
Benchmarking Cryptographic Schemes
for Securing Public Cloud Storages

(Practical Experience Report)

Stefan Contiu1,2(B), Emmanuel Leblond1, and Laurent Réveillère2

1 Scille, 94250 Gentilly, France
{stefan.contiu,emmanuel.leblond}@scille.fr

2 LaBRI, Université de Bordeaux, 33400 Talence, France
laurent.reveillere@u-bordeaux.fr

Abstract. Much research has focused during the last years on the secu-
rity and privacy concerns of public cloud storages. Cryptographic prim-
itives are commonly used to ensure user data confidentiality, authen-
ticity and integrity. Confidentiality has been addressed by the use of
symmetric-key encryption algorithms, while integrity and authenticity
have been achieved by using message authentication codes, secure hashes
or digital signatures. The choice of a specific configuration for securing
an untrusted cloud storage highly depends on the expected security level,
the size and type of data to store and the access pattern to these data.
In this work, we are interested in overcoming the lack of comprehensive
comparison of the costs and effectiveness of cryptographic primitives for
securing public cloud storage, and ease an informed choice between them
based on target usage conditions. We describe the results of an indepen-
dent experimental study of six cryptographic schemes, representative of
the principal design alternatives. Our practical experience report reveals
that the best scheme for a given situation, such as a write-heavy work-
load of mostly small files, is not necessarily the most appropriate for a
different situation such as a read-only workload of large files. We identify
the scheme characteristics that are correlated with these differences and
discuss the pros and cons of each design. Our experimental framework
and results are available in the open for use by the community.

Keywords: Cloud storage · Security · Block cipher modes · Digital
signatures

1 Introduction

Public clouds storage services such as Dropbox or Google Drive provide a con-
venient way for users to store and share personal data. As a result, we have
witnessed a rapid adoption of these services in recent years [19]. Indeed, the
cloud storage market is forecasted to grow from about $24 billion in 2016 to

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
L.Y. Chen and H.P. Reiser (Eds.): DAIS 2017, LNCS 10320, pp. 163–176, 2017.
DOI: 10.1007/978-3-319-59665-5 12

164 S. Contiu et al.

about $75 billion in 2021 [1]. However, despite its success, public cloud storage
space is commonly assumed to be entirely untrusted, providing no guarantees
over unauthorized exposure of user sensitive data. Therefore, it is not surprising
that security and privacy issues in that context has gained increasing momentum
within research community [24].

A traditional approach to ensure user data confidentiality, authenticity and
integrity is the use cryptographic primitives. Confidentiality is addressed by the
use of symmetric-key encryption algorithms, while authenticity and integrity are
achieved by using message authentication codes, secure hashes or digital signa-
tures. Cryptographic schemes are then constructed by selecting among these
primitives depending on the expected level of security and privacy.

Among existing solutions, different configurations have been explored. For
example, CloudProof [18] relies on AES in CTR mode for symmetric-key encryp-
tion, SHA-1 for hashing and RSA with 1024 bits key for signing. DepSky [3] uses
similar cryptographic schemes except that it relies on AES in CBC mode instead
of CTR. BlueSky [21] relies on AES for encryption and uses a message authen-
tication code based on SHA-256 to provide both authenticity and integrity. In
SafeSky [23] the encryption and authentication are combined by using AES in
CCM mode.

Although widely used for general purpose usage, there exists very few stud-
ies comparing the costs and effectiveness of cryptographic primitives for securing
public cloud storage. In this practical experience report, we are interested in over-
coming this lack of a comprehensive comparison between them. We argue that
the choice of a specific cryptographic construction has a direct impact on the
performance and scalability of the secured cloud storage system, thus requiring
a sound knowledge of its intrinsic properties. We consider different usage condi-
tions such as various data size models and cloud workload scenarios and describe
the results of an independent experimental study of six cryptographic schemes,
representative of the principal design alternatives. We consider three different
block cipher modes for AES encryption: chaining mode (CBC), counter mode
(CTR), and an authenticated encryption mode that also covers integrity (GCM).
For the public-key signature primitives, we evaluate the usage of cryptosystems
based on RSA and Elliptic Curve Cryptography (ECC).

