Chapter 5
Processing Direction with Ordered Fuzzy
Numbers

Piotr Prokopowicz

Abstract It was already mentioned in previous sections that the Ordered Fuzzy
Number (OFN) model can represent a kind of tendency or direction. However, for a
real practical use of this feature the tools for processing it are also needed. Of course
some kind of quantitative processing is provided by the definitions of calculations,
but there is much more potential for this feature apart from arithmetic operations.
This part presents the idea of a property of processing data called sensitivity to the
direction. The main focus here is placed on the proposition of a direction deter-
minant parameter that can be understood as a kind of measure of a direction. This
determinant is a basis for the definition of such elements as the compatibility between
two OFNs and also for an inference operator for a rule where the OFNs were used.
The propositions of such operations are the important part of these sections of the
book.

5.1 Introduction

The Ordered Fuzzy Number (OFN) model introduces a new feature, the direction.
It is the representation of order of the up-part and down-part of an OFN from
Definition 4.1 in Chap. 4. It is used for defining those arithmetical calculations that
do not have to produce more imprecise results. But there is another potential of this
feature. In fact if we can use OFN to describe the situation, “A vehicle speed is about
50km/h and it is growing,” it would be more efficient to have the potential to use it
not only for calculations but also for more complex processing as, for example, in the
rule, “IF speed is 50 km/h and is growing, THEN safety of a city drive is 75% but it is
lowering.” In general, it is similar to the idea of the gradual fuzzy system (see [8]),
however, the source of the OFN concept is quite different. An interesting approach
to trend modeling using the classical fuzzy numbers idea is also presented in [11],
where the trend is understood as a gradual dependence between attributes. However,
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gradual fuzzy rules have a form, “The more X is F, the more Y is G,” but here for the
OFN model a more appropriate form is IF X is in F which is growing/decreasing,
THEN Y is in G which is growing/decreasing. Moreover, the OFNs in a natural way
represent a tendency unlike the classical fuzzy sets/numbers where modeling a trend
requires additional actions.

It was already presented in the previous chapter (see Sect.4.7) of this book that the
reversing of the axes in the definition of OFNs compared to typical fuzzy conceptions
reverses focus in the analysis of the problems. Functions that form an OFN have a
target set that is a universe of real numbers. It seems proper if we want to model a
quantitative problem. This reversal does not prevent the OFN model from being a
tool for an imprecise data representation. Additionally, arithmetic operations are not
the only form of processing the quantitative values. One of great advances of fuzzy
set theory is easy and intuitive modeling of the linguistic formulas with the reference
rules. If we want to retain this advantage also for the OFN model we need a basic tool
for comparing two values that can be called a compatibility. For practical linguistic
use the compatibility is a result of the sentence or statement type A is B, where A
and B are imprecise values, the OFNs in this case.

Presenting the tools for the processing of OFNs other than direct calculations
is the main goal of these sections of the book. The basic idea here is to preserve
good intuitiveness of the general fuzzy approach and combine it with the tendency
modeling potential of the OFN model. The methods presented in the next sections
are sensitive to the direction (see [23, 25]).

Remark 1 As the sensitivity to the direction we understand the property of opera-
tion. This property means that the result can be different if we change the direction
of the OFNs used in the operation.

It should be noted that the above remark is a general postulate, not a formal
definition of the property. The problem is quite complex, thus more explanation is
needed. We especially postulate that the result changes if only one of the components
(OFN) of the operation will change the direction (see Definition 4.2 the reversal of
direction operation from Chap. 4). In many cases where two data items change a
direction our intuition suggests the result should not be changed. For example, let us
look at the linguistically described rules that consider tendency:

e IF speed is decreasing THEN safety is increasing.
e IF speed is increasing THEN safety is decreasing.

Both of them express the same intuition, yet with opposite tendency, thus the change
of direction for both values speed and saf ety should not really change the result.
In addition, when analyzing sensitivity to the direction in the OFN methods, it is
necessary to consider their specificity such as the improper OFNs (see previous
chapter Sect. 4.4). Thus, a method that is generally sensitive to the direction may
give the same result despite change where the up-part and down-part of the given
OFN are equal. Apart from many improper OFNs such a situation will also arise in
the singleton case. Thus the lack of change in the result for some specific situations
does not negate the method as one that is sensitive to the direction. Therefore when
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we postulate for a given method to be sensitive, the words “change of direction can
(not must) change the result” are a clue.

