
Mining Business Process Stages from Event Logs

Hoang Nguyen1(B), Marlon Dumas2, Arthur H.M. ter Hofstede1,
Marcello La Rosa1, and Fabrizio Maria Maggi2

1 Queensland University of Technology, Brisbane, Australia
huanghuy.nguyen@hdr.qut.edu.au, {a.terhofstede,m.larosa}@qut.edu.au

2 University of Tartu, Tartu, Estonia
{marlon.dumas,f.m.maggi}@ut.ee

Abstract. Process mining is a family of techniques to analyze business
processes based on event logs recorded by their supporting information
systems. Two recurrent bottlenecks of existing process mining techniques
when confronted with real-life event logs are scalability and interpretabil-
ity of the outputs. A common approach to tackle these limitations is to
decompose the process under analysis into a set of stages, such that
each stage can be mined separately. However, existing techniques for
automated discovery of stages from event logs produce decompositions
that are very different from those that domain experts would produce
manually. This paper proposes a technique that, given an event log, dis-
covers a stage decomposition that maximizes a measure of modularity
borrowed from the field of social network analysis. An empirical evalua-
tion on real-life event logs shows that the produced decompositions more
closely approximate manual decompositions than existing techniques.

Keywords: Process mining · Decomposition · Clustering · Modularity ·
Multistage

1 Introduction

Process mining offers numerous opportunities to extract insights about business
process performance and conformance from event logs recorded by enterprise
information systems [1]. Among other things, process mining techniques allow
analysts to discover process models from event logs for as-is analysis, to check the
conformance of recorded process executions against normative process models, or
to visualize process performance indicators. Process mining techniques however
suffer from scalability issues when applied to large event logs, both in terms
of computational requirements and in terms of interpretability of the produced
outputs. For example, process models discovered from large event logs are often
spaghetti-like and provide limited insights [1].

A common approach to tackle this limitation is to decompose the process into
stages, such that each stage can be mined separately. This idea has been success-
fully applied in the context of automated process discovery [2] and performance
mining [3]. The question is then how to identify a suitable set of stages and how to
c© Springer International Publishing AG 2017
E. Dubois and K. Pohl (Eds.): CAiSE 2017, LNCS 10253, pp. 577–594, 2017.
DOI: 10.1007/978-3-319-59536-8 36

578 H. Nguyen et al.

map the events in the log into stages. For simpler processes, the stage decompo-
sition can be manually identified, but for complex processes, automated support
for stage identification is required. Accordingly, several automated approaches to
stage decomposition have been proposed [4–6]. However, these approaches have
not been designed with the goal of approximating manual decompositions, and
as we show in this paper, the decompositions they produce turn out to be far
apart from the corresponding manual decompositions.

This paper puts forward an automated technique to split an event log into
stages, in a way that mimics manual stage decompositions. The proposed tech-
nique is designed based on two key observations: (i) that stages are intuitively
fragments of the process in-between two milestone events; and (ii) that the stage
decomposition is modular, meaning that there is a high number of direct depen-
dencies inside each stage (high cohesion), and a low number of dependencies
across stages (low coupling) – an observation that has also been applied in
the context of process model decomposition [7] and more broadly in the fields
of systems design and programming in general. For example, a loan origina-
tion process at a bank has multiple stages such as the application is assessed
(accepted/rejected milestone), offered (offer letter sent milestone), negotiated
(agreement signed milestone), and settled (agreement executed milestone). There
may be many back-and-forth or jumps inside a stage, but relatively little across
these stages.

The proposed technique starts by constructing a graph of direct control-flow
dependencies from the event log. Candidate milestones are then identified by
using techniques for computing graph cuts. A subset of these potential cut points
is finally selected in a way that maximizes the modularity of the resulting stage
decomposition according to a modularity measure borrowed from the field of
social network analysis. The technique has been evaluated using real-life logs in
terms of its ability to approximate manual decompositions using a well-accepted
measure for the assessment of cluster quality.

The rest of the paper is structured as follows. Section 2 discusses related
work. Section 3 presents the proposed technique and Sect. 4 describes its empiri-
cal evaluation. Finally, Sect. 5 summarizes the contributions and outlines future
work directions.

2 Related Work

The problem of automated decomposition of event logs into stages has been
approached from multiple perspectives. For example, Carmona et al. [4] extract
a transition system from an event log and apply a graph cut algorithm over this
transition system to identify stages. A formal divide and conquer framework has
been defined and formalized in [5], which has led to several instantiations and
applications in case studies [2,6,8]. The key idea of this framework is to cluster
activities in event logs by first constructing an activity causal graph from the
logs and then searching for regions of heavy connected edges (edges with high
weights) as activity clusters. A recent work of local process model discovery [9]

Mining Business Process Stages from Event Logs 579

also seeks to cluster activities into subsets in order to speed up its performance
as well as to increase the quality of the detected models. It uses three heuristics
based on Markov clustering, log entropy and maximal relative information gain.

The above decompositions have been applied to automated process discov-
ery. Other decomposition techniques have been proposed in the context of per-
formance mining. For example, the Performance Analysis with Simple Prece-
dence Diagram plug-in ProM [10] uses a medoid-based approach to find activity
clusters. Given a similarity measure between activities, this technique identifies
possible medoids and a membership function to determine to which medoid an
activity should be assigned. A similar approach has been proposed in the context
of queue mining from event logs [11].

None of the above techniques has been designed and evaluated in the view of
producing stage decompositions that approximate manual ones. In the experi-
ments reported later, we assess the performance of [10] and [5,6,8] with respect to
manual decompositions, and compare it to the approach proposed in this paper.

Other related work deals with the problem of identifying sub-processes in
an event log [12,13]. The output of these techniques is a log of the top-level
process and a set of logs of sub-processes thereof. This output is not a stage
decomposition. In a stage decomposition, every activity label in the log must be
assigned to exactly one stage, i.e. the stages must form a partition of the set of
activity labels, whereas the techniques described in [12,13] do not ensure that
every activity label belongs to only one sub-process. In fact, these techniques do
not guarantee that any sub-process will be found at all.

3 Stage Decomposition Technique

The proposed technique for extracting stages from an event log proceeds in
two steps. In the first step, we construct a weighted graph from the event log
capturing the direct-follows relation between activities in the process. In the
second step, we split the nodes in the graph (i.e. the activities) into stages with
the aim of maximizing a modularity measure. Below we introduce each of these
two steps in detail.