In our experiments, we perform both a set of micro-benchmarks and macro-
benchmarks. Micro-benchmarks measure the intrinsic performance of a cryp-
tographic primitive when varying the size of the cryptographic key. Macro-
benchmarks assess how cryptographic primitives perform when a user interacts
with a secured public cloud. We perform read and write operations on three large
data sets modeled by considering different block sizes: uniform sizes, mostly small
sizes, and mostly large sizes. The interaction between the user and the cloud is
modeled based on four cloud workloads inspired from Yahoo! Cloud Serving
Benchmark (YCSB) [7]. The workloads mimic mostly-write, write-heavy, read-
heavy, and read-only operations.

The contributions of our performance comparison study aim at helping prac-
titioners to decide which is the most appropriate cryptographic scheme for a
target security level under certain usage conditions. Firstly, our results show

Benchmarking Cryptographic Schemes for Securing Public Cloud Storages 165

that there is no one-size-fits-all to security in public cloud storage. Secondly, we
identify which are the schemes that better match the studied usage scenarios.
Although AES in CBC in conjunction with RSA is the preferred cryptographic
scheme in the literature [3,5,21], we show that other algorithms can out-perform
it by a factor of 10 under specific conditions. These findings can further be used
to design a cryptographic approach that changes its behavior at runtime based
on contextual information.

The rest of this paper is organized as follows. Section 2 presents the crypto-
graphic primitives we evaluate in our experiments. We describe our experimental
setup in Sect. 3. Section 4 presents our evaluation results and discusses the pros
and cons of each cryptographic scheme with respect to target usage conditions.
Section 5 reviews related work. Finally, Sect. 6 concludes.

2 Cryptographic Building Blocks

Various cryptographic primitives are used together for ensuring confidentiality,
authenticity, and integrity of user data stored in public clouds. As illustrated in
Fig. 1, securing data for public cloud storage is commonly a three step process.
First, the data bock is encrypted using symmetric-key algorithm (step ➊). Sec-
ond, a fixed size message digest is produced by using a one-way collision resistant
function (step ➋) on the input data block. Third, a digital signature algorithm
is used to prove the authenticity of the message digest with respect to the user
private key (step ➌). In the remainder of this section, we describe in more details
each step and related cryptographic algorithms.

Fig. 1. Securing data for public cloud storage

2.1 Symmetric-Key Algorithms

A symmetric-key algorithm provides data confidentiality by the use of the same
secret key for both encrypting and decrypting the data. Among existing algo-
rithms, the one specified by the AES specification has become the de facto
standard and is used worldwide [6]. It is a block cipher algorithm, operating on
fixed-length group of 128 bits called a block with a key size of 128, 192 or 256
bits. To securely transform amounts of data larger than a block, the cipher’s

166 S. Contiu et al.

single-block operation needs to be repeatedly applied accordingly to a block
cipher mode. Many modes of operation have been defined [9], each one offering a
different level of performance and robustness. We now describe the three major
modes that we cover in our study.

CBC. Cipher Block Chaining (CBC) works by chaining each block to its prede-
cessor. At each step, the current block of plaintext is xor-ed with the ciphertext
of the previous block, and then encrypted with the secret key. Since the first
block has no predecessor, a random initialization vector is used instead. The
initialization vector can then be publicly stored together with the ciphertext.
Due to the chaining nature of this mode, the encryption is sequential and can
not be parallelized. However, because each block is xor-ed with the ciphertext of
the previous block, not the plaintext, decryption can be parallelized. Note that
the reuse of the same initialization vector can leak information only about the
first block.

CTR. Counter (CTR) mode generates keystream blocks, which are then xor-ed
with the plaintext blocks to get the ciphertext. It generates the next keystream
block by encrypting successive values of a counter. The counter can be any func-
tion which produces a sequence which is guaranteed not to repeat for a long time,
although an actual increment-by-one counter is the simplest and most popular.
A nonce is combined together with the counter to produce the actual unique
counter block for encryption. Since counter values at different block offsets are
known, this mode can be fully parallelized. However, reusing the same nonce
can leak information about all blocks, making the implementation of CTR more
sensitive than CBC. Nevertheless, this mode is proven to respect tight security
requirements and is formally approved by NIST [8].

GCM. Galois Counter Mode (GCM) is a block cipher mode that performs
both encryption and authentication by combining counter mode and operations
in a finite (Galois) field. GCM is defined for block ciphers with a block size of
128 bits. Implementing GCM can make efficient use of Carry-less Multiplication
(CLMUL), an extension to the ×86 instruction set used by microprocessors from
Intel and AMD [11]. Similarly to CTR mode, GCM takes as input a nonce and
thus reusing the same nonce with the same key leaks information about the
whole message.