It is worth noting that the basic arithmetic operations on the OFN model presented
in Sect. 4.5 are generally sensitive to the direction. If the up-part and down-part of
OFN A are not equal, then the reversal of direction operation (see Definition 4.2 from
previous chapter) generates A|~ # A. Therefore the result of an arithmetic operation
will be different after reversal of the single input value.

The purpose of this chapter is to propose a full set of methods and operations
to define fuzzy systems based on OFNs that are sensitive to the direction feature.
Therefore in the next sections, a general tool for processing a tendency of OFNss is
presented. It is called the direction determinant (see also [24, 25]) as it is a kind
of measure of direction for a given element of OFN support. Next the compatibility
of OFNs as a result of statement A is B is proposed see [25] that uses the direction
determinant. Finally a proposal of a technical inference method is presented that is
meant to be a practical realization of the rule /FF X is A THEN Y is B.

5.2 Direction Measurement Tool

The key element of the OFN model is the order between the up-part and down-part,
which is independent of the real numbers. This can also be called the direction or
orientation. Itis taken into account in the definitions of arithmetic operations and their
extensions, which make the calculations flexible and unified and more importantly,
their properties and relationships are consistent with calculations on real numbers
(see previous part of this book as well as [22]). Thus it seems natural that information
processing methods based on OFNs also take into account the direction. Here the
tool that allows meeting this assumption in defining methods is presented. However,
it is helpful to start with a supporting structure that simplifies further description.

In general, the propositions presented in this section refer to the concept of the
membership function for the OFN model presented in Sect. 4.3.3.

5.2.1 The PART Function

The PART function as the result presents information about the part of the OFN that
contains the given argument [24].

Definition 1 For the OFN A defined on X the PART function X — Y is determined
as follows.

CONST 4 : x € CONST 4,

UP A-X € UP As

PART 4(x) = y = 5.1
Ax) =y DOWN 4 : x € DOWN 4, SR

NONE, : x € NONE 4.
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Fig. 5.1 Specific parts of the 11
support of an OFN -+
T — T T T >
X X, Xa X X,
NONE uP CONST DOWN NONE
where:
xeX,

Y = {CONST 4, UP s, DOWN 4, NONE 4},
CONST 4 — A subset of X for which the membership function of A number is equal
to 1.
UP 4 — A subset of X for which the inverse of the up-part has values.
DOWN 4 — A subset of X for which the inverse of the down-part has values.
NONE 4 — A subset of X for which the membership function of A number is O.
Figure 5.1 illustrates the effect of the PART function. Example results presented
there are as follows.
PART (x;) = UP
PART (x3) = CONST (5.2)
PART (x4) = UP

Fuzzy numbers are fuzzy sets defined over the space (or subspace) of real numbers.
Thus the sets U P, CON ST, and DOWN can be treated as numerical intervals (see
also Sect. 4.2 from previous chapter). We use the following denotations of their
boundaries.

UP = (s,17)
CONST =[17,17] (5.3)

DOWN = (11, e)

5.2.2 The Direction Determinant

The direction of the OFN is an additional property in comparison with classical fuzzy
numbers and its meaning is different from the degree of membership. Therefore, if
we want to process the full information contained in the OFN, we need an additional
parameter that will represent a new property.
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Fig. 5.2 Proportional
direction determinant

Y
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The proposition is direction determinant (see [23-25]). The purpose of this
parameter is to represent a kind of direction “intensity” of the argument. The direction
determinant is strictly connected with a particular OFN and is defined only for its
support (see Sect. 4.3.2). The general idea is to measure a distance of argument from
the core of the OFN. It is calculated from the ratio of the position in support of the
considered argument in relation to the whole fuzzy boundary of the OFN, to which
this argument belongs. It is well illustrated in Fig.5.2.

Such an approach is connected with one of the useful interpretations of the OFN
direction [13, 14]. The intuition behind the direction determinant is that the partial
membership at the fuzzy boundaries can represent the imprecise concept of “now”. If
we treat this imprecision as symmetrical, then our fuzzy “now” in the context includes
as much time forwards as backwards. Hence, U P and DO W N in the scale of time
(independently of the arguments) are equal. Thus there is a reason for calculating
the determinant of the element situated on U P or DOW N to the proportion of the
respective intervals and not only to the value.

Definition 2 Let A denote the OFN, and x be an element of the support. The pro-
portional direction determinant of x in relation to A marked dir? is calculated
as a result of directional function D : supps, — (—1; 1) for the argument x in the
following way.

