
Accommodating Openness Requirements
in Software Platforms: A Goal-Oriented

Approach

Mahsa H. Sadi1(&) and Eric Yu1,2

1 Department of Computer Science, University of Toronto, Toronto, Canada
{mhsadi,eric}@cs.toronto.edu

2 Faculty of Information, University of Toronto, Toronto, Canada

Abstract. Open innovation is becoming an important strategy in software
development. Following this strategy, software companies are increasingly
opening up their platforms to third-party products. However, opening up soft-
ware platforms to third-party applications raises serious concerns about critical
quality requirements, such as security, performance, privacy and proprietary
ownership. Adopting appropriate openness design strategies, which fulfill
open-innovation objectives while maintaining quality requirements, calls for
deliberate analysis of openness requirements from early on in opening up
software platforms. We propose to treat openness as a distinct class of
non-functional requirements, and to refine and analyze it in parallel with other
design concerns using a goal-oriented approach. We extend the Non-Functional
Requirements (NFR) analysis method with a new set of catalogues for speci-
fying and refining openness requirements in software platforms. We apply our
approach to revisit the design of data provision service in two real-world open
software platforms and discuss the results.

Keywords: Ecosystems � Open platforms � Software design � Requirements

1 Introduction

Open innovation is becoming an increasingly important strategy in software devel-
opment. Following this strategy, software development organizations open up their
processes and software platforms to external developers in order to use external ideas,
knowledge and paths to markets (as well as the internal ones) to advance their tech-
nology [1]. External developers become part of a software ecosystem offering com-
plementary products and services for the open platforms [2–5].

However, opening up software platforms to third-party products is recognized as
one of the most difficult transitions in software product development. While openness
has the potential to create momentum for the widespread adoption and support of the
platform in the market, it may lead to losing overall control of the platform [2].
Moreover, opening up platforms to third-party applications raises serious concerns
about critical quality requirements, such as security, performance, proprietary owner-
ship of the platform and its complementary applications. Yet, there is no systematic
method to address these concerns in opening up platforms.

© Springer International Publishing AG 2017
E. Dubois and K. Pohl (Eds.): CAiSE 2017, LNCS 10253, pp. 44–59, 2017.
DOI: 10.1007/978-3-319-59536-8_4

A successful transition to an open platform relies on adopting openness design
strategies that can fulfill open innovation objectives while preserving the quality of the
platform and complementary applications and services. Adopting such balanced design
strategies calls for deliberate analysis of the requirements that openness introduces on
the design of software platforms from early on in the transition process. Nevertheless,
openness is only one design concern among many that should be accommodated in
software platforms. Effective openness design strategies should optimally fulfill all of
these concerns.

Example. Consider a common design scenario in opening up software platforms:
providing data service to third-party applications. The design includes decisions about
how a platform communicates data with third-party applications and how third-party
applications communicate data with each other. Three design alternatives can be
considered for opening up platform data to third-party applications; namely: (1) Cen-
tralized data provision (CDP): Platform centrally checks every data communications
between third-party applications; (2) Semi-centralized data provision (SDP): A medi-
ator (either the platform or the end-user) decides whether and under what conditions
third-party applications can communicate directly; and (3) Decentralized data provi-
sion (DDP): Third-party applications communicate data directly without any central
control.

To choose an appropriate design strategy to open up platform data, performance
can be a critical concern for a specific platform. Considering this, centralized data
provision is not an appropriate design since central data control imposes additional load
on the platform and increases data access time for third-party applications. Data
integrity can be another requirement for the platform. In this regard, centralized data
provision performs well since every data operation is performed under direct control of
the platform, helping eliminate inconsistencies in simultaneous data read and write
operations. Comparably, semi-centralized data provision also works well enough if
platform is the mediator and if the platform decides to control critical data operations
itself. Decoupling third-party applications is also important for the open platform since
with the increase of third-party applications, it will be difficult to maintain the platform
and prevent potential erroneous and malicious data communications. Considering this,
centralized data provision is the most effective design since it minimizes the coupling
of third-party applications. Increasing adoptability of the platform among external
developers can be one main reason for opening up the platform. However, centralized
data provision creates “accessibility” barriers for the platform since third-party appli-
cations should be checked and permitted by the platform to be installed and access their
required run-time data. This difficulty negatively impacts the platform adoptability.

To choose the most appropriate openness design strategy, systematic methods are
required that help decide between these competing and interacting requirements.

Contributions. We propose to treat openness as a distinct class of non-functional
requirements, and to refine and analyze it in parallel with other concerns in designing
software platforms using a goal-oriented requirements modeling language [6]. The
proposed approach allows to specify and refine the business requirements behind
openness, the technical quality requirements that openness imposes on the design of

Accommodating Openness Requirements in Software Platforms 45

software platforms, and the concerns that openness introduces on other quality
requirements. The refined requirements are used as criteria for selecting optimal design
alternatives. To facilitate specification and analysis of openness requirements, we
propose three types of catalogues: (1) Openness requirements specification and
refinement catalogues; (2) Openness operationalization catalogues; and (3) Openness
correlation catalogues. The catalogues encode alternative paths for refining and
operationalizing openness requirements, which can be customized for a particular
design context. We apply our proposed approach to revisit the design of data provision
service in two real-world open software platforms and discuss the results.