2.2 Message Digests

Message digests or simply hash functions are one-way collision resistant func-
tions, mapping an input data block to a short fixed size output. The role of
hash functions is to provide integrity guarantees over the data. Also, they are
utilized as a preceding operation in digital signature schemes, reducing an arbi-
trarily large amount of data to a small output on which the signature is applied.

Benchmarking Cryptographic Schemes for Securing Public Cloud Storages 167

Hash functions work by splitting the data into fixed size blocks, and iteratively
applying a compression function with an intermediate state [9]. Secure Hash
Algorithms (SHA) are a class of secure hashes standardized by NIST in three
family sets (SHA-1, SHA-2, and SHA-3). The first set has been proved insecure
due to collision attacks [22]. The second set is a popular choice, coming with
32 and 64 bits processing variants, and producing outputs of 256, 384, and 512
bits. Lastly, the third family SHA-3 was recently standardized by NIST, not as
a replacement to the previous SHA-2, but as an alternative [17].

2.3 Digital Signatures

Digital signature algorithms are employed for proving the authenticity of a data
block with respect to the user private key. Moreover, they provide the properties
of non-repudiation and integrity, meaning that the signing user can not deny
herself as the signer and that the data block content is not altered. The verifi-
cation of the message and signature pair can be openly performed by anybody
knowing the user public key.

RSA is a public key cryptosystem, based on the difficult mathematical prob-
lem of factoring the product of two arbitrarily large prime numbers. The key
sizes employed by RSA require a much larger length as compared to symmetric
encryption, because solving the mathematical problem is faster than a brute
force attack iterating over all possible keys.

Elliptic Curve Cryptography. (ECC) is a relatively novel direction in public
key cryptosystems [15], that besides a considerable interest from academia, has
also been integrated within technical solutions like Bitcoin, SSH, and TLS [4].
The advantage of ECC over the traditional RSA is the small nature of key
sizes, implying an increase of computational speed. ECC is based on the dif-
ficult mathematical problem of discrete logarithm when the computations are
performed over the points of an elliptic curve. The security of the ECC cryp-
tosystem is highly correlated to the choice of the curve equation. Various curves
have been proposed and formally reviewed, such as the ones standardized by
NIST [14].

2.4 Cryptographic Strength of Key Sizes

The size of the cryptographic key is the principal factor affecting the performance
and the security level of cryptographic primitives. Sufficiently large key sizes
protect the cryptographic algorithms from brute force attacks on the key values.
Therefore, the security strength of a cryptographic algorithm is upper-bounded
by the size of the key used.

Table 1 lists three strength levels (Low, Medium, High) as specified by
NIST [2]. The security strength level represents the upper bound protection

168 S. Contiu et al.

Table 1. Computational equivalence of key sizes (in bits).

Security strength AES RSA ECC SHA-2

Low 128 128 3,072 256–383 256

Medium 192 192 7,680 384–511 384

High 256 256 15,360 ≥512 512

in bits for a brute force attack employed on the key values. The key sizes dis-
played within the same row are computationally equivalent with respect to the
same security strength level. The strength for symmetric encryption is by design
identical to the key size. RSA requires much larger key sizes up to 15,360 bits
for a security strength of 256 bits, because solving the factorization problem
is faster than a brute force attack on the key. Elliptic curve cryptography and
secured hash methods require roughly the double in length.

3 Experimental Cloud-Based Data Store

In order to easily and efficiently evaluate the wide spectrum of cryptographic
schemes described previously, we designed and implemented an experimental
testbed, consisting of a single client accessing data on a public cloud storage.
We assume that only the client can be trusted and thus data must be encrypted
prior transmission to the storage node. The client component performs the actual
processing and transformation (e.g., encryption, hashing) of data blocks before
they are stored, as well as the reverse decoding operation (e.g., decryption, dig-
ital signature). We describe in the remainder of this section the cryptographic
schemes we used in our evaluation, the model of data and the cloud workloads.