0  :for PART(x) = CONST
dir® = Dy(x) = { $=) : for PART(x) = UP (5.4)

=12 : for PART(x) = DOWN

The above-mentioned determinant is called proportional because this is a certain
simplification/approximation of the general idea. This facilitates practical implemen-
tation and still serves its purpose.

It is worth noting that, if the degree of membership is equal to zero, the direction
determinant is undefined, because the argument is not part of function domain D (the
value is outside OFN support). It should also be noted that for the arguments in the
CONST interval, we have the direction determinant that is equal to zero, which is
justified, as these are the values about which we have no doubt: their membership is
full (equal to 1). According to this intuition we should also expect (and this is taken
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into account) that, the closer the arguments are to the kernel of the fuzzy number,
their direction “intensity” (i.e., the direction determinant) is smaller. We should also
note that the sign of the determinant clearly shows its membership to a selected part.
If it is negative, it means that the argument belongs to U P, and if it is positive, then
the argument is part of DO W N. Let’s call this the sign dependency. Thus in certain
situations we can simplify the analysis. When processing the data represented by
the OFNs we wish to include only the information about which part we deal with
(up — part or down — part); the information about the sign of the determinant is
sufficient without considering the exact value.

Based on the above analysis, the trivial variant of direction determinant can be
proposed.

Definition 3 Let A denote the OFN, and x be an element of the support. The trivial
direction determinant in relation to number A for x marked as dir, is calculated
with the use of the value of the directional function D4 : supps — (—1; 1) for the
argument x in the following way.

0 :for PART(x) = CONST
dirf = Dy(x) = { —1: for PART(x) = UP (5.5
1 :for PART(x) = DOWN

As can be noted, the trivial direction determinant simply remaps aset (U P, CON ST,
DOWN) into the set (—1, 0, 1).

Having a basic tool, we can now propose the methods that are sensitive to the
direction.

5.3 Compatibility Between OFNs

The fuzzy expression (or statement) “A is B” where A and B are fuzzy sets is a
basis for the analysis where we want to apply the fuzzy sets and their imprecise
mechanisms. The calculation result of this statement can be called a similarity or
compatibility of A with B. The idea of compatibility and similarity between fuzzy
sets was discussed in many publications (e.g., [, 6, 12, 27]).

In this section the idea for calculating compatibility between two OFNSs is pre-
sented [25]. We search methods sensitive to the direction, therefore a solution is to
use the direction determinant in processing. Thus, as the result of fuzzy statement
A is B a pair of values is proposed. First is a truth value in classical fuzzy meaning:
the value from interval [0, 1], which indicates a degree of compatibility between
two pieces of imprecise data represented by the OFNs. The second is the direction
determinant, which retains information about direction.

Definition 4 For Ordered Fuzzy Numbers A and B the result of expression “A is B”
called directed fuzzy compatibility (DFC) and labeled COM P4 p is composed of
two values: the truth value T4 5 and direction determinant D 4 g calculated as follows.
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A
1
N A 5
truth value
0,25 up-part
| .
T T T ! T >
1 2 3 4 5
Tag=pp(1,5)=0,25 Dyg=Dg(1,5) =-0,75
Fig. 5.3 The compatibility of a singleton with a general OFN
COMP4p = (Tap, Dap) (5.6)
Typ = max(min(pua(x), pp(x))) :x € X (5.7
If T4 p is zero, then D 4p is unspecified, else
Dap = Dg(xo0), xo = x : pup(x) = Tap (5.8)

where X C R is a domain of given OFNSs, w4 (x), up(x) are membership functions
of A and B, and Dy is the direction determinant of B for given x.

Figure 5.3 shows the result of compatibility of A with B, when A is a singleton.
For this example the truth value is 745 = 0, 25 and the direction determinant is
Dyp = —0,75. The D4p can be interpreted as an indication of shifts of A to B. The
negative values mean the shift in the direction of the up-part of B, and the positive
shift in the direction of the down-part of B. Such behavior can also be understood
as a kind of directed relative dependence between values.

An Ordered Fuzzy Number can be understood as an extension of classical fuzzy
numbers; the result of the fuzzy expression “A is B” should be an extension of the
classical solution. It is important that the boundary dependencies for truth values
are preserved in the new proposition. Especially when there is no shared part of the
support between the numbers A and B, the truth value of the result is zero. On the
other hand, when A is the same number as B, the truth value is equal to one regardless
of the directions of the numbers. In addition to these results, we also achieve intuitive
behavior of results with partial compatibility.