2 The Proposed Approach

We consider openness as a concern that should be met in the design of platforms
functionalities [7]. We describe openness as a soft goal (i.e. an objective that can be
fulfilled to various degrees) and refine it using contribution links. We assess the ful-
fillment degree of openness requirements in alternative design mechanisms using the
goal-oriented forward evaluation procedure [6].

To deal with openness requirements, we customize the Non-Functional Require-
ments (NFR) analysis method [6]. The customized approach is comprised of seven
main steps, which can be performed iteratively: (1) Specifying and refining openness
requirements; (2) Specifying and refining other design concerns; (3) Prioritizing the
requirements; (4) Identifying possible alternative operationalizations; (5) Evaluating
fulfillment degree of the identified requirements in each operationalization; (6) Ana-
lyzing potential trade-offs; and (7) Selecting an appropriate design mechanism.

To facilitate specification and analysis of openness as a class of non-functional
requirements, we extend NFR with a new set of catalogues, namely openness cata-
logues. Openness catalogues are of three main types: (1) Openness requirements
specification and refinement catalogues; (2) Openness requirements operationalization
catalogues; and (3) Openness correlation catalogues. These catalogues are used in the
related steps described above, and provide extensible and customizable patterns for
specifying, refining and operationalizing openness requirements in the design of
software platforms.

In the following, we present instances from each type of the openness catalogues.
To save space, we omit the details about the complete definition and refinement of the
items in the presented catalogues, and the sources from which the items are extracted.

Openness Requirements Specification and Refinement Catalogues. These cata-
logues help characterize and refine the specific requirements and concerns that open-
ness introduces on the design of software platforms. Openness requirements catalogues
are of three types: (1) Business-level openness requirements catalogues. (2) System-
level openness requirements catalogues; and (3) General design concerns catalogues.

System-Level Openness Requirements Catalogues. These catalogues characterize
general technical and quality requirements that should be met in the design of open
platforms. Three instances of system-level openness requirements catalogues are
shown in Fig. 1. For example, the first catalogue (Fig. 1a) identifies that openness

46 M.H. Sadi and E. Yu

introduces seven types of requirements on the design of software platforms, including
“accessibility” and “extensibility”. From this catalogue, requirements specification
paths can be generated, such as: “To open up a platform, the platform needs to be
accessible to third-party applications”, or “To open up a platform, the platform design
needs to be extensible”. The second catalogue (Fig. 1b) identifies that “accessibility”
requirement can be refined in four ways, including “accessibility [functionality or
service]” and “accessibility [data]”. From this catalogue, more detailed requirements
specifications can be generated, such as “To open up a platform, platform data need to
be accessible to third-party applications”. The third catalogue (Fig. 1c) identifies that
“extensibility” requirement introduces six types of requirements on a platform design,
including “composability [Platform]” and “deployability [Third-party applications]”,
each of which needs to be further refined into more fine-grained requirements. From
this catalogues, refinement paths can be generated such as “To make a platform design
extensible, the platform needs to be composable”, and subsequently “To make a
platform composable, third-party applications should be decoupled from the platform
and from each other”.

To develop system-level openness requirements catalogues, two steps are per-
formed: (1) The content of the catalogues is extracted from the Software Engineering
literature discussing technical requirements in open software platforms. (2) The
requirements are classified, related, and refined using two types of non-functional
requirement refinement [6]: topic refinement (e.g. “Accessibility” catalogue) and type
refinement (e.g. “Openness” and “Extensibility” catalogues). To structure the content,
related elements of the goal-oriented requirements modeling language are used. “Soft
goal” element is used to represent non-functional requirements, and “Help” contribu-
tion link is used to relate and refine the requirements.

Openness [Pla orm]

Accessibility
[Pla orm]

Extensibility
[Pla orm]

Reusability
[Pla orm]

Modifiability
[Pla orm]

Transparency
[Pla orm]

Interoperability
[Pla orm]

Distributability
[Pla orm]

Help Help Help HelpHelpHelpHelp

Extensibility [Pla orm]

Flexibility
[Pla orm]

Composability
[Pla orm]

Decoupling
[TP APP]

Development
A synchroniza on

[TP APP]

Deployability
[TP APP]

Independent
Deployment

[TP APP]

Independent
Behaviour
[TP APP]

Stability
[Pla orm]

Configurability
[Pla orm]

Evolvability
[Pla orm]

Backward-
Compa bility

[Pla orm]

Help Help Help HelpHelpHelp

Help Help Help Help Help

Accessibility [Pla orm]

Accessibility
[Data]

Accessibility
[Structure]

Accessibility
[Func onality / Service]

Accessibility
[Source]

Help Help Help Help

a

b

c

[8] [9] [10] [2] [13][11] [12]

Fig. 1. Three instances of the system-level openness requirements catalogues

Accommodating Openness Requirements in Software Platforms 47

Business-Level Openness Requirements Catalogues. These catalogues characterize
general non-technical requirements in open software platforms and relate them to
system-level openness requirements. Non-technical requirements include the business
and organizational incentives that drive the need for openness as well as the social
requirements that should be met in open software platforms. Each business-level
openness requirements catalogue has two parts: a set of non-technical requirements and
the related technical requirements. Two instances of these catalogues are depicted in
Fig. 2. For example, the first catalogue (Fig. 2a) identifies that “Stickiness” and
“Market Presence” are two non-technical requirements in open software platforms.
Stickiness refers to the degree that a software platform supports its continued use by a
user instead of switching to a competitor platform [14]. “Stickiness” can be further
related to more fine-grained business requirements such as “Network size”. Network
size refers to the number of complementary application and services that support a
platform [15]. From this catalogue, specifications and refinement paths can be gener-
ated, such as “One objective in opening up a software platform is to increase the
stickiness of the platform.”, and then “To increase the stickiness of a platform, the
network size of the platform should grow.” “Network size” requirement can then be
related and refined to system-level openness requirements, such as “accessibility”. One
refinement is as follows: “To increase the network size of a platform, the platform
needs to be made accessible to third-party applications.”