3.1 Cryptographic Schemes

We constructed six cryptographic schemes (CBC-RSA, CTR-RSA, GCM-RSA,
CBC-ECC, CTR-ECC, GCM-ECC) using the main primitives described in
Sect. 2. The schemes are constructed by varying the block cipher mode (CBC,
CTR, and GCM) for AES symmetric encryption, and the digital signature algo-
rithm (RSA and ECC). Message digests are generated using the SHA-2 secure
hash algorithm. For each scheme, we use three different cryptographic key sizes
covering the security strength levels defined in Table 1. Each key is pre-generated
before the experiments using a pseudo random generator.

3.2 Data Sets

Users use cloud storage services for data files of various types among them most
popular ones are photos, documents, and music [19]. Such files commonly have
sizes from few hundreds of kilo bytes to several mega bytes. Smaller block sizes,

Benchmarking Cryptographic Schemes for Securing Public Cloud Storages 169

of the magnitude of tens of kilo bytes, are specific for systems that perform de-
duplication [16] or for modeling the entire set of files on a user machine [20].
On the other hand, larger block sizes such as 64 MB are utilized by distributed
file systems operating on fixed size chunks [10]. To cover this variety of file
sizes, we defined three different data sets, as depicted in Table 2, by varying the
probability distribution of sizes.

Table 2. Data sets.

Data set Probability distribution Mean Files Size (GB)

Mostly-small Log normal 256 KB 2,000 0.5

Mixed-sizes Uniform 32 MB 100 3.1

Mostly-large Reversed log normal 64 MB 20 1.2

The mostly-small data set follows a log normal distribution with a mean at
256 KB and contains a total of 0.5 GB of data. The mostly-large data set follows
a reversed log normal distribution of files sizes for a total amount of 1.2 GB of
data. The mixed-sizes data set follows a uniform distribution holding 3.1 GB of
data. For all the three data sets the file sizes range from 1 KB to 64 MB.

3.3 Cloud Workloads

The ratio of read and write operations that a client performs over a cloud stor-
age is specific to a given usage scenario. For example, when using the cloud
storage to backup local files, the workload is governed by write operations. On
the other hand, when sharing files such as photos with a large number of users,
the workload is dominated by read operations.

To model the diversity of cloud workloads, we leverage on YCSB [7], a ref-
erence framework for benchmarking cloud storages. In addition to the three
workloads defined by YCSB (write-heavy, read-heavy, read-only), we introduced
a fourth one (mostly-write) composed of 5% or reads and 95% of write opera-
tions to mimic the behavior of backup scenarios. Table 3 lists the four workloads
of our study and the corresponding ratios of read and write operations. The
mostly-write workload performs a small number of reads (5%). The write-heavy
workload consists of an even number of writes and reads. The two intensive read
workloads, read-heavy and read-only, consider a small amount of writes (5%)
and no writes respectively.

3.4 Implementation

Our implementation of the cryptographic schemes under evaluation relies on the
open-source openssl1 (v1.1.1) library. This library is implemented in a mix of

1 https://www.openssl.org/.

https://www.openssl.org/

170 S. Contiu et al.

Table 3. Cloud workloads

Reads Writes

Mostly-write 5% 95%

Write-heavy 50% 50%

Read-heavy 95% 5%

Read-only 100% 0%

C and hand-written Assembly and can take advantage of hardware acceleration
provided by AES-NI and CLMUL extension instruction sets.

To test in isolation the raw performance of each cryptographic primitive,
we have implemented a set of microbenchmarks in C. Our implementation uses
rtdsc processor instruction to collect the number of cycles from the time stamp
counter (TSC) register.

To evaluate the primitives in realistic settings, we have implemented a testbed
in Python to facilitate the integration with the cryptography.io2 (v1.8) the
reference Python binding for openssl.

The cloud storage implementation contains both a Dropbox interface and a
locally simulated cloud provider as an in-memory key-value store. To prevent
variations of real cloud access latencies interfering with the observed outcomes
and to better isolate the performance of cryptographic primitives, we report the
results when utilizing the simulated cloud storage. To mimic the behavior of a
public cloud storage, we added a delay of 50ms to each request to simulate a
realistic round-trip latency.

4 Results

This section presents our extensive evaluation of the previously described cryp-
tographic schemes. We perform our experiments on a 4-Core Intel i7-6600U
processor at 3.4 GHz with 16 GB of RAM, and operating on Ubuntu v16.04
LTS. We first test in isolation the cryptographic primitives via a set of micro-
benchmarks, and we finally evaluate the primitives in realistic settings.