3.1 From Event Log to Flow Graph

Table 1 shows an example event log of a loan origination process. An event log
consists of a set of cases, where a case is a uniquely identified execution of a
process. For example, the loan application identified by c2 is a case. Each case
consists of a sequence of events. An event is the most granular element of a log
and is characterized by a set of attributes such as timestamp (the moment when
the event occurred), activity label (the name of the action taken in the event),
and event types relating to the activity lifecycle, such as “schedule”, “start”, and
“complete”.

Definition 1 (Event Logs). An event log EL is a tuple (E, ET, A, C, time,
act, type, case), where E is a set of events, ET = {start , complete} is a set of

580 H. Nguyen et al.

Table 1. Example event log.

Case ID Event ID Event type Timestamp Activity label

c1 e1 Start 05.10 09:00:00 Update application

e2 Complete 05.10 10:00:00 Update application

c2 e3 Start 06.10 09:00:00 Update application

e4 Complete 06.10 10:00:00 Update application

e5 Start 08.10 09:00:00 Check application

e6 Complete 08.10 10:00:00 Check application

e7 Start 09.10 08:30:00 Check application

e8 Complete 09.10 09:00:00 Check application

c3 e9 Start 08.10 09:00:00 Update application

e10 Complete 08.10 10:00:00 Update application

e11 Start 09.10 09:00:00 Check application

e12 Complete 09.10 09:15:00 Check application

e13 Start 11.10 09:00:00 Follow-up offer

e14 Complete 11.10 10:00:00 Follow-up offer

event types, A is a set of activity labels, C is a set of cases, time: E → IR+
0 is

a function that assigns a timestamp to an event, act: E → A is a function that
assigns an activity label to an event, type: E → ET is a function that assigns an
event type to an event, and case: E → C relates an event to a case. We write
e �E e′ iff time(e) ≤ time(e′). In this paper, we only use “complete” events,
denoted as Ec, where Ec = {e ∈ E|type(e) = complete}.

A process graph is a directed graph in which nodes represent activities and
edges represent direct-follows relations between activities. For example, if activ-
ity b occurs after activity a in a case, the graph contains a node a, a node b and
a directed edge from a to b. In addition, edges carry weights representing the
frequency of the direct-follows relation between two related activities in the log.

Definition 2 (Process Graph). A process graph of an event log EL=(E, ET,
A, C, time, act, type, case) is a graph GEL = (VEL, FEL,WEL), where:

– VEL is a set of nodes, each representing an activity, i.e. VEL = A.
– FEL is a set of directed edges, each representing the direct-follows relation

between two activities based on “complete” events. Activity a2 directly follows
activity a1 if there is a case in which the “complete” event e2 of a2 follows the
“complete” event e1 of a1 without any other “complete” events in-between,
i.e. e1 is in a direct “complete” sequence with e2. Event e1 is in a direct
“complete” sequence with e2, denoted e1 −→ e2, iff e1 ∈ Ec ∧ e2 ∈ Ec ∧ e1 �=
e2 ∧ case(e1) = case(e2) ∧ e1 �E e2 ∧ �e3 ∈ Ec[e3 �= e1 ∧ e3 �= e2 ∧ case(e3) =
case(e1)∧ e1 �E e3 ∧ e3 �E e2]. Thus, FEL = {(a1, a2) ∈ VEL ×VEL|∃e1, e2 ∈
Ec[act(e1) = a1 ∧ act(e2) = a2 ∧ e1 −→ e2]}.

Mining Business Process Stages from Event Logs 581

i oUpdate
application

Check
application

Follow-up
offer

23

1

1

1

1

1

Fig. 1. Flow graph created from the event log in Table 1.

– WEL is a function that assigns a weight to an edge, WEL: FEL → IN+
0 . The

weight of an edge connecting node a1 to node a2, denoted WEL(a1, a2), is
the frequency of the direct-follows relation between a1 and a2 in the log, i.e.
WEL(a1, a2) = |{(e1, e2) ∈ Ec ×Ec|act(e1) = a1 ∧ act(e2) = a2 ∧ e1 −→ e2}|.

The process graph constructed above has a set of start nodes called firstacts
containing the first activities of all cases, and a set of end nodes called lastacts
containing the last activities of all cases, i.e. firstacts(VEL) = {a ∈ VEL|∃e ∈
Ec : [act(e) = a ∧ �e′ ∈ Ec|e′ −→ e]}, and lastacts(VEL) = {a ∈ VEL|∃e ∈
Ec : [act(e) = a ∧ �e′ ∈ Ec|e −→ e′]}.

From a process graph, we can derive a corresponding flow graph, which has
only one source node i and one sink node o.

Definition 3 (Flow Graph). The flow graph of a process graph GEL =
(VEL, FEL,WEL) is a graph FL(GEL) = (V FLG

EL , FFLG

EL ,WFLG

EL), where:

– V FLG

EL = VEL ∪ {i, o}, {i, o} ∩ VEL = ∅.
– FFLG

EL = FEL ∪ {(i, x)|x ∈ firstacts(VEL)} ∪ {(x, o)|x ∈ lastacts(VEL)}

– WFLG
EL (a1, a2) =

⎧
⎪⎨

⎪⎩

WEL(a1, a2) if a1 �= i ∧ a2 �= o

|{e ∈ Ec|act(e) = a2 ∧ [�e′ ∈ Ec|e′ −→ e]}| if a1 = i

|{e ∈ Ec|act(e) = a1 ∧ [�e′ ∈ Ec|e −→ e′]}| if a2 = o

Figure 1 illustrates a flow graph constructed from the example log in Table 1,
while Fig. 2 shows a flow graph created from a simulated log.

3.2 Stage Decomposition and Quality Measure

We assume that a process stage exhibits a quasi-SESE (single entry single exit)
fragment on a flow graph. A quasi-SESE fragment is a MEME (multi-entry
multi-exit) fragment, which has one entry point with high inflow and one exit
point with high outflow (see Fig. 2), where inflow (outflow) is the total weight of
the incoming (outgoing) edges. The entry and exit points are transition nodes
between stages. We aim at developing a technique to extract a list of stages from
a flow graph called a stage decomposition, where stages are sets of nodes.