To develop business-level openness catalogues, three steps are taken: (1) The
content of the catalogues is extracted from a set of Business and Software Engineering
literature discussing open innovation, and the business, organizational, and social needs
that it introduces on the development of software platforms. (2) The requirements are
described using soft goals, and categorized, related and refined using “help” contri-
bution links. Since business-level openness requirements are often described as
openness business objectives, the notion of soft goal is conceptually close for
describing these requirements. (3) The last row of refinement in each business-level
openness catalogue is related to a set of first-row refinements in the system-level
openness requirements (i.e. Figure 1a) using “help” contribution links. Contribution
links allow to smoothly refine and relate the business-level requirements into the
system-level requirements.

Accessibility
[Plaƞorm]

Extensibility
[Plaƞorm]

Modifiability
[Plaƞorm]

Interoperability
[Plaƞorm]

Network size [Plaƞorm]

SƟckiness
[Plaƞorm]

Market Presence
[Plaƞorm]

SoŌware Vendor
Offering [Plaƞorm]

Help

Help Help Help

HelpHelpHelp

a
Customer Community

[Plaƞorm]

Help

Customer-Related ObjecƟves Market-Related ObjecƟves

Openness
[Plaƞorm]

Help
Help Help Help Help

Accessibility
[Plaƞorm]

Partner Ecosystem Garivity
[Plaƞorm]

Adoptability [Plaƞorm]

Help

Help
Openness
[Plaƞorm]

Help

b Network Effect ObjecƟves

Help

[14] [14] [14] [14] [14]

Fig. 2. Two instances of the business-level openness requirements catalogues

48 M.H. Sadi and E. Yu

General Design Concerns Catalogues. These catalogues characterize general concerns
and requirements raised in opening up software platforms. These concerns may have
synergistic or conflicting relationships with openness requirements, and need to be
refined and operationalized in parallel with openness requirements in designing soft-
ware platforms. Two instances of this group are shown in Fig. 3. For example, the first
catalogue (Fig. 3a) identifies “security” as a general concern in opening up software
platforms and also characterizes the specific types of security requirements (such as
“integrity” and “availability”) that are potentially impacted by openness requirements.
From this catalogue, specifications can be generated, such as “Security needs to be
assured in opening up a platform”. Then this requirement can be further refined as
follows: “To assure platform security, integrity of the platform data should be
preserved.”

The content of this group of catalogues is extracted from a set of Software Engi-
neering and Business literature discussing problems, concerns, and requirements in
opening up software platforms. The content is then structured similar to the previous
catalogues. Some requirements in this group, such as security and performance overlap
with existing NFR catalogues [6]. The existing catalogues have been reused and
customized according to the specific context of open software platforms.

Openness Requirements Operationalization Catalogues. Operationalization cata-
logues identify the system functionalities that should be specifically designed to open
up platforms to third-party products. They also enumerate alternative mechanisms and
patterns for designing these functional requirements. Each openness operationalization
catalogue has two parts: (a) Design objectives: the specific functionality that need to
designed or implemented; and (b) Design alternatives: Alternative mechanisms to
realize the design objective. An instance of the openness operationalization catalogues
is illustrated in Table 1. The catalogue is related to the design of “Data provision and
communications service”. The catalogue elaborates on three generic alternative
mechanisms for designing this functionality, namely: (1) Centralized data provision;
(2) Semi-centralized data provision; (3) Decentralized data provision.

Security [Plaƞorm]

Consistency
[Data]

Availability
[Plaƞorm]

Accuracy
[Plaƞorm]

Integrity
[Plaƞorm]

ConfidenƟality
[Plaƞorm]

OperaƟonal
Security

[Plaƞorm]

Consistency
[Plaƞorm]

Completeness
[Plaƞorm]

Value Accuracy
[Plaƞorm]

Timely
Accuracy

[Plaƞorm]

Privacy
[Plaƞorm]

Isolatability
[Plaƞorm]

Isolatability
[Plaƞorm

components]

Isolatability
[Plaƞorm

data]

Value Accuracy
[Plaƞorm data]

Help Help Help Help Help

Help Help Help

Help HelpHelpHelp Help

Help Help

Performance [Plaƞorm]

Time
Performance

Space
Performance

Response
Time

[Plaƞorm]

Access
Time

[Plaƞorm]

Management
Time

[Plaƞorm]

Performance of
CompuƟng
Resource
[Plaƞorm]

Help Help

Help Help Help Help

a b[6] [6]

Fig. 3. Two instances of the general design concerns catalogues

Accommodating Openness Requirements in Software Platforms 49

The content of these catalogues is extracted from a set of Software Engineering
research resources discussing technical design of open software platforms.