4.1 Micro-Benchmark

Our first set of experiments evaluate the intrinsic performance of cryptographic
primitives for increasing security strength levels. In this scenario, the primitives
are tested in isolation via a specialized client that sequentially perform an oper-
ation (e.g., encryption, signature) on block sizes from 512 KB to 64 MB. We
repeatably execute 50 times each operation on randomly generated data and
averaging the consumed CPU cycles. Our preliminary results confirm that the
number of CPU cycles is always linear with respect to the size of the input data.
In the remainder, we thus only show the average number of cycles per byte.
2 https://cryptography.io/.

https://cryptography.io/

Benchmarking Cryptographic Schemes for Securing Public Cloud Storages 171

Fig. 2. Performance of AES (cycles per byte)

Figure 2 presents our results for AES encryption and decryption. We notice
that parallelizable operations have a considerable performance improvement
compared to the non-parallelizable encryption in CBC mode. This large per-
formance improvement by a factor of 4.5 for encryption is due to the pipelining
technique supported by the AES-NI instruction set at the processor level. We also
notice that the performance overhead increases almost linearly with the targeted
security strength level.

Fig. 3. Performance of SHA-2 (cycles per byte)

The cost of the SHA-2 hashing function is shown in Fig. 3. The SHA-256
method, for a low security strength level, requires on average 6.4 cycles per
byte. Hashing for stronger security strength levels always perform better with
an improvement of about 33%. The reason is that the calculation is done on
a larger length of data at a time. Performances of SHA-384 is comparable to
SHA-512, confirming that it uses the same algorithm, but truncating the hash
to a smaller output. As SHA-512 offers both the higher security strength and
the best performance, we use it in our macrobenchmark.

The performance results of digital signatures based on RSA and ECC are
depicted in Fig. 4. Both signing and verification operations work over the secured
hash produced using a hashing function such as SHA-2. Therefore, the time does
not depend on the size of the input data. We thus consider only the total number
of cycles required to perform the operation. The cost of the signing operation
using RSA drastically increases with the size of the key. For example, the per-
formance cost increases up to 614 millions of cycles for the strongest security

172 S. Contiu et al.

Fig. 4. Performance of digital signature

strength level (values are truncated to 10 millions in Fig. 4a), more than 100
times the cost required for the lowest security level. On the other hand, elliptic
curve signature is dramatically faster, providing a performance of 7, 58 and 153
times faster than RSA for equivalent key strengths. For the verification oper-
ation, contrary to singing, the performance of the two cryptosystems reverses.
RSA performs better than Elliptic Curve, however the difference between the
two is not at all as dramatic as in the case of signing.

4.2 Macrobenchmark

In this section we evaluate the cryptographic schemes in a more complex scenario
that involves realistic data sets and cloud workloads, as described in Sect. 3. We
measure the total time required by a client to perform all the read and write
operations on the input data set. For each entry of the data set, we randomly
select an operation (either read or write) to follow the probability distribution
defined by the cloud workload. Figure 5 shows our results for the mostly-small
test set. We can notice that RSA performs worse on mostly-write and write-heavy
workloads when the security strength increases. On the other hand, read-heavy
and read-only workloads do not present this trend as the verification process of
the RSA signature is cheap. The CTR-ECC cryptographic scheme shows always
a good performance independently of the cloud workload or the security strength.

The results of our experiments for mostly-large sizes are shown in Fig. 6.
Except for RSA that performs worse with mostly-write and write-heavy work-
loads, we observe that differences between cryptographic schemes reduce as read
operations dominate more and more the workload. We notice that RSA outper-
forms ECC by a insignificant factor of 2% in read-only workload. We can also
notice that the performance gap between the schemes based on CBC and the
ones using CTR or GCM decreases almost proportionally with the number of
write operations.

Similarly to mostly-large sizes, we observe for mixed-sizes (see Fig. 7) that
RSA performs worse with mostly-write and write-heavy workloads and that
the gap between the different schemes tends to reduce as the number of read
operation increases.

Benchmarking Cryptographic Schemes for Securing Public Cloud Storages 173

Fig. 5. Total time for small file sizes

Fig. 6. Total time for large file sizes

Fig. 7. Total time for uniform file sizes

4.3 Discussion

Our results show that CTR-ECC performs better in almost all usage scenarios.
This scheme should be preferred if there is no prior knowledge on the workloads
or data sizes.