In order to measure the quality of stage decompositions, we use modular-
ity [14], which was proposed for detecting community structures in social net-
works. A community structure is characterized by a high density of edges within
a community and a low number of edges connecting different communities. The

582 H. Nguyen et al.

Fig. 2. Example quasi-SESE fragments.

higher the modularity is, the more a network exhibits a community structure.
In this paper, we use a variant of modularity for weighted and directed graphs
which are the characteristics of the flow graphs defined above.

Let S be a stage decomposition extracted from a flow graph based on an event
log EL, and Si ∈ S, where i = 1 . . . |S|, be a stage. Let WFLG

EL (Si, Sj) be the
total weight of edges connecting Si to Sj (excluding self-loops), WFLG

EL (Si, Sj) =
∑

a1∈Si,a2∈Sj ,a1 �=a2

WFLG

EL (a1, a2). Let WT be the total weight of all edges in the graph

excluding self-loops, WT =
∑

a1,a2∈V
FLG
EL ,a1 �=a2

WFLG

EL (a1, a2). The modularity of a stage

decomposition is computed based on a modular graph which is the flow graph
with a special treatment for transition nodes (see Fig. 3). Every transition node
in the stage decomposition is split into two child nodes, one as an end node of
one stage and the other as a start node of the next stage. The edges connected
to the transition node are connected to the child nodes accordingly. The child
nodes are also connected between each other through a new edge with weight
equal to zero. In this way, the weight of edges in the modular graph remains
the same as in the original graph. The modular graph is used for computing
modularity because it can well reflect the quality of stage decomposition.

Let W
FL′

G

EL (Si, Sj) be the total weight of edges connecting Si to Sj in the
modular graph. The modularity of a stage decomposition S is computed as
follows.

Q =
|S|∑

i=1

(Ei − A2
i) (1)

Mining Business Process Stages from Event Logs 583

where Ei = W
FL′

G
EL (Si,Si)

WT is the fraction of edges that connect nodes within stage

Si and Ai =

|S|∑

j=1
W

FL′
G

EL (Sj ,Si)

WT is the fraction of edges that connect to stage Si,
including those within stage Si and those from other stages.

Stage decomposition may become overly fragmented as a fragment could in
principle be composed of only two strongly connected activities. Therefore, we
introduce minimum stage size indicating the smallest number of activities in any
given stage as a user parameter for stage decomposition. Through this, one can
decide on what level of granularity they may want to look at stages.

3.3 Stage Decomposition Algorithm

Given an event log, we seek to find a stage decomposition that can maximize
modularity. To this end, we propose a technique that starts from the flow graph
constructed from the log, and recursively decomposes it into sets of nodes using
the notion of min-cut as calculated by Ford-Fulkerson’s algorithm. Note that
the min-cut here is the one found in the graph after a node has been removed.
The set of edges in that min-cut is called a cut-set associated with the removed
node, and the total weight of edges in the cut-set is called cut-value. Together, a
node and its cut-set form a border between two graph fragments. The lower the
cut-value is, the more the related fragments will resemble quasi-SESE fragments.
Therefore, if we find a set of nodes with low cut-values, we can take multiple
graph cuts on those nodes and their cut-sets to obtain a stage decomposition
that can approximate the maximum modularity.

Transition nodes intuitively have lower cut-values than the min-cut found by
Ford-Fulkerson’s algorithm in the original flow graph (called source-min-cut).
Thus, we can use the source-min-cut as a threshold when selecting a candidate
list of cut-points, i.e. nodes with cut-values smaller than that of the source-
min-cut will be selected. Further, in a flow graph, the source-min-cut can be
computed in constant time as it is equal to the set of outgoing edges of the
source node of the graph or the set of incoming edges of the sink node.

Once we have a candidate list, the key question is how to find a subset of
nodes to form a stage decomposition that can maximize modularity. One way is
to generate all possible subsets from the list, create stage decompositions based
on all subsets, and select the one that has the highest modularity. However, this
approach may suffer from combinatorial problems if the number of candidate
nodes is large. For example, if we assume that the flow graph has 60 nodes and
the candidate list has 30 nodes, the total number of subsets would be

(
30
1

)
+

(
30
2

)
+

...+
(
30
30

)
= 1,050,777,736. We thus propose two algorithms (Algorithms 1 and 2)

to find a stage decomposition that can approximate the maximum modularity.
The inputs to the algorithms are an event log and a minimum stage size.

Algorithm 1 is a greedy algorithm. The main idea (Lines 9–22) is to search
in the candidate list for a cut-point that can result in a stage decomposition
with two stages and of highest modularity. Then it removes the node from the
candidate list (Line 20) and searches in the list again for another cut-point that

584 H. Nguyen et al.

can create a new decomposition with three stages and of highest modularity, i.e.
higher than the former decomposition and the highest among all decompositions
with three stages, and so on until it cannot either find a stage decomposition of
higher modularity or all new decompositions have a stage of smaller size than the
minimum stage size. Note that stage decomposition is recursive meaning a stage
in the current decomposition will be decomposed into two sub-stages based on
a selected cut-point (Line 14). Modularity is computed according to Eq. 1 based
on the modular graph as described above (Line 15).

Algorithm 2 has the same structure as Algorithm 1, but uses the lowest cut-
value as a heuristic. Firstly, it sorts the candidate list in ascending order of cut-
values, then it sequentially picks every node from the list to create recursive stage
decompositions until the modularity is not increased or all new decompositions
have a stage of smaller size than the minimum threshold.

The worst-case time complexity of functions used in the algorithms can
be computed as follows. The create flow graph function is O(V + F), where
V = V FLG

EL and F = FFLG

EL . The node min cut function removes a node from the
graph and uses Ford-Fulkerson’s algorithm to find a min-cut; it is O(Fw), where
w is the maximum weight of edges in the flow graph [15]. The source min cut
function is O(1) since it only computes the total weight of edges originating
from the source node. The find cut stage function searches a stage that con-
tains the current node in the current stage decomposition; it is O(V). The
cut graph function (Algorithm3) is O(V + F), which performs a depth-first
search to find disconnected components in the graph [15]. The copy sd func-
tion is O(V) (replace a stage with two sub-stages). The modularity function is
O(V +F), which involves copying the original graph to a new one with a special
treatment for cut-points (O(V + F)) and computing the modularity based on
Eq. 1 (O(F)). The get activity labels function is O(V) (extract activity labels
from nodes). The sort function (Algorithm2) is O(V log V). Based on these
observations, the complexity of Algorithm1 is O(V 2(V +F))), and Algorithm 2
is O(V (V + F)).

v
Si Sj

(a) Before split

v v

Si Sj
0

(b) After split

Fig. 3. Treatment for transition nodes in computing modularity.