Openness Correlation Catalogues. Openness correlation catalogues identify the
impact of each openness design alternative (in the operationalization catalogues) on the
fulfillment of the related openness requirements (in the specification and refinement
catalogues). An instance of a correlation catalogue is shown in Fig. 4. For example,
one security concern in designing data provision service can be data integrity
(“Integrity [platform data]”). This requirement can be further decomposed into “ac-
curacy [data]” and then “consistency [data]”. The presented catalogue identifies that
“centralized data provision” design alternative meets the requirement of data consis-
tency. In contrast, the other two alternatives of “semi-centralized data provision” and
“decentralized data provision” violate this requirement. Another requirement that may
be important in opening up a platform is “accessibility [platform]”, which can be
further refined into “accessibility [data]”. The catalogue identifies that “centralized
data provision” has a negative impact on the accessibility of platform data. In contrast,
the other two alternatives have a positive impact on this requirement.

To develop correlation catalogues, two steps are performed: (1) The related
requirements that are affected by each alternative operationalization are selected from
the requirement refinement catalogues. (2) The positive or negative impact of the
alternative on fulfilling the related alternatives is assessed. The assessment is done
based on expert knowledge from the design alternatives and must be accompanied by a
sound reasoning or evidence. The alternative mechanisms are assessed against the last
row of refinement for each related requirement, and are described using “help” or
“hurt” contribution links. A detailed example of an assessment is provided in [7].

Table 1. One instance of the openness requirements operationalization catalogues

Design Objective: To provide data service to third-party applications
Design Mechanism 1: Centralized Data Provision (CDP) [16]
The platform controls every data and information interactions between third-party applications
and the platform, and between one third-party application and another. In this design, all data is
stored and exchanged through a single API in the platform. Data is accessed through the
platform API either by explicit get/set operations or publish/subscribe at run-time. An API
identifies available data at run-time.
Design Mechanism 2: Semi-Centralized Data Provision (SDP) [17]
Third-party applications can communicate data directly in some cases. Third-party applications
declare what data they need at install-time. The requests are initially submitted to a mediator (i.e.
end-user or platform). The mediator decides to allow data communications directly or not. If yes,
third-party applications can communicate directly. If no, the mediator decides to control data
read operations, data write operations or both.
Design Mechanism 3: Decentralized Data Provision (DDP) [10]
Third-party applications can directly exchange data and information with each other. Data
interactions between two third-party applications are controlled and supervised by the third-
party application that provides the requested data. Data access requests are declared at run-time
and the data provider application is responsible for managing the requests and controlling the
consistency of data read and write operations.

50 M.H. Sadi and E. Yu

3 Application of the Proposed Approach

We use the proposed approach to revisit the high-level architectural design of data
provision service in two real-world open software platforms. Both platforms are
embedded operating systems. The first platform is an operating system controlling the
electronic units of a vehicle and the second one is an operating system for smartphone
devices.

To apply the proposed approach on each design case, two preparatory steps have
been taken: (1) The documents containing information about the design of each plat-
form have been collected from the literature. (2) The information required for applying
the proposed approach has been extracted from the collected documents. The extracted
information is of two types: (a) the important design requirements for each case; i.e. the
requirements that openness introduces and other general concerns that should be
considered in opening up each platform; and (b) the priority of each design require-
ment. Where the required information was absent or not explicitly mentioned, we have
augmented the information based on our own understanding from the case. Augmented
information is distinguished from the extracted information using “*”.

To use the catalogues, two preparatory steps need to be performed. (1) The domain
requirements are matched with the requirements items available in the catalogues. If the
wording of a requirement is different, the most similar requirement item in the cata-
logues is selected. If no similar item is found, the correct placement of the requirement
is found and the related catalogue is augmented with new the content. Adding new

Composability
[Plaƞorm]

Decoupling
[TP APP]

Help

Deployability
[TP App]

Help Help

Independent
Deployment

[TP App]

Semi - centralized
data provision

Decentralized
data provision

Help

Help

Independent
Behaviour
[TP App]

Security
[Plaƞorm]

Consistency
[Data]

Openness
[Plaƞorm]

Accessibility
[Plaƞorm]

Extensibility
[Plaƞrom]

Centralized
data provision

Isolatability
[TP App Data]

Help

Ownership
[Plaƞorm]

Ownership
[Plaƞorm

Data]

Performance
[Plaƞorm]

Access
Ɵme

[Data]

Help

Help

Help
G: Provide Data

Response
Time
[Plaƞorm]

ConfidenƟality
[Plaƞorm
Data]

ConfidenƟality
[TP App

Data]

Accuracy
[Data]

Accessibility
[Plaƞorm

Data]

Integrity
[Plaƞorm

Data]
Isolatability
[Plaƞorm

Data]

Help

Help

Help

HelpHelp

Help

Help

Help

Help

Help

Network Size [Plaƞorm]

SƟckiness
[Plaƞorm]

Market Presence
[Plaƞorm]

SoŌware Vendor
Offering [Plaƞorm]

Help Help Help

Market reach
[Plaƞorm]

New market
[Plaƞorm]

New community
[Plaƞorm]

HelpHelp Help

HelpHelp

InnovaƟve Features [Plaƞorm]

Help Help

OperaƟonal
Security

[Plaƞorm]

Availability
[TP App

Data]

Help

Hurt

Hurt

Hurt

He
lp

Adoptability [Plaƞorm]

Partner Ecosystem
Gravity [Plaƞorm]

Help

Help

Privacy
[Plaƞorm

Data]

Fig. 4. One instance of the openness correlation catalogues

Accommodating Openness Requirements in Software Platforms 51

content may also need modifying the structure of the catalogue. (2) The evaluation of
design mechanisms in the correlation catalogues may also be revised in each context.