It is understandable that the expression “A is B” in a context of the truth value is
symmetrical. However, if we want use direction-sensitive methods we need a tool
that gives us different results in such contexts as presented above in Definition 4.

The examples in Figs. 5.4 and 5.5 present the results of DFC with different direc-
tions of the OFNs. For both cases we can observe that truth value results are the
same. But the difference is specified just by the direction determinant.

However, for the opposite direction of OFNs (see Fig.5.5) the direction determi-
nants are the same. As we remember, the determinant part of the result indicates the
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A
1
A B
truth value A
down-part up-part
»
T \ I I T »
1 2 3 4 5
Tas=Tea=Ma(2,5)=1A(2,5)=0,5 Dp=Dg(2,5)=-0,5
Dga=Da(2,5)=0,5
Fig. 5.4 The compatibility between two OFNs with the same direction
A
1__
A B
truth value A
down-part down-part
»
T \ I I T »
1 2 3 4 5
Tap=Tpa=Hp(2,5)=14(2,5)=0,5 D,=Dj(2,5)=0,5

Dga=Da(2,5)=0,5

Fig. 5.5 The compatibility between the OFNs with the opposite directions

shift of A to B. For “A is B” A is shifted to B in the direction of the down-part of B,
and for the “B is A” B is shifted to A in the direction of the down-part of A. Thus
both shifts in the context of parts of OFNs have the same direction.

To preserve usefulness the above compatibility with classical fuzzy ideas is impor-
tant to retain some clue behavior. That is, if the truth value of compatibility is equal
to 1, this means we are not analyzing the direction determinants. Such a solution
preserves the boundary dependencies: when the truth value is zero we have no com-
patibility, and with the truth value equal to one we have full compatibility regardless
of the direction.

It must be emphasized that the direction determinant can be used as a tool for
measurement and comparison of the directions of OFNs in different ways. Methods
concerning direction should use that parameter as an element in their definition, but
if we want to use OFNs in data processing only for their good arithmetic then we can
ignore the direction determinant and use only the truth value for further processing.
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5.4 Inference Sensitive to Direction

One of the main applications of fuzzy sets is a fuzzy system. Its core is a base of rules.
Apart from the initial Chaps. 1 and 2 of this monograph, there are many publications
that consist of the overviews of basic conceptions of fuzzy sets and modeling fuzzy
systems [3, 16, 18, 19, 26]. The general advantage of fuzzy systems is the possibility
to model the rules easily using linguistic description.

The basis for the processing of fuzzy rules is the operators of inference. They
describe algorithms for transferring given fuzzy input into a fuzzy answer. Generally
these methods are based on implications. However, there are also popular solutions
including the MIN or PROD, which formally are not the implications, but their
practical usefulness is proved. If we deal with quantitative imprecise data, we can
use the OFNs instead of classical fuzzy numbers. We can ignore the direction and use
the same methods. However, if we want to process additional information contained
in the new model, we need methods sensitive to the direction.

When processing imprecise information using classical fuzzy methods, we often
have fuzzy numbers at the input. However, during the process, in principle we ignore
the quantitative nature of the data, focusing primarily on their qualitative aspect.
Thus, even if input data are the fuzzy number, we rarely also get the fuzzy number at
the output before defuzzification. In some cases it can be somehow inconsistent. For
example, in the rule, “IF temperature is about 10 °C THEN heating should be about
200 W,” when processing data with classical fuzzy inference methods, in general, the
output will not be a fuzzy number, although part of the rule, “Heating should be about
200 W,” clearly suggests a quantitative output. It can be particularly difficult in the
cases where the result of inference is to be used as fuzzy data without defuzzification
later for the calculations in further processing of this information.

In the case of the OFN model and processing methods that can be called “arith-
metic” (see [20, 21, 23, 24]), at each stage of the process we deal with the quan-
titative aspect of the data. Thus consistently we obtain fuzzy numbers at each step:
the aggregation of premises, the inference, and the accumulation-aggregation of the
rules answers.