174 S. Contiu et al.

However, we note that specific scenarios may require fine tuned schemes to
maximize performances. Indeed, CTR-ECC performs better for mostly-writes
and write-heavy workloads while CTR-RSA performs slightly better for read-
heavy and read-only workloads. Furthermore, for read-only workloads CTR-RSA
can be safely replaced by CBC-RSA, as their performances are very similar
within this context. If information about data sizes is available, then a CTR-
based scheme performs better as the data sizes increase.

When security is not a constraint, CTR-ECC and CTR-RSA are interchange-
able as best performers. Contrary, when strong security strength is required,
schemes relying on RSA should be avoided as they may induce severe perfor-
mance penalties.

5 Related Work

Many previous work make use of cryptographic schemes for securing cloud stor-
ages. However, to the best of our knowledge, none of them report the result of a
study to evaluate the rationale behind specific cryptographic choices. Some use
of AES in CBC mode [3] while others use the CTR mode [18]. Furthermore, some
even omit to describe the cipher mode they rely on [13,16]. Our benchmarking
study shows that CTR outperforms CBC almost always and should be preferred.
Moreover, we indicate that schemes using RSA for digital signatures [3,18] are
suitable only for corner cases characterized among others by read-heavy and
read-only workloads, and that ECC outperforms RSA in most usage conditions.

The costs of confidentiality, integrity and authenticity have been evaluated
by Burihabwa et al. [5] within the cloud storage context. Besides a single cloud
model, the study also considered the dispersal of confidential data over multiple
storages by using erasure encoding. Although the study makes use of crypto-
graphic primitives, there is no debate over different strength levels achieved by
cryptographic keys, nor about the modeling of both the replayed test set and the
read/write requests. Furthermore, the study makes use of AES in CBC mode
coupled with RSA, a cryptographic scheme that, according to our findings, it is
suitable only for read-only cloud workloads over mostly-small sizes.

A performance comparison study for digital signatures based on RSA and
ECC has been addressed in a general context [12]. The authors propose the
use of ECC for scenarios dominated by signing operations, while RSA have
been proposed for scenarios dominated by verification operations. Similarly, the
results of our study suggest the use of ECC for mostly-write and write-heavy
workloads, and RSA for read-heavy and read-only workloads.

6 Conclusion

We have studied and compared, in this practical experience report, the perfor-
mance of several cryptographic primitives that are widely used to implement
security and privacy in public cloud storage. The objective of this experimental

Benchmarking Cryptographic Schemes for Securing Public Cloud Storages 175

study was to compare the costs and effectiveness of cryptographic primitives for
securing public cloud storage, and not to develop original schemes.

We conducted a wide range of experiments on six different cryptographic
schemes both to measure their raw speed and their performance when used in
a realistic cloud storage setup. Our observations notably highlight that the best
scheme for a given situation, such as a write-heavy workload of mostly small
files, is not necessarily the most appropriate for a different situation such as a
read-only workload of large files.

We hope that our study will bring valuable insights and guidance to other
researchers interested in using cryptography techniques for data storage in the
cloud.

Availability. Our experimental framework and results are available in the
open for use by the community at the following webpage: https://github.com/
stefan-contiu/cloud-crypto-benchmark.

Acknowledgment. This work was partially supported by Scille and DGA under con-
tract RAPID-172906010.

References

1. Cloud storage market worth 74.94 billion USD by 2021 - MarketWatch (2016).
http://www.marketwatch.com/story/cloud-storage-market-worth-7494-billion-
usd-by-2021-2016-09-06-72033123

2. Barker, E.: Recommendation for key management part 1: general. Technical report,
National Institute of Standards and Technology, July 2016

3. Bessani, A., Correia, M., Quaresma, B., André, F., Sousa, P.: DepSky: dependable
and secure storage in a cloud-of-clouds. In: Proceedings of the Sixth Conference
on Computer Systems, pp. 31–46, April 2011

4. Bos, J.W., Halderman, J.A., Heninger, N., Moore, J., Naehrig, M., Wustrow, E.:
Elliptic curve cryptography in practice. In: Christin, N., Safavi-Naini, R. (eds.)
FC 2014. LNCS, vol. 8437, pp. 157–175. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-45472-5 11

5. Burihabwa, D., Pontes, R., Felber, P., Maia, F., Mercier, H., Oliveira, R., Paulo, J.,
Schiavoni, V.: On the cost of safe storage for public clouds: an experimental eval-
uation. In: 2016 IEEE 35th Symposium on Reliable Distributed Systems (SRDS),
pp. 157–166. IEEE, September 2016