To re-design the data provision service in each case, the seven steps described in
the beginning of Sect. 2 are performed. To refine the requirements in each design
context, the related refinement paths in the catalogue presented in Fig. 4 are used.
Refinement is done up to the level that there is evaluation data for the refined
requirement and the three alternative designs in the correlation catalogue. The fulfill-
ment of the requirements is then evaluated using the goal-oriented forward evaluation
procedure. The evaluation results identify the degree of requirements fulfillment in
each design alternative. Requirements fulfillment is described in five degrees: Satificed
(Sat), Partially Satisficed (PSat), Conflict (Conf), Partially Denied (PDen), and Denied
(Den). The evaluation results are used to compare alternative designs and identify the
potential trade-offs that should be made between identified requirements by choosing
each option. Based on the comparison results, the most appropriate design for the data
provision service is selected. The selected option is then compared to the original
design.

An Open Embedded Automotive Software Platform. The information related to this
platform is extracted from [16]. In [16], the process of designing the platform is
explained in detail. The document explains the requirements of the platform, their
priorities, the decisions that were made to design the platform, and the rationale for
those decisions. However, no modeling and analysis has been done in the design
process. All the information required for our analysis was available in the document.

The platform is an operating system sitting on top of the electronic hardware of a
vehicle to control the vehicle electronic units. The platform has to deal with safety
critical functionalities and data. Thus it should be highly dependable. The platform has
been opened to different types of third-party applications, such as applications devel-
oped by certified developers and applications developed by undirected developers.
Third-party applications sit on top of the platform and add functionality to it. Examples
of these additional functionalities include: automatic control of the speed of the vehicle
or displaying the speed of the vehicle in the display. To perform such operations,
third-party applications may need read or write access to data (such as speed and lateral
acceleration data), controlled by the platform or other third-party applications.

The important design requirements of the platform and their priorities are described
in Table 2. The related paths in the catalogue of Fig. 4 that help specify and refine the
requirements as well as their fulfillment in each alternative design are shown in Fig. 5.

Table 3 summarizes the fulfillment of key requirements in each design alternative.
As shown, “centralized data provision” outperforms the other two alternatives in
fulfilling all the requirements except performance. In contrast, the other two alterna-
tives partially satisfice performance. However, “semi-centralized data provision” vio-
lates two openness requirements of “composability” and “deployability”, and
“decentralized data provision” underperforms in the fulfillment of all the other
requirements.

Although “centralized data provision” fulfills four of the five important design
requirements and achieves the highest rank among the three alternatives, it has negative
impact on the performance of the platform. Centralized control over all data

52 M.H. Sadi and E. Yu

interactions creates a bottleneck in the platform. In case of several simultaneous data
read and write requests, this design creates a queue of requests that should be checked
by the platform and increases the waiting time of data operations. However, the
automotive platform is in charge of safety-critical and real-time operations. Consid-
ering this, performance is not a negligible requirement.

Table 2. Design requirements for the open embbedded automotive platform

Design
requirements

Text description

Openness requirements
Type:
“Composability”
Priority: “High”

“The software platform must fulfil a set of properties to allow the
decoupling of applications and eliminate the need for development
synchronization. The architecture should allow development, integration
and validation of applications independent of other applications.
Non-technical users cannot do this themselves, it must be provided for
by application and/or platform developers.”

Type:
“Deployability”
Priority: “High”

“The applications must be possible to be deployed independently of each
other, and the product behavior must not depend on the order in which
applications are installed. There must also be a deployment
infrastructure in place which fulfils necessary integrity requirements.”

General design concerns
Type:
“Dependability”
Priority: “High”

“Many embedded domains have stringent dependability requirements;
i.e. real-time requirements for the execution of individual applications,
integrity requirements, high availability, and mechanisms to eliminate
undesired feature interaction if several applications interact with the
same actuators.”

Composability
[Plaƞorm]

Decoupling
[TP APP]

Help

Deployability
[TP App]

Help Help

Independent
Deployment

[TP App]

Semi - centralized
data provision

Decentralized
data provision

Independent
Behaviour
[TP App]

Security
[Plaƞorm]

Consistency
[Data]

Openness
[Plaƞorm]

Extensibility
[Plaƞrom]

Centralized
data provision

Help

Performance
[Plaƞorm]

Access Ɵme
[Data]

Help
G: Provide Data

Response
Time
[Plaƞorm]

Accuracy
[Data]

Integrity
[Plaƞorm Data] Help

Help

Help

Help

OperaƟonal
Security

[Plaƞorm]

Availability
[TP App Data]

Help

Hu
rt

Hurt

Hurt

Help

Goal Task SoŌ Goal Means-Ends
✔

SaƟsficed

×
ParƟally
Denied

✔
ParƟally

SaƟsficed
Conflict

×
Denied

CDP: Centralized
data provision

SDP: Semi-centralized
data provision

DDP: Decentralized
data provision

!!
Very

CriƟcal
!

CriƟcalAugmented
Item

!!
!!

!!!!