4 Evaluation

We call our technique Staged Process Miner (SPM) and implemented it as a
ProM plug-in as well as a stand-alone Java tool1. We evaluated the technique
1 Available from http://apromore.org/platform/tools.

http://apromore.org/platform/tools

Mining Business Process Stages from Event Logs 585

Algorithm 1. Highest Modularity Stage Decomposition
Input: EL: an event log

minStateSize: minimum number of activities in a stage
Output: A sequence of stages, each is a set of activity labels

1 G = create flow graph(EL)
2 CandidateNodes := {}
3 forall v in V

FLG
EL \ {i, o} do

4 <v.mincut, v.cutset>:= node min cut(G, v)
5 if v.mincut < source min cut(G) then
6 CandidateNodes := CandidateNodes ∪ {v}

7 CurrentBestSD := [V
FLG
EL \ {i, o}]

8 NewBestSD := CurrentBestSD
9 while CandidateNodes �= {} do

10 forall v in CandidateNodes do
11 CutStage := find cut stage(CurrentBestSD, v)
12 <PreStage,SucStage>:= cut graph(G, v,CutStage)
13 if |PreStage| ≥ minStateSize and |SucStage| ≥ minStateSize then
14 NewSD := copy sd(CurrentBestSD,CutStage,PreStage,SucStage)
15 if modularity(NewSD, G) > modularity(NewBestSD, G) then
16 NewBestSD := NewSD
17 BestCutPoint := v

18 if NewBestSD �= CurrentBestSD then
19 CurrentBestSD := NewBestSD
20 CandidateNodes := CandidateNodes \ {BestCutPoint}
21 else
22 break // stop when modularity is not increased

23 return get activity labels(CurrentBestSD)

Algorithm 2. Lowest Cut-value Stage Decomposition
Input: EL: an event log

minStageSize: minimum number of activities in a stage
Output: A sequence of stages, each is a set of activity labels

// Line 1-7 is the same as Algorithm 1
8 Candidates sorted := sort(CandidateNodes,min cut, asc)
9 while Candidates sorted �= [] do

10 v := head(Candidates sorted)
11 CutStage := find cut stage(CurrentBestSD, v)
12 <PreStage,SucStage>:= cut graph(G, v,CutStage)
13 if |PreStage| ≥ minStateSize and |SucStage| ≥ minStateSize then
14 NewSD := copy sd(CurrentBestSD,CutStage,PreStage,SucStage)
15 if modularity(NewSD, G) > modularity(CurrentBestSD, G) then
16 CurrentBestSD := NewSD

17 else
18 break // stop when modularity is not increased

19 Candidates sorted := tail(Candidates sorted)

20 return get activity labels(CurrentBestSD)

through a range of real-life logs and against two baselines. The input to the
technique is an event log and the minimum stage size; the output is an ordered
set of activity sets, where each activity set represents a stage. The ProM plug-in
also offers a visualization of the stage decomposition as staged process maps,
where boxes represent stages and list all activities that belong to a given stage,

586 H. Nguyen et al.

Algorithm 3. cut graph
Input: G: a flow graph

v: a node
CutStage: a node set containing v

Output: a pair of subsets of CutStage

1 G aftercut := remove edges(remove node(G, v), v .cutset) // Graph cut
2 G source := source graph(G aftercut) // The subgraph containing the source
3 PreStage := (CutStage ∩ VG source) ∪ {v}
4 SucStage := CutStage \ PreStage
5 return <PreStage,SucStage>

and arcs between stages report the frequency of handover from one stage to the
other (the thicker the arc, the higher the frequency) – see Fig. 5 for an example.

The purpose of this research is to determine if it is possible to algorith-
mically produce stage decompositions of event logs that mimic decompositions
produced manually by domain experts. Accordingly, we define the quality of a
stage decomposition in terms of its similarity relative to a manually produced
ground truth, the evaluation aims at addressing the following top-level question:

Q1. How does the quality of the stage decomposition produced by our technique
compare to that of existing baselines?
The decomposition produced by our technique depends on the selected mini-
mum stage size. Accordingly, we also address the following ancillary question:

Q2. How does the quality of the decomposition produced by our technique vary
depending on the minimum stage size?

4.1 Datasets

We used seven publicly available, real-life event logs. These include two logs from
the Business Process Intelligence (BPI) Challenge 2012 and 2013, and five logs
from the BPI Challenge 2015. Table 2 reports descriptive statistics on the size
of these datasets.

BPI122 is a loan origination process in a Dutch bank. Its stages are: (i)
pre-assess application completeness, (ii) assess eligibility, (iii) offer & negotiate
loan packages with customers, iv) validate & approve. As a ground truth, these
stages are marked in the log by milestone events occurring at the end of each
stage, such as A PREACCEPTED (stage i) and A ACCEPTED (stage ii), where
“A” stands for Application. We preprocessed this log by replacing a group of
milestone events occurring usually simultaneously at the end of a stage with one
representative milestone event only.

BPI133 is an IT incident handling process at Volvo Belgium. A stage in
this process reflects the IT helpdesk level (team) where an IT incident ticket is
processed. The IT department has three levels from 1 to 3. The ground truth of
stages thus is the helpdesk level of the resource who initiates an event. This log
2 doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.
3 doi:10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee.

https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee

Mining Business Process Stages from Event Logs 587

is preprocessed by selecting only complete cases, i.e. cases that have completed
all stages.

BPI154 is a set of five logs from five Dutch municipalities relating to a build-
ing permit application process. This process has many stages, such as: (i) applica-
tion receipt, (ii) completeness check of the application, (iii) investigation leading
to a resolution (e.g. accept, reject, ask for more info), (iv) communication of the
resolution, (v) public review, (vi) decision finalization, and (vii) objection and
complaint filing. The ground truth of stages in this process is encoded in the
action code field which has a generic format 01 HOOFD xyy, where x indicates
the stage number and yy indicates the activity code within the stage. This log
is preprocessed by selecting only events of the main process (i.e. events with
HOOFD code), and then selecting cases that have completed stage 1 to stage 4,
which show strong quasi-SESE fragments.