6. Chown, P.: Advanced encryption standard (AES) ciphersuites for transport layer
security (TLS). Technical report (2002)

7. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, pp. 143–154. ACM (2010)

8. Dworkin, M.: Recommendation for block cipher modes of operation: methods and
techniques. Technical report, DTIC Document, December 2001

9. Ferguson, N., Schneier, B.: Practical Cryptography, vol. 23. Wiley, New York (2003)
10. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: ACM SIGOPS

Operating Systems Review, vol. 37, pp. 29–43. ACM, October 2003

https://github.com/stefan-contiu/cloud-crypto-benchmark
https://github.com/stefan-contiu/cloud-crypto-benchmark
http://www.marketwatch.com/story/cloud-storage-market-worth-7494-billion-usd-by-2021-2016-09-06-72033123
http://www.marketwatch.com/story/cloud-storage-market-worth-7494-billion-usd-by-2021-2016-09-06-72033123
http://dx.doi.org/10.1007/978-3-662-45472-5_11
http://dx.doi.org/10.1007/978-3-662-45472-5_11

176 S. Contiu et al.

11. Gueron, S., Kounavis, M.E.: Intel R© carry-less multiplication instruction and its
usage for computing the GCM mode. White Paper, May 2010

12. Jansma, N., Arrendondo, B.: Performance comparison of elliptic curve and RSA
digital signatures. University of Michigan College of Engineering, April 2004

13. Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Sion, R., Curtmola, R.,
Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) FC 2010. LNCS, vol.
6054, pp. 136–149. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14992-4 13

14. Kerry, C.F.: Digital signature standard (DSS). FIPS PUB 186-4, July 2013
15. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
16. Li, M., Qin, C., Lee, P.P.: CDstore: toward reliable, secure, and cost-efficient cloud

storage via convergent dispersal. In: USENIX Annual Technical Conference, pp.
111–124, July 2015

17. NIST: SHA3-Standard: permutation-based hash and extendable-output functions
(DRAFT FIPS PUB 202). Technical report, May 2014

18. Popa, R.A., Lorch, J.R., Molnar, D., Wang, H.J., Zhuang, L.: Enabling security in
cloud storage SLAs with CloudProof. In: USENIX Annual Technical Conference,
vol. 242, May 2011

19. Seybert, H., Reinecke, P.: Internet and cloud services-statistics on the use by indi-
viduals. Technical report, Eurostat, December 2014

20. Tanenbaum, A.S., Herder, J.N., Bos, H.: File size distribution on UNIX systems:
then and now. ACM SIGOPS Oper. Syst. Rev. 40(1), 100–104 (2006)

21. Vrable, M., Savage, S., Voelker, G.M.: BlueSky: cloud-backed file system for the
enterprise. In: Proceedings of the 10th USENIX Conference on File and Storage
Technologies, pp. 19–19. USENIX Association, February 2012

22. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).
doi:10.1007/11535218 2

23. Zhao, R., Yue, C., Tak, B., Tang, C.: SafeSky: a secure cloud storage middleware
for end-user applications. In: 2015 IEEE 34th Symposium on Reliable Distributed
Systems (SRDS), pp. 21–30. IEEE, September 2015

24. Zhou, M., Zhang, R., Xie, W., Qian, W., Zhou, A.: Security and privacy in cloud
computing: a survey. In: 2010 Sixth International Conference on Semantics Knowl-
edge and Grid (SKG), pp. 105–112. IEEE, November 2010

http://dx.doi.org/10.1007/978-3-642-14992-4_13
http://dx.doi.org/10.1007/11535218_2

	Benchmarking Cryptographic Schemes for Securing Public Cloud Storages
	1 Introduction
	2 Cryptographic Building Blocks
	2.1 Symmetric-Key Algorithms
	2.2 Message Digests
	2.3 Digital Signatures
	2.4 Cryptographic Strength of Key Sizes

	3 Experimental Cloud-Based Data Store
	3.1 Cryptographic Schemes
	3.2 Data Sets
	3.3 Cloud Workloads
	3.4 Implementation

	4 Results
	4.1 Micro-Benchmark
	4.2 Macrobenchmark
	4.3 Discussion

	5 Related Work
	6 Conclusion
	References