LeŌ-Most EvaluaƟon Labels Middle EvaluaƟon Labels Right-Most EvaluaƟon Labels

Fig. 5. Specification, refinement, and evaluation of the important design requirements

Accommodating Openness Requirements in Software Platforms 53

In comparison, “semi-centralized data provision”, though violating two openness
requirements of “composability” and “deployability”, alleviates the load of platform by
delegating the control of some data interactions to the related third-party applications.
Since critical third-party applications are developed by certified developers, the plat-
form can easily decide to control which data operations, delegating the control of less
critical data interactions to the related third-party applications. Considering this,
semi-centralized control does not negatively impact the integrity and security of the
platform data. Accordingly, we assess the final impact of “semi-centralized data
provision” on “Security [Platform]” as positive. Thus, it would be reasonable to sac-
rifice some degrees of “composability” and “deployablity” to achieve higher degrees of
performance for real-time operations of the automotive platform.

In [16], “centralized data provision” alternative has been adopted to open up the
automotive platform data to all types of third-party applications. The problem of
performance (real-time data access) is alleviated via attaching different priorities to
different types of third-party applications waiting in the data request queue. However,
according to our analysis, for the third-party applications with less safety-critical
operations “semi-centralized data provision” is also appropriate. Thus, using both
options of centralized and semi-centralized data provision to open platform data to
different types of third-party applications improves performance, while minimizing
negative impacts on the openness requirements of composability and deployability.

This difference might have several reasons: (1) Performance has been sacrificed to
gain higher degrees of composability and deployability, and probably security. (2) It is
also possible that the track of performance requirements has been lost in designing data
provision service. This is plausible due to the large number of decisions made during
the design and the lack of support for requirements tracking. (3) Alternatively, due to
some domain characteristics not mentioned explicitly in the design document, such as
the hardware infrastructure, performance is not significantly impacted by the bottleneck
of centralized data provision.

An Open Embedded Mobile Operating System Platform. Different pieces of
information related to the design of the mobile platform have been collected from [2,
15, 17]. Some requirements and priorities have been added based on our understanding
from the context, which are distinguished by “*”.

Table 3. Fullfillment of the important requirements in design alternatives for data provision

Requirements Security Openness Performance

OS IY CP DP RT
Priority H H H H H

CDP PSat PSat PSat PSat PDen
SDP PSat PDen PDen PDen PSat
DDP PDen PDen PDen PDen PSat

OS: Operational Security [Platform]; IY: Integrity [Platform Data]; CP: Composability [TP
Application]; DP: Deployability [TP Application]; RT: Response Time [Platform]; H: High
(Very Critical)

54 M.H. Sadi and E. Yu

The platform is an operating system sitting on top of the hardware device of a
smartphone to control its functionalities. The platform hosts native and non-native
applications. Third-party applications add a wide range of functionalities that could be
of potential interest to various mobile users. Development of mobile applications is
highly knowledge-intensive. Thus, mobile application development is usually open to a
wide range of third-party developers. Third-party applications may need read or write
access to platform data or the data generated by other third-party applications.

The requirements of the mobile platform and their priorities are described in
Table 4. The related specification and refinement paths from the catalogue of Fig. 4
and the fulfillment degree of the requirements in each design alternative are shown in
Fig. 6.

Table 5 summarizes the fulfillment of the identified requirements in each design
alternative. As shown, “centralized data provision” underperforms in fulfilling all the
high-priority requirements, namely “accessibility”, “adoptability”, “partner ecosystem
gravity”, “innovative features”, and “performance”. Interestingly, this alternative out-
performs in fulfilling medium-priority requirements, such as “composability”, “de-
ployability” and “ownership”. In contrast, the other two design alternatives equally
satisfice high-priority design requirements. However, “semi-centralized data provi-
sion” performs better in fulfilling “privacy [data]” requirement.

Table 4. Design requirements for the open mobile platform

Design requirements Text description

Openness requirements

Type:
“Innovative Products”
Priority: “High”

“In many knowledge intensive domains, users and external
parties play an important role in developing innovative
products. The mobile operating system providers benefit
from emerging external innovations because having a high
number of applications increases the attractiveness of the
platform for potential customers. Having large number of
customers lead to a bigger market share in the mobile
application market.” [15]

Type: “Partner Ecosystem
Gravity”
Priority: “High”

“Third-party developers have to be considered as important
players in the mobile ecosystems. While not every application
can be considered innovative, a larger pool of developers will
provide more innovative output. The network size of
developers and end users (i.e. network effects) will be a
significant factor for application developers in selecting which
mobile ecosystem to join.” [15]

Type: “Low Entry
Barriers” (Accessibility)
Priority: “High”

“Entry barriers of both monetary and technical nature,
including entry barriers for application market, development
resource needs and programing languages, will be a
significant factor for developers in selecting which mobile
platform to join. Openness and entry barriers include aspects
of hardware, software and market in open platforms.” [15]

Accommodating Openness Requirements in Software Platforms 55

Although “semi-centralized data provision” satisfices all the high-priority
requirements and achieves the highest score from among the three design alterna-
tives, its implementation has negative impact on two openness requirements of
“composability” and “deployability”. It also violates “data ownership” requirement.
Nevertheless, composability and deployability are two important technical quality

Composability
[Pla orm]

Decoupling
[TP APP]

Help

Deployability
[TP App]

Help Help

Independent
Deployment

[TP App]