5.4.1 Directed Inference Operation

An inference mechanism presented here is based on the generalized modus ponens
(compare with the information in Chap. 2), where the main role is played by a rule
of the type:

IF X is A THEN Y is B (5.9)

where A, B are fuzzy values that model a rule and X,Y, input and output variables.
In the generalized modus ponens, where the data are represented by fuzzy numbers
(or sets), the whole mechanism of inference is closed in the mathematical rule. This
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rule describes an algorithm for calculation of the answer, Y value. Sometimes it is
also called an inference operator (see [9, 17]).

The proposition presented here is dedicated for the OFN model, therefore in the
rule (formula (5.9)) values are presented as such objects. The statement, “X is A,” is
calculated as compatibility between OFNs. The method was described in the previous
section.

Definition 5 For the rule as in formula (5.9) let A and B be the OFNs. Let X be
the input value also represented by an OFN. The result of “X is A” is calculated
as directed fuzzy compatibility; COM Pxs = (Txa, Dxa), where Tx,4 is the truth
value and Dy 4 is the direction determinant part of CO M Py 4.

The directed inference by the multiplication with a shift (DIMS) are the cal-
culations of answer Y of the following rule: if Tx 4 = O there is no activation of the
rule, therefore the answer is not calculated. In other cases,

Y =B+ [Dxal-c
where

s—B : Dxs <0
CcC =

e—B : Dxs>0

(5.10)

It is worth noting that this is not the classical logical inference. The truth value
of the premise part of the rule is used to check whether the rule can be implemented
at all. The specificity of the presented method is that the inference is made through
arithmetic operations. We do processing of the quantitative data with calculations.

5.4.2 Examples

For better understanding of the proposed method, an example is useful. Let us assume
that for the rule from formula (5.9) we have OFNs A as in Fig. 5.6a and B in Fig. 5.6b.
In Fig.5.6a we can also find the input value X.

According to the Definition 4 “X is A” is COM Pxs = (Tx4 = 0.66; Dxs =
—0.33). Using the new inference we get the result shown in Fig. 5.6¢c. In Fig.5.7a we
have a situation where the X OFN value changes only a direction (but does not change
the shape). This time the result of “X is A” is COM Pxs = (Txa = 0.66; Dx4 =
0.33). As we can see in Fig. 5.7b the result of inference was changed. This is related
to the change of direction determinant.

If we analyze the proposed method of inference in more detail, we can note that
if the Dy 4 is closer to —1, the result of inference will be the narrow fuzzy number
situated at the U P part side of support of OFN B. On the other hand, when the Dx 4
approaches 1, the result of inference is aimed at extreme values of support but on the
DOW N side. Finally, when Dx4 = 0 and the Tx4 = 1 it means that the X is fully
compatible with A. Thus the result of inference is exactly the number B, the value
from the conclusion.
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B output
domain
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(c)
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output
domain

Fig. 5.6 a Example OFNs X and A; b OFN B from rule conclusion, ¢ Y the result of inference
operation

(a) (b)
1
X A 1
~B
input ~~~~ output
. domain Ay A doma/rl
T T T T » R | T T T T T T »
| 1 2 3 4 6 8 12

Fig. 5.7 a OFN A with opposite direction and X is the same as before; b the new Y result of
inference operation

In practical applications (a fuzzy system, e.g.), a pair of values should be consid-
ered as a result of inference: the truth value of the premise part of a rule, and the
OFN calculated in accordance with the Definition 5.

Comparability with conventional fuzzy inference operators is important to pre-
serve in general similar usefulness in practical situations for the new conceptions.
Therefore, behavior of the output of the inference in boundary cases is compatible
with classical fuzzy solutions (see [3, 18, 19]). If there is no compatibility in the
premise part “X is A”, then the rule is not activated, and on other side if the activation
is full, then the result is the exact value from a conclusion.

5.5 Aggregation of OFNs

A purpose of this section is to propose an aggregation operator that is generating
intuitively good results as well as being consistent with the OFN model. The main
basics of the proposition come from the paper [24]. The method presented here
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maintains the expected properties of the aggregate functions [2, 4]. Additionally, it
also takes into account the key idea of OFNs of the direction of the components.