Table 2. Statistics on the datasets used in the evaluation.

Dataset Business process Number of cases Number of events Event classes

BPI12 Loan origination 13,087 127,290 19

BPI13 IT incident handling 175 1,996 27

BPI15-1 Building permit application 834 11,451 61

BPI15-2 618 8,979 52

BPI15-3 1,013 13,929 60

BPI15-4 792 10,710 50

BPI15-5 951 13,682 56

4.2 Baselines

We used two baseline techniques in our evaluation: the Divide and Conquer
framework (DC) and the Performance Analysis with Simple Precedence Diagram
(SPD) presented in Sect. 2. They are both available in ProM.

DC consists of a set of ProM plug-ins run in sequence: Discover Matrix,
Create Graph, Create Clusters and Modify Clusters. These plug-ins require one
to configure many parameters, notably the number of clusters and the target
cluster size. This tool-chain is designed to be used in an interactive manner where
users can see how their selected parameters affect the decomposition through
visualizations. Since clusters must be disjoint in a stage decomposition, we select
parameters for this tool-chain in such a way to only generate disjoint clusters.

SPD takes as input an event log and a number of clusters to be produced.
The output is a diagram called Simple Precedence Diagram where nodes are
clusters of activities. The plug-in uses medoid-based fuzzy clustering. In order
to obtain disjoint clusters, we adapted the membership function such that given
an activity it only returns one medoid with the highest membership value.
4 doi:10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1.

https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1

588 H. Nguyen et al.

4.3 Accuracy Index

To assess the accuracy of a stage decomposition against the ground truth, we
experimented with three well-known external indexes of clustering quality: Rand,
Fowlkes–Mallows and Jaccard [16]. These indexes are used to evaluate the sim-
ilarity of two clusterings. The higher the index is, the more similar the two
clusterings are. In our tests, the Rand Index was very high even for less sim-
ilar clusterings while Jaccard was often low even for very similar clusterings.
Fowlkes–Mallows provided more reasonable results between those returned by
the other two indexes. Thus, we decided to report the results using the Fowlkes–
Mallows index only, given that Rand and Jaccard also showed consistent results
across all datasets and techniques.

The formula for Fowlkes–Mallows is provided below, where n11 is the number
of activities that are in the same stage in both decompositions, and n10(n01) is
the number of activities that are in the same stage in the first (second) decom-
position but in different stages in the second (first) decomposition.

Fowlkes−Mallows =
n11√

(n11 + n10)(n11 + n01)
(2)

4.4 Results

We present the evaluation results in light of the two questions defined above.

Q1. How does the quality of the stage decomposition produced by our
technique compare to that of existing baselines?

We run DC, SPD and SPM with different parameter settings and chose for
each technique the configuration that achieves the highest accuracy in terms of
the Fowlkes–Mallows index. The best configuration for each technique is reported
in Table 3. Further values used for DC are: Modify Clusters Miner = “Incremental
using Best Score (Overlapping Only)”; Cohesion/Coupling/Balance/Overlap
Weight = 100/100/0/100, while all other parameters we used default values, e.g.
Discovery Matrix Classifier = Activity.

Table 4 shows the Fowlkes–Mallows index for the three techniques, for each
log. SPM, in either of its two variants (highest modularity and lowest cut-
value) consistently outperformed the two baseline techniques across all datasets,
with slightly higher results achieved by the highest modularity algorithm. These
results attest the appropriateness of the modularity measure for stage decompo-
sition, with lowest cut-value being a good approximation of the ground truth.
In addition, our heuristics-based techniques with highest modularity and lowest
cut-value can approximate the optimal selection of cut-points when comparing
with the exhaustive technique for BPI12 and BPI13 logs. For BPI15-x logs, the
exhaustive technique does not finish after running for several hours due to the
large number of combinations of cut-points. For example, BPI15-1 has 61 activ-
ities and 30 candidate cut-points and, for minStageSize = 4, the total number of
combinations of cut-points is 614,429,471 (

(
30
1

)
+

(
30
2

)
+ ... +

(
30
15

)
).

Mining Business Process Stages from Event Logs 589

Table 3. Parameters configuration for the evaluated techniques.

Dataset DC SPD SPM

No. of
clus-
ters

Target
cluster
size

Weight
thresh-
old

No. of
clus-
ters

Minimum
stage
size

BPI12 4 5 0.943 4 3

BPI13 3 5 0.834 3 5

BPI15-1 4 12 0.432 4 4

BPI15-2 4 12 0.425 4 4

BPI15-3 4 12 0.527 4 4

BPI15-4 4 12 0.597 4 5

BPI15-5 4 12 0.507 4 5

Table 4. Fowlkes–Mallows index for the evaluated techniques.

Dataset Stages DC SPD SPM

Highest modularity Lowest cut-value Exhaustive

BPI12 4 0.30 0.49 1.0 0.92 1.0

BPI13 3 0.36 0.73 0.78 0.78 0.78

BPI15-1 4 0.40 0.54 0.90 0.92 Timed-out

BPI15-2 4 0.40 0.52 0.92 0.76 Timed-out

BPI15-3 4 0.42 0.50 0.86 0.86 Timed-out

BPI15-4 4 0.45 0.57 0.72 0.72 Timed-out

BPI15-5 4 0.46 0.49 0.83 0.83 Timed-out

As an example, Fig. 4 shows the decomposition identified by our technique
(highest modularity) and by the two baselines, for the BPI2015-2 log, on top of
the direct-follows graph of the event log. Here activities have been color-coded
(or marked in shaded areas) based on the clusters they belong to. We can observe
that in both the baselines, stage boundaries are not sharply defined, with many
activities being mixed between stages.