Semi - centralized
data provision

Decentralized
data provision

Help

Independent
Behaviour
[TP App]

Security
[Pla orm]

Consistency
[Data]

Openness
[Pla orm]

Accessibility
[Pla orm]

Extensibility
[Pla rom]

Centralized
data provision

Isolatability
[TP App Data]

Ownership
[Pla orm]

Ownership
[Pla orm

Data]

Performance
[Pla orm]

Access
me

[Data]

Help

G: Provide Data

Response
Time
[Pla orm]

Confiden ality
[Pla orm
Data]

Confiden ality
[TP App

Data]

Accuracy
[Data]

Accessibility
[Pla orm

Data]

Integrity
[Pla orm

Data]
Isolatability
[Pla orm

Data]

Help

Help

Help

HelpHelp

Help

Help

Help

Help

Help

He
lp

Market reach
[Pla orm]

New market
[Pla orm]

New community
[Pla orm]

Innova ve Features [Pla orm]

Help Help

Hurt

Adoptability [Pla orm]

Partner Ecosystem
Gravity [Pla orm]

Help

Privacy
[Pla orm

Data]

✔

✔ ×

× ×

×

×

×

✔

✔✔

✔

✔ ×

✔

✔

✔
✔

✔

✔

✔
✔

✔

✔

×

×

×

×

×
×

×

×

× ✔ ✔

✔

✔

×

×

×

×

×

×

✔

✔

✔

✔

✔ ✔✔

✔ × × ✔ ✔ × × ✔ ✔

✔ × × ✔ × ×

✔ × ×

✔ × ×
× ✔✔

! !

!

!!

!!

!!

!

CDP: Centralized data provision SDP: Semi-centralized data provision DDP: Decentralized data provision
Le -Most Evalua on Labels Middle Evalua on Labels Right-Most Evalua on Labels

Help HelpHelp Help

Fig. 6. Specification, refinement, and evaluation of the important design requirements

Table 5. Fullfillment of the important requirements in design alternatives for data provision

Requirements Security Openness:
system-level

Openness:
business-level

Performance Ownership

*PV AC *CP *DP PEG ICF *PR * OW

Priority *M H *M *M H H *H *M

CDP PSat PDen PSat PSat PDen ^ Conf ! PDen PDen PSat
SDP PSat PSat PDen PDen PSat ^ Conf ! PSat PSat PDen
DDP PDen PSat PDen PDen PSat ^ Conf ! PSat PSat PDen

PV: Privacy [Platform Data]; AC: Accessibility [Platform]; CP: Composability [Plat];
DP: Deployability [TP App]; PEG: Partner Ecosystem Gravity [Platform]; ICF: Innovative and
Complementary Features; PR: Performance; OW: Ownership; H: High (Very Critical);
M: Medium (Critical); ^: Conflict is resolved to partially denied or partially satisficed.

56 M.H. Sadi and E. Yu

attributes for an open platform. Decoupling third-party applications from each other
and reducing their dependencies plays an important role in the maintainability and
controllability of the platform. Specifically when the size of a platform and its com-
plementary applications and services grow, which is usually the case for an open
mobile platform. Moreover, the ownership of platform data is not a negligible
requirement for a platform owner.

However, “accessibility” and the impact it has on the “adoptability” and ‘inno-
vative features” is strategically critical to the success of a mobile platform in the
market, specifically in a fierce competition with other platforms. Thus, it would be
reasonable to sacrifice some degrees of the system-level openness requirements to gain
more support from innovative and complementary applications (the business-level
openness requirements), specifically in a knowledge-intensive domain as mobile
applications.

The result of our analysis indicates that “semi-centralized data provision” is the
best option from among the three alternatives to open up mobile platform data to
third-party applications. This result is consistent with real-world implementation of
open mobile platforms such as Android [17]. In Android, third-party applications
declare the data they require from the platform and other third-party applications at
install time. The access is permitted by the end user (i.e. end user is the mediator).

4 Discussion

Our goal was to provide a method to determine appropriate design strategies for
opening up software platforms to third-party applications. We proposed to treat
openness as a non-functional requirement and to use a goal-oriented approach to refine
and analyze openness in parallel with other requirements. The refined requirements are
used to select optimal design options. We have developed a set of catalogues that
facilitate reasoning about openness requirements.

We applied the proposed approach to revisit the design of data provision service in
two real-world open software platforms: an automotive platform and a mobile platform.
Our goal was to determine themost appropriate openness design strategy for each case. In
the first case, our analysis identifies that a combination of centralized and semi-
centralized data provision can be used to open up the platform data to different types of
third-party applications. This result is slightly different from the original design of the
platform, which is only centralized data provision. We aim to discuss the results of our
analysis with the original designers in a future interview. In the second case, our results
are consistent with the design of open mobile platforms, such as Android. The analysis
justifies the accessibility of mobile platforms to external applications. Moreover, the
analysis shows that system-level openness requirements can be sacrificed to fulfill
business-level openness requirements. Finally, in both cases there is no design option that
can fulfill all the identified requirements. In each case, trade-offs should be made.
Therefore, it is crucial to detect and analyze the trade-off points.

The proposed approach allows to reason about openness as a distinct requirement.
This approach complements recent research efforts on the development of open

Accommodating Openness Requirements in Software Platforms 57

software platforms, which either focus on the technical design of the platforms,
including API development (e.g. [9, 13, 18]) or on the business aspect (e.g. [2, 19]).

