. Special legal procedures should be followed when
accessing private data outside of the normal flow.

Systems and approaches that are trying to obfuscate and encrypt too much
are fighting an impossible fight with the common social interest and are blocking
the normal evolution of the technologies in the privacy area. The interests of any
citizen are to be protected from unfair usage of his data by the large Internet
companies, to have control on who he shares his private data with, to be able to
revoke access to his data to anyone at any time.

An Internet based on fully homomorphic encryption would not be what we
need because it would create a world in which data can be too easily lost. It would
provide a perfect method for criminals and terrorists to hide their data from the
public interest. Fighting with dangerous, corrupted governments is important,
but PDS is not supposed to have a role in this fight. PDS is a balanced solution
which enforces Privacy by Design in code and maintains an equilibrium between
public and private interests.

7 Future Work

As future work, we intend to pursue three different paths. First, we will develop
a new self-sovereignty authentication technique which uses the advantages pro-
vided by the architecture of the system proposed in this paper. Secondly, as
Privacy by Design and Privacy by Default (PbD) are being enforced by laws



Private Data System 97

(e.g. in the General Data Protection Regulation), we intend to propose a Pri-
vacy Enhancing Technique (PET) that can ensure these principles directly in
code. It is supposed to be a privacy estimation method for systems using the
technique proposed in this paper for achieving self-sovereign storage of private
data.

Thirdly, we will propose and describe a mechanism for the audit nodes to
store the metadata so that it enables the implementation of personal assistants.
The metadata will describe the schema of the stored objects (in the form of
JSON schema or OWL) and the representation types that could enable type
checking when data is shared. It will enable the use of specific Privacy Poli-
cies (which will control what entities are allowed to read the information and
will contain revocation policies) and Security Policies (which will control what
entities are allowed to modify the content of a Master Key). Both privacy and
security policies will be enforced by the audit nodes, but the input (rules and
policies) will be provided by the Data Owner himself. Giving up to the standard
communication promoted by web technologies and moving towards a model of
communication verifiable as the one proposed by executable choreographies, we
have the opportunity to develop formal verifications methods on how the private
data is used.

Acknowledgments. This work is partly funded by the European Union’s Horizon
2020 Research and Innovation Programme under grant agreement No 692178.

It is also partially supported by the Private Sky Project, under the POC-A1-
A1.2.3-G-2015 Programme (Grant Agreement no. P 40 371).

References

1. WSCDL specification. https://www.w3.org/TR/ws-cdl-10/
2. Agrawal, R., Asonov, D., Srikant, R.: Enabling sovereign information sharing using

web services. In: Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, pp. 873–877. ACM (2004)

3. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private data-
bases. In: Proceedings of the 2003 ACM SIGMOD International Conference on
Management of Data, pp. 86–97. ACM (2003)

4. Akkawi, F., Fletcher, D.P., Cottenier, T., Duncavage, D.P., Alena, R.L., Elrad, T.:
An executable choreography framework for dynamic service-oriented architectures.
In: 2006 IEEE Aerospace Conference, p. 13. IEEE (2006)

5. Alboaie, L., Vaida, M.-F.: Trust and reputation model for various online commu-
nities. Stud. Inform. Control 20(2), 143–156 (2011)

6. Alboaie, S., Alboaie, L., Panu, A.: Levels of privacy for ehealth systems in the
cloud era (2015)

7. Besana, P., Barker, A.: An executable calculus for service choreography. In:
Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009. LNCS, vol. 5870, pp.
373–380. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05148-7 26

8. Chappell, D.A.: Enterprise Service Bus - Theory in Practice. O’Reilly, Sebastopol
(2004)

9. Curry, E.: Message-oriented middleware. In: Middleware for Communications, pp.
1–28 (2004)

https://www.w3.org/TR/ws-cdl-10/
http://dx.doi.org/10.1007/978-3-642-05148-7_26


98 S. Alboaie and D. Cosovan

10. Esposito, C., Castiglione, A., Choo, K.-K.R.: Encryption-based solution for data
sovereignty in federated clouds. IEEE Cloud Comput. 3(1), 12–17 (2016)

11. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley Professional, Reading (2004)

12. Ko, R.K.L.: A computer scientist’s introductory guide to business process man-
agement (BPM). ACM Crossroads 15(4) (2009). Article No. 4

13. McKean, R.: Eu data protection reform - privacy-by-design.
http://www.olswang.com

14. Peterson, Z.N.J., Gondree, M., Beverly, R.: A position paper on data sovereignty:
the importance of geolocating data in the cloud. In: HotCloud (2011)

15. Tobin, A., Reed, D.: The inevitable rise of self-sovereign identity (2016)

http://www.olswang.com

	Private Data System Enabling Self-Sovereign Storage Managed by Executable Choreographies
	1 Introduction
	2 Related Work
	3 System Elements
	4 System Operations
	4.1 Creating/Storing Private Data
	4.2 Reading/Retrieving Private Data
	4.3 Updating Private Data
	4.4 Deleting Private Data
	4.5 Sharing Access to Private Data
	4.6 Revoking Access to Private Data
	4.7 Copying Private Data

	5 System Analysis from the Privacy Perspective
	6 Conclusions
	7 Future Work
	References