5.5.1 The Aggregation’s Basic Properties

Generally, an aggregation is an operation used in those situations when we need to
find a single value representing the set of various numbers/data. There can be different
application areas specified where an aggregation [2] is needed, for example, making
decisions based on multiple criteria, or choosing from a variety of peer evaluations,
one of which is treated as the result of them all. One important area of application is
also the aggregation of the rule premise in a rule-based fuzzy system, where we have
many input variables. The aggregation operation is a function that converts a number
of input data into a single value. Transformation depends on the chosen method,
but it is expected that in the process of determination of the result all of the input
data were considered (in some way). Typically, aggregations where the number of
input data is greater than one are used. Moreover, to call a function an aggregation,
it should have two elementary properties (see [4]):

1. Boundary conditions. If all input data are minimal (or maximal), the result will
also be the minimal (maximal) value. In the case of aggregation A for values
from interval [0, 1] (the range of values of a fuzzy set), when all the arguments
are equal to 1, the result of aggregation is also equal to 1 and similarly for zeros:

(5.11)

2. Nondecreasing. The function is nondecreasing against each input variable. This
means that the growth of any of the input data cannot cause a decrease of the
result of aggregation A.

VicaunXi Vi A (X1 ey X)) 7 (V1eees Vo) = AL, oo, X0) < A1, w05 Vi)
(5.12)

Apart from these two elementary properties a number of other important properties
such as continuity, symmetry (anonymity), and idempotency are pointed out [2, 4,
10].

Continuity means that a small change in one input argument implies small change
of the result. In the context of engineering applications, continuity corresponds to
intuition, which is related to the fact that a small error in the entry cannot cause a
large error in the output.

Symmetry means the independence of the result from the sequence of input data.
This property is also called anonymity, because based on the output it is not possible
to determine the sequence of input values.
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Idempotency means that if each independent input has the same value, this par-
ticular value will be the result of aggregation. It may be noted that the boundary
conditions are, in fact, idempotent for the maximal and minimal values.

There are also many different properties that can characterize an aggregation
operator [2, 4, 10]. However, those mentioned above are the most essential and
desirable in practical applications.

5.5.2 Arithmetic Mean Directed Aggregation

The basic, simple, and intuitive idea is to use an arithmetic mean idea in aggregation.
As the arithmetic operations (thus the adding too) are sensitive to the direction, there-
fore the aggregation based on them also will be. The flexibility of the calculations
grants a possibility for freely mixing the OFN objects with crisp numbers in math-
ematical formulas. Thus we can define the aggregation exactly like the arithmetic
mean for the real numbers and it will preserve the sensitivity to the direction.

Definition 6 Theresultof arithmetic mean directed aggregation (AMDA)is OFN
A calculated for L any set of OFNs such as:

L;
A=xr =t (5.13)
n

where L; € L is the ith OFN object from L, and #n is the amount of elements in L.

Figure 5.8 presents the example of aggregation of two OFNs.

5.5.3 Aggregation for Premise Parts of Fuzzy Rules

Definition 6 from the previous section is simply the direct transfer of the idea of
arithmetic mean into the OFN space of all OFNs. However, the popular application

L,+L,

1 A=
T 2

L,

Fig. 5.8 Result of AMDA operation for two OFNs L and L;
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of the aggregations of fuzzy sets, and also fuzzy numbers, is a fuzzy rule with many
input variables (see Chap. 2). Such rules have a premise part with a number of
elementary fuzzy expressions of type “X is L”. For example,

IF X, is Ly AND X, is L, AND ... AND X, is L, THEN... (5.14)

where X; are the fuzzy input data, L; is the fuzzy set/number from a linguistic model,
and i = 1, ..., n is the number of input variables in the rule.

To use an OFN model in such a rule we need an aggregation consistent with
the fuzzy expression’s compatibility calculation presented in Sect.5.3. Below is pre-
sented the proposition based directly on AMDA and designated specially for inference
rules, and thus called arithmetic mean directed inference aggregation (AMDIA).
It uses the direction determinant idea. The main purpose of the proposal is to calculate
the level of activation or firing strength for a rule.

Definition 7 Let’s assume that the general pattern of the premise part of a rule R
is specified in formula (5.14). The result of arithmetic mean directed inference
aggregation A of fuzzy expressions from the premise part of the rule R is calculated
as a DFC (directed fuzzy compatibility see Sect.5.3), thus it is a pair: truth value Tx
and direction determinant Dpg.

Ag = (Tr, Dg) (5.15)

The algorithm specifying Ay is presented as the following steps.

1. Calculation of set A = {A;, Ay, ..., A,} containing elements that are the results
of all fuzzy expressions from the premise part

A; =COMPy,, = (Tx,. Dx,1,). (5.16)

d7,—0 = Tr =0, Dgrisunspecified .17

If there is at least one fuzzy expression with the truth value equal to O, then the
truth value of the aggregation result is also zero. Therefore this rule is inactivated,
and the direction determinant is undefined.