This paper presents only one instance of a complete openness correlation catalogue
that we have developed. The complete definition and refinement of the requirements
and operationalizations in the presented catalogues in addition to other catalogues will
be published in a future work.

To improve the applicability of the proposed approach, three issues need to be
further addressed: (1) The catalogues and the models developed for a specific domain
become complex too quickly. To handle this complexity, automated support is
required. (2) The evaluation procedure to select optimal design strategies needs to be
made efficient via omitting exhaustive evaluations of all the options. (3) The evaluation
procedure should allow to assess the final impact of selecting multiple operational-
izations on the fulfillment of the identified requirements in a design process.

Further research is needed to extend and validate the content of the proposed
catalogues and to compare the proposed approach with peer requirements analysis
methods for software systems, such as Architecture Trade-Off Analysis Method
(ATAM) [20].

5 Conclusion

We proposed a goal-oriented approach for analyzing openness requirement in software
platforms. The proposed approach is supported by a set of catalogues that facilitate
specification and refinement of openness requirements. We presented instances of these
catalogues herein. Specification and analysis of requirements is essential for adopting
effective openness design strategies that are “open enough” to benefit from the con-
tributions of third-party applications and at the same time possess the quality of
“closed” systems. Adopting such balanced strategies is crucial for the viability and
sustainability of open platforms. Further research is needed to assess the effectiveness
of the proposed approach and catalogues in case studies of open platform projects.

References

1. Chesbrough, H.W.: Open Innovation: The New Imperative for Creating and Profiting from
Technology. Harvard Business Press, Boston (2006)

2. Boudreau, K.: Open platform strategies and innovation: Granting access vs. de-volving
control. Manag. Sci. 56(10), 1849–1872 (2010)

3. West, J.: How open is open enough? Melding proprietary and open source platform
strategies. Res. Policy 32(7), 1259–1285 (2003)

4. Jansen, S., Brinkkemper, S., Souer, J., Luinenburg, L.: Shades of gray: opening up a
software producing organization with the open software enterprise model. J. Syst. Softw. 85
(7), 1495–1510 (2012)

5. Sadi, M.H., Yu, E.: Analyzing the evolution of software development: from creative chaos to
software ecosystems. In: IEEE Eighth International Conference on Research Challenges in
Information Science (RCIS), pp. (1–11) (2014)

58 M.H. Sadi and E. Yu

6. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-functional Requirements in Software
Engineering, vol. 5. Springer Science & Business Media, Heidelberg (2012)

7. Sadi, M.H., Yu, E.: Modeling and analyzing openness trade-offs in software platforms: a
goal-oriented approach. In: International Working Conference on Requirements Engineer-
ing: Foundation for Software Quality, pp. 33–49 (2017)

8. Anvaari, M., Jansen, S.: Evaluating architectural openness in mobile software platforms. In:
Proceedings of the Fourth European Conference on Software Architecture: Companion
Volume, pp. 85–92 (2010)

9. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: on the impact of software
product lines, global development and ecosystems. J. Syst. Softw. 83(1), 67–76 (2010)

10. Scacchi, W.: Free/open source software development: recent research results and methods.
Adv. Comput. 69, 243–295 (2007)

11. Bosch, J.: Architecture challenges for software ecosystems. In: Proceedings of the Fourth
European Conference on Software Architecture: Companion Volume, pp. 93–95 (2010)

12. Baresi, L., Di Nitto, E., Ghezzi, C.: Toward open-world software: issue and challenges.
Computer 39(10), 36–43 (2006)

13. Cataldo, M., Herbsleb, J.D.: Architecting in software ecosystems: interface translucence as
an enabler for scalable collaboration. In: Proceedings of the Fourth European Conference on
Software Architecture: Companion Volume, pp. 65–72 (2010)

14. Popp, K.M.: Goals of software vendors for partner ecosystems–a practitioner’s view. In:
Software Business, pp. 181–186 (2010)

15. Koch, S., Kerschbaum, M.: Joining a smartphone ecosystem: application developers’
motivations and decision criteria. Inf. Softw. Technol. 56(11), 1423–1435 (2014)

16. Eklund, U., Bosch, J.: Architecture for embedded open software ecosystems. J. Syst. Softw.
92, 128–142 (2014)

17. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., Glezer, C.: Google android: a
comprehensive security assessment. IEEE Secur. Priv. 2, 35–44 (2010)

18. Christensen, H.B., Hansen, K.M., Kyng, M., Manikas, K.: Analysis and design of software
ecosystem architectures–towards the 4S telemedicine ecosystem. Inf. Softw. Technol. 56
(11), 1476–1492 (2014)

19. Ghazawneh, A., Henfridsson, O.: Balancing platform control and external contribution in
third-party development: the boundary resources model. Inf. Syst. J. 23(2), 173–192 (2013)

20. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.: The architecture
tradeoff analysis method. In: Proceedings of Fourth IEEE International Conference on
Engineering of Complex Computer Systems, ICECCS 1998, pp. 68–78 (1998)

Accommodating Openness Requirements in Software Platforms 59

	Accommodating Openness Requirements in Software Platforms: A Goal-Oriented Approach
	Abstract
	1 Introduction
	2 The Proposed Approach
	3 Application of the Proposed Approach
	4 Discussion
	5 Conclusion
	References