The low accuracy of the two baselines is due to the underlying clustering
approach used. DC searches for clusters starting from heavy edges (edges with
high weights) and growing the cluster to other connected edges with weight
over a threshold. This is the reason why it can detect some regions that cover
an actual stage, but fails to determine exactly where to stop clustering. SPD
searches for clusters based on medoids, i.e. a central node in a direct-follows
graph that is close to all other nodes in a cluster, where closeness is measured by
the frequency of the direct-follows relation between activities. SPD thus tends to
produce a large cluster covering several actual stages because stages are usually

590 H. Nguyen et al.

(a) SPM (b) DC

31

415

16

19

624

2

62

5

81

20

16

218

1

2 29

347

72

1

31

76

2

10

367

31

11

210

1

530

185

2

12

25

54

91

452

87

25

30

107

15

1

260

2

14

30

2

103

3

398

115

45

1

119

49

183

56

2

103

520

2

14

72

63

87

2

126

359

30

3

2

2

2

529

2

9

618

618

01_HOOFD_180
642

01_HOOFD_195
552

01_HOOFD_200
648

01_HOOFD_250_101_HOOFD_250_1
381

01_HOOFD_250_2
378

01_HOOFD_330
587

01_HOOFD_370
520

01_HOOFD_375
624

01_HOOFD_380
624

01_HOOFD_430
533

01_HOOFD_480
529

01_HOOFD_490_1
639

01_HOOFD_250_0
103

01_HOOFD_196
204

01_HOOFD_250
225

01_HOOFD_260
227

01_HOOFD_190_1
62

01_HOOFD_190_2
51

01_HOOFD_190
81

01_HOOFD_193
30

01_HOOFD_470
136

01_HOOFD_440_1
107

01_HOOFD_440_2
107

01_HOOFD_445
107

01_HOOFD_446
87

01_HOOFD_451
31

01_HOOFD_460
83

01_HOOFD_350_1
31

01_HOOFD_350_2
20

01_HOOFD_465
103

01_HOOFD_270
154

01_HOOFD_455
70

01_HOOFD_450
60

01_HOOFD_205
114

01_HOOFD_440_1a
31

01_HOOFD_459
31

01_HOOFD_460a
22

01_HOOFD_191
10

01_HOOFD_192
9

01_HOOFD_331
1

01_HOOFD_350_0
2

01_HOOFD_446_0
2

01_HOOFD_447
2

01_HOOFD_197
2

01_HOOFD_210_0
2

01_HOOFD_332
2

01_HOOFD_410_0
3

01_HOOFD_410_1
2

01_HOOFD_420
3

01_HOOFD_181
1

01_HOOFD_210_1
2

01_HOOFD_210_201_HOOFD_210_2
2

31

415

16

19

624

2

62

5

81

20

16

218

1

2 29

347

72

1

31

76

2

10

367

31

11

210

1

530

185

2

12

25

54

91

452

87

25

30

107

15

1

260

2

14

30

2

103

3

398

115

45

1

119

49

183

56

2

103

520

2

14

72

63

87

2

126

359

30

3

2

2

2

529

2

9

618

618

01_HOOFD_180
642

01_HOOFD_195
552

01_HOOFD_200
648

01_HOOFD_250_101_HOOFD_250_1
381

01_HOOFD_250_2
378

01_HOOFD_330
587

01_HOOFD_370
520

01_HOOFD_375
624

01_HOOFD_380
624

01_HOOFD_430
533

01_HOOFD_480
529

01_HOOFD_490_1
639

01_HOOFD_250_0
103

01_HOOFD_196
204

01_HOOFD_250
225

01_HOOFD_260
227

01_HOOFD_190_1
62

01_HOOFD_190_201_HOOFD_190_2
51

01_HOOFD_190
81

01_HOOFD_193
30

01_HOOFD_470
136

01_HOOFD_440_1
107

01_HOOFD_440_2
107

01_HOOFD_445
107

01_HOOFD_446
87

01_HOOFD_451
31

01_HOOFD_460
83

01_HOOFD_350_1
31

01_HOOFD_350_2
20

01_HOOFD_465
103

01_HOOFD_270
154

01_HOOFD_455
70

01_HOOFD_450
60

01_HOOFD_205
114

01_HOOFD_440_1a
31

01_HOOFD_459
31

01_HOOFD_460a
22

01_HOOFD_191
10

01_HOOFD_192
9

01_HOOFD_331
1

01_HOOFD_350_0
2

01_HOOFD_446_0
2

01_HOOFD_447
2

01_HOOFD_197
2

01_HOOFD_210_0
2

01_HOOFD_332
2

01_HOOFD_410_001_HOOFD_410_0
3

01_HOOFD_410_1
2

01_HOOFD_420
3

01_HOOFD_181
1

01_HOOFD_210_1
2

01_HOOFD_210_201_HOOFD_210_2
2

31

415

16

19

624

2

62

5

81

20

16

218

1

2 29

347

72

1

31

76

2

10

367

31

11

210

1

530

185

2

12

25

54

91

452

87

25

30

107

15

1

260

2

14

30

2

103

3

398

115

45

1

119

49

183

56

2

103

520

2

14

72

63

87

2

126

359

30

3

2

2

2

529

2

9

618

618

01_HOOFD_180
642

01_HOOFD_195
552

01_HOOFD_200
648

01_HOOFD_250_101_HOOFD_250_1
381

01_HOOFD_250_2
378

01_HOOFD_330
587

01_HOOFD_370
520

01_HOOFD_375
624

01_HOOFD_380
624

01_HOOFD_430
533

01_HOOFD_480
529

01_HOOFD_490_1
639

01_HOOFD_250_001_HOOFD_250_0
103

01_HOOFD_196
204

01_HOOFD_250
225

01_HOOFD_260
227

01_HOOFD_190_1
62

01_HOOFD_190_201_HOOFD_190_2
51

01_HOOFD_190
81

01_HOOFD_193
30

01_HOOFD_470
136

01_HOOFD_440_1
107

01_HOOFD_440_2
107

01_HOOFD_445
107

01_HOOFD_446
87

01_HOOFD_451
31

01_HOOFD_460
83

01_HOOFD_350_1
31

01_HOOFD_350_201_HOOFD_350_201_HOOFD_350_2
2020

01_HOOFD_465
103

01_HOOFD_270
154

01_HOOFD_455
70

01_HOOFD_450
60

01_HOOFD_205
114

01_HOOFD_440_1a
31

01_HOOFD_459
31

01_HOOFD_460a
22

01_HOOFD_191
10

01_HOOFD_192
9

01_HOOFD_331
1

01_HOOFD_350_0
2

01_HOOFD_446_0
2

01_HOOFD_447
2

01_HOOFD_197
2

01_HOOFD_210_0
2

01_HOOFD_332
2

01_HOOFD_410_0
3

01_HOOFD_410_1
2

01_HOOFD_420
3

01_HOOFD_181
1

01_HOOFD_210_101_HOOFD_210_1
2

01_HOOFD_210_201_HOOFD_210_2
2

(c) SPD

Fig. 4. Stage decomposition for the BPI15-2 log. Shaded areas are activity clusters.
Activities not in any shaded areas belong to one big cluster.

strongly connected via transition nodes. In general, both baseline techniques are
unable to detect stage boundaries.