3. Otherwise,

Tr =X,

’

(5.18)

ISR

Dr=2X",

The proposed aggregation operator for the OFN generates a result with two com-
ponents. For the calculation of each of them the arithmetic mean is used. Because
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the arithmetic mean is a function fulfilling the basic criteria of aggregation operators
(see [2, 4, 10] and Sect.5.5.1), the AMDIA also fulfills them.

It is worth noting that we are dealing with two different parameters: the truth
value (degree of membership) and the direction determinant. However, they are
not completely independent, therefore, it is worth having a look at some important
dependencies between them. The direction determinant of the result equal to zero
indicates that the activation is not moved from the CO N ST interval in any direction.
Note that this happens only in two cases:

1. When all truth values of the fuzzy expressions from the premise part are equal
to one, then activation of the rule (truth value of aggregation result) will also be
equal to one.

2. When the truth values of the fuzzy expressions on the U P side are precisely
balanced with the resultant on the DO W N side, then the truth value of the result
will be greater than zero, and less than one.

Let’s take a closer look at the first case. The level of activation may be only equal
to 1 when the determinant is equal to zero. This means that in the case of complete
compatibility of premises the given data do not represent any direction. This is
especially important if we want to combine the concept of OFNs with the ideas for
classical fuzzy sets. In such a way the fundamental meaning of full membership (also
the full nonmembership) coincides in both solutions.

Finally, an alternative conception should be analyzed. It may be tempting to use
the geometric mean instead of arithmetic in the aggregation. It seems good for truth
values, due to the fact that if we have zero for at least one input, it is automatically
zero for the truth of aggregation result and generally cancels the rule from further
computations. Unfortunately, for the same reason it may not be used for calculating
the direction determinant part of the result. The zero value of the direction determinant
of elementary fuzzy expression means in most cases full compatibility (truth value
equal to one). It is against intuition that only one full compatibility of one fuzzy
expression will automatically grant no direction for the aggregation result, no matter
how many other expressions have only partial compatibility.

5.6 Summary

All sections of this chapter can be treated as an introduction to tendency-sensitive
data processing with the use of Ordered Fuzzy Numbers. The basic tool for linguistic
modeling is the operation directed fuzzy compatibility used to calculate a result
of the expression, “X is A”. The inference operator DIMS is another important tool
for the practical use of sensitivity to direction. Both propositions use an idea of the
direction determinant, which can be treated as a general parameter for measuring
direction. Together these propositions can also be used for practical defining and
realization of the full fuzzy system based on rules type “IF-THEN”, which is sensi-
tive to the direction/tendency of information presented by OFNs. If a fuzzy system
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needs rules that use more input values there is the proposal of the arithmetic mean
directed inference aggregation method which is also based on the idea of direction
determinant.

To generate one fuzzy answer from all rule outputs a simple calculation can be
used. It is the idea of weighted mean where weights are the levels of activation of
the rules (see [21]):

Zle (a; - Yri)
Zf=1 a;

where k is the amount of rules, a; is the value of activation for the i rule, and Yg; is
the OFN output for the i rule. For such calculations the result will always be an OFN.
A key observation for this solution is that rules that were not activated (activation
equals 0) have no participation in the final result. Calculation of the fuzzy answer of
all rules results is also a form of aggregation (see Sect.5.5), sometimes also called
an “accumulation.”

When we have one OFN as the result of a system, we can defuzzify it. For this
purpose, we use one of the classic fuzzy methods as the mean of maxima, or the center
of mean inclination method mentioned in Definition 4.4 from previous chapter. It
is based on the specific parameter of OFN, an inclination. As the aggregation of
premises and inference operator are sensitive to the direction, the OFN-based fuzzy
system will also be characterized by this property. Therefore, the accumulation and
defuzzification methods proposed above do not need to fulfill the sensitivity postulate.

It should be underlined that defuzzification is a very important operation in terms
of the practical usefulness of fuzzy concepts. There can be many applications where
fuzzy elements are helpful but without rule/inference processing. This applies par-
ticularly to quantitative problems, when we need to calculate the result where data
are fuzzy. Therefore developing the defuzzification methods independently of the
fuzzy system application is an important issue. The next chapters in this part of
the monograph (see also [1, 7, 15]) present other ideas and propositions to realize
defuzzifications that consider specificity of the OFN model.

Yy = (5.19)
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