In addition, only our technique can retrieve stages in the correct order, while
ordering is not part of the results provided by the two baseline techniques. We
can see this, for example, in Figs. 5 and 6, which show the stage decomposition
for the BPI12 and BPI13 logs provided by our ProM plug-in.

To complement our comparison with baselines, we also experimented with
three clustering techniques proposed in local process model discovery [9]. They
are based on well-established heuristics used in data mining, such as Markov
clustering, log entropy, and maximal relative information gain. However, the
results obtained are very different from the ground truth, with Fowlkes–Mallows
Index always being below 0.5.

In terms of runtime performance, both our technique and the two baselines
perform within reasonable bounds, in the order of seconds (see Table 5). However,
the exhaustive technique could not finish for BPI15-x logs after running for
several hours.

Mining Business Process Stages from Event Logs 591

Fig. 5. Stage decomposition produced by SPM for the BPI12 log.

Fig. 6. Stage decomposition produced by SPM for the BPI13 log.

Q2. How does the quality of the decomposition produced by our tech-
nique vary depending on the minimum stage size?

To answer this question, we run our technique with the highest modularity
algorithm using different values of minimum stage size (minSS), from 2 to half of
the total number of activities in an event log. Table 6 provides the characteristics
of different stage decompositions, each for a minSS value. It shows that the
modularity is higher when minSS is small and peaks when minSS is equal to 2.
This is because, when minSS is small, the technique is allowed to decompose the
graph into stages as much as possible to increase modularity. For example, for
minSS = 2, the best stage decomposition for BPI15-1 log has 7 stages, in which
two stages have size 2 (i.e. two activities), one has size 3, one has size 5, one has
size 11, one has size 14, and one has size 24.

Notably, in Table 6, for each dataset, one resulting decomposition is very
close to the ground truth, such as minSS = 3 for BPI12 (FM = 1.0), minSS = 9 for
BPI13 (FM = 0.85), minSS = 4 for BPI15-1 (FM = 0.90), minSS = 4 for BPI15-2
(FM = 0.92), and minSS = 4 for BPI15-3 (FM = 0.86). This suggests how to use
our technique for stage-based analysis. Users may decide not to fix the mini-
mum stage size, run the technique for different sizes (as we did in this second
experiment) and choose the stage decomposition that best suits their needs. For
example, for BPI15-1 log, they can vary the minSS parameter to view different

592 H. Nguyen et al.

Table 5. Run-time performance (in seconds)

Dataset DCa SPD SPM

Highest modularity Lowest cut-value Exhaustive

BPI12 2 0.563 10 5 158

BPI13 2 0.019 0.36 0.31 1

BPI15-1 2 0.096 1 0.85 Timed-out

BPI15-2 2 0.069 1 0.85 Timed-out

BPI15-3 2 0.070 1 0.87 Timed-out

BPI15-4 2 0.050 1 0.64 Timed-out

BPI15-5 2 0.072 1 0.73 Timed-out
aEstimated due to manual use of plugins

stage decompositions as shown in Table 6. They can then rely on the number of
stages and the associated modularity as a recommendation to choose the best
stage decomposition. However, a good balance between optimal number of stages
and high modularity needs to be identified manually. For example, for BPI15-1
log, the process with seven stages has high modularity but probably too many
stages. On the other hand, the process with three stages has low modularity that
also indicates that the result may not be good candidate for stage decomposition.

5 Conclusion

Given a business process event log, the technique presented in this paper par-
titions the activity labels in the log into stages delimited by milestones. The
idea is to construct a direct-follows graph from the log, to identify a set of
candidate milestones via a minimum cut algorithm, and to heuristically select
a subset of these milestones. The paper considered two greedy heuristics: one
that selects at each step the milestone with the lowest cut-value, and another
that selects milestones that maximize modularity, using a modularity measure
originally designed for social networks.

The technique has been implemented as a plug-in in the ProM framework,
which splits an event log into stages and generates a staged process map. Exper-
imental results on seven real-life event logs show that: (i) both heuristics sig-
nificantly outperform previously proposed event log decomposition techniques
in terms of the concordance of the produced decompositions relative to man-
ual decompositions; and (ii) the stage decompositions generated by maximizing
modularity outperform those based on cut-value. The latter result confirms pre-
vious empirical observations in the field of process model decomposition [7], while
demonstrating the applicability of a modularity measure for social networks in
this setting.

The proposed technique has a range of applications in the field of process
mining. For example, stage decompositions can be used to scale up automated
process discovery techniques [5,6] or to produce decomposed metrics and visual-

Mining Business Process Stages from Event Logs 593

Table 6. Highest Modularity SPM with different minimum stage sizes (MinSS =
Minimum Stage Size, Mod = Modularity, FM = Fowlkes–Mallows).

MinSSBPI12 BPI13 BPI15-1 BPI15-2 BPI15-3

StagesModFM StagesModFM StagesModFM StagesModFM StagesModFM

2 6 0.70 0.75 6 0.67 0.56 7 0.80 0.82 7 0.79 0.82 7 0.82 0.76

3 4 0.59 1.004 0.61 0.72 5 0.77 0.83 5 0.77 0.84 6 0.80 0.75

4 4 0.57 0.81 4 0.61 0.72 4 0.73 0.904 0.72 0.924 0.73 0.86

5 3 0.55 0.82 3 0.58 0.78 4 0.73 0.90 4 0.72 0.92 4 0.73 0.86

6 3 0.44 0.70 3 0.58 0.78 4 0.73 0.90 4 0.72 0.92 4 0.73 0.86

7 2 0.40 0.67 3 0.58 0.78 4 0.73 0.90 4 0.72 0.92 4 0.73 0.86

8 2 0.40 0.67 3 0.58 0.78 5 0.69 0.61 4 0.68 0.72 4 0.73 0.86

9 2 0.34 0.54 3 0.52 0.855 0.69 0.61 4 0.68 0.72 4 0.73 0.86

10 2 0.38 0.65 4 0.68 0.73 4 0.68 0.72 4 0.73 0.86

11 2 0.38 0.65 4 0.68 0.73 4 0.68 0.72 4 0.68 0.67

12 2 0.38 0.65 4 0.68 0.73 3 0.58 0.66 4 0.68 0.67

13 2 0.38 0.65 3 0.68 0.73 3 0.58 0.66 3 0.57 0.65

14 3 0.57 0.66 3 0.58 0.62 3 0.57 0.65

15 3 0.57 0.66 3 0.58 0.62 3 0.57 0.65

16 3 0.56 0.63 2 0.49 0.74 3 0.57 0.65

17 3 0.56 0.63 2 0.49 0.74 3 0.56 0.62

18 2 0.49 0.74 2 0.49 0.74 2 0.49 0.69

19 2 0.49 0.74 2 0.49 0.74 2 0.49 0.69

20 2 0.49 0.74 2 0.49 0.74 2 0.49 0.69

21 2 0.49 0.74 2 0.49 0.74 2 0.49 0.69

22 2 0.49 0.74 2 0.49 0.74 2 0.49 0.69

23 2 0.49 0.74 2 0.49 0.74 2 0.49 0.69

24 2 0.49 0.74 2 0.48 0.73 2 0.49 0.69

25 2 0.49 0.74 2 0.48 0.73 2 0.49 0.69

26 2 0.49 0.74 2 0.48 0.68

27 2 0.49 0.74 2 0.48 0.68

28 2 0.48 0.73 2 0.48 0.68

29 2 0.48 0.73

izations for performance analysis [3]. Investigating these applications is an avenue
for future work.

Beyond the field of process mining, the proposed technique could find appli-
cation in the realm of customer journey analysis, by allowing analysts to identify
stages from customer session logs. With suitable extensions, the technique could
also be used to compute abstracted views of large event sequences for interactive
visual data mining.

Acknowledgments. This research is funded by the Australian Research Council
(grant DP150103356) and the Estonian Research Council (grant IUT20-55).

594 H. Nguyen et al.

References

1. van der Aalst, W.M.: Process mining: discovering and improving spaghetti and
lasagna processes. In: Proceedings of CIDM. IEEE (2011)

2. Hompes, B.F.A., Verbeek, H.M.W., Aalst, W.M.P.: Finding suitable activity clus-
ters for decomposed process discovery. In: Ceravolo, P., Russo, B., Accorsi, R.
(eds.) SIMPDA 2014. LNBIP, vol. 237, pp. 32–57. Springer, Cham (2015). doi:10.
1007/978-3-319-27243-6 2

3. Nguyen, H., Dumas, M., Hofstede, A.H.M., Rosa, M., Maggi, F.M.: Business
process performance mining with staged process flows. In: Nurcan, S., Soffer, P.,
Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 167–185. Springer,
Cham (2016). doi:10.1007/978-3-319-39696-5 11

4. Carmona, J., Cortadella, J., Kishinevsky, M.: Divide-and-conquer strategies for
process mining. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM
2009. LNCS, vol. 5701, pp. 327–343. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-03848-8 22

5. Van Der Aalst, W.M.: A general divide and conquer approach for process mining.
In: Proceedings of FedCSIS, pp. 1–10. IEEE (2013)

6. Verbeek, H., van der Aalst, W.M., Munoz-Gama, J.: Divide and conquer. Technical
report, BPM Center Report Series (2016)

7. Reijers, H.A., Mendling, J., Dijkman, R.M.: Human and automatic modulariza-
tions of process models to enhance their comprehension. Inf. Syst. 36(5), 881–897
(2011)

8. Verbeek, H.M.W., Aalst, W.M.P.: Decomposed process mining: the ILP case.
In: Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP, vol. 202, pp. 264–276.
Springer, Cham (2015). doi:10.1007/978-3-319-15895-2 23

9. Tax, N., Sidorova, N., van der Aalst, W.M., Haakma, R.: Heuristic approaches for
generating local process models through log projections. In: Proceedings of CIDM
(2016)

10. Dongen, B.F., Adriansyah, A.: Process mining: fuzzy clustering and perfor-
mance visualization. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM
2009. LNBIP, vol. 43, pp. 158–169. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-12186-9 15

11. de Smet, L., van der Aalst, W., Verbeek, H.: Queue mining: combining process
mining and queueing analysis to understand bottlenecks, to predict delays, and to
suggest process improvements. Master thesis, Eindhoven University of Technology
(2014)

12. Li, J., Bose, R.P.J.C., Aalst, W.M.P.: Mining context-dependent and interactive
business process maps using execution patterns. In: Muehlen, M., Su, J. (eds.)
BPM 2010. LNBIP, vol. 66, pp. 109–121. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-20511-8 10

13. Conforti, R., Dumas, M., Garćıa-Bañuelos, L., La Rosa, M.: BPMN miner: auto-
mated discovery of BPMN process models with hierarchical structure. Inf. Syst.
56, 284–303 (2016)

14. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

15. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2009)

16. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques.
J. Intell. Inf. Syst. 17(2–3), 107–145 (2001)

http://dx.doi.org/10.1007/978-3-319-27243-6_2
http://dx.doi.org/10.1007/978-3-319-27243-6_2
http://dx.doi.org/10.1007/978-3-319-39696-5_11
http://dx.doi.org/10.1007/978-3-642-03848-8_22
http://dx.doi.org/10.1007/978-3-642-03848-8_22
http://dx.doi.org/10.1007/978-3-319-15895-2_23
http://dx.doi.org/10.1007/978-3-642-12186-9_15
http://dx.doi.org/10.1007/978-3-642-12186-9_15
http://dx.doi.org/10.1007/978-3-642-20511-8_10
http://dx.doi.org/10.1007/978-3-642-20511-8_10

	Mining Business Process Stages from Event Logs
	1 Introduction
	2 Related Work
	3 Stage Decomposition Technique
	3.1 From Event Log to Flow Graph
	3.2 Stage Decomposition and Quality Measure
	3.3 Stage Decomposition Algorithm

	4 Evaluation
	4.1 Datasets
	4.2 Baselines
	4.3 Accuracy Index
	4.4 Results

	5 Conclusion
	References

