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Abstract. Serendipity is defined as the discovery of a thing when one is not
searching for it. In other words, serendipity means the discovery of information
that provides valuable insights by unveiling previously unknown knowledge.
This paper focuses on the problem of Linked Data serendipitous search. It first
discusses how to capture a set of serendipity patterns in the context of Linked
Data. Then, the paper introduces a Linked Data serendipitous search application,
called the Serendipity Over Linked Data Search tool – SOL-Tool. Finally, the
paper describes experiments with the tool to illustrate the serendipity effect
using DBpedia. The experimental results present a promissory score of 90% of
unexpectedness for real-world scenarios in the music domain.
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1 Introduction

Serendipity is defined as “the art of making an unsought finding” [18]. The term was
coined by Horace Walpole, based on the tale of The Three Princes of Serendip, wherein
the mentioned princes made several discoveries of things they were not looking for by
accident and sagacity. In the literature, the term serendipity is used to describe a break-
through discovery caused by chance encounters [3]. As described in [3], there are two key
aspects of serendipity: the accidental nature and the surprise of finding something
unexpected, the chance; the breakthrough or discovery made by drawing an unexpected

© Springer International Publishing AG 2017
E. Dubois and K. Pohl (Eds.): CAiSE 2017, LNCS 10253, pp. 495–510, 2017.
DOI: 10.1007/978-3-319-59536-8_31



connection, the sagacity. That is, serendipity promotes the encounter of unexpected
information to provide valuable insights by unveiling previously unknown knowledge.

Serendipity can be used in the context of the Web of Data to explore, filter and
extract relevant information from different datasets. As argued in [17], serendipity
provides a holistic and ecological approach to information acquisition in information
systems by complementing querying and browsing interactions.

Specifically, this paper addresses the problem of Linked Data serendipitous search,
briefly defined as a search process over Linked Data with the following characteristics.
The input to the search process is a query Q over a Linked Data dataset D. The process
returns a result list for Q, as usual, plus triples related to the results of Q by some
serendipity pattern. The process gradually exhibits the result list – including the triples
found by serendipity – and allows the user to perhaps change the focus of his search to
one of the triples found by serendipity.

Despite its potential, to design an application that incorporates serendipity is a
challenging task. Iaquinta et al. [8] argue that to conceptualize, analyze and implement
serendipity turns out to be a difficult task due to its subjective nature. To overcome this
issue, we present four patterns that formalize how to capture serendipitous events in the
Linked Data scenario: analogy, surprising observation, inversion and disturbance.
These patterns are taken from Van Andel’s list of seventeen serendipity patterns [18],
each one representing a different form in which serendipity can occur. We discarded
some of the patterns in Van Andel’s list since they are not amenable to formalization in
the context of Linked Data search.

We propose a query modification process to present three main strategies to capture
the selected serendipity patterns. To capture the analogy and the surprising observation
patterns, the process explores the results of the user’s query to invoke secondary
queries with the recently acquired information. To capture the disturbance pattern, the
process adopts strategies to change the order of the result list to expose items that the
user would normally neglect. Finally, to capture the inversion pattern, the process
analyzes the query to formulate alternative queries.

To summarize, the main contributions of this paper are threefold: (1) a discussion
on how to capture a set of serendipity patterns in the context of Linked Data search;
(2) the introduction of a Linked Data search tool, called Serendipity Over Linked Data
Search Tool - SOL; and (3) the description of experiments with the search tool.

The remainder of the paper is structured as follows. Section 2 provides an overview
of the state-of-the-art in the field. Section 3 discusses the notion of serendipity and
examines serendipity patterns. Section 4 illustrates how to capture four serendipity
patterns in the context of Linked Data search. Section 5 details the architecture of the
search tool and its main components. Section 6 describes experiments with the search
tool. Finally, Sect. 7 draws some conclusions.

2 Related Work

In [1] a notion of item regions is defined in order to introduce serendipity in a movie
recommender system. Basically, in this work, movies and users are grouped into
regions based on attribute similarity whereas collaborative filtering is used to identify
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regions that are underexposed to the users. Therefore, this approach is able to suggest
movies that are strongly related to the user’s interest but which are not popular in his
community.

In [16] the category representation of DBpedia is used to suggest lateral topics to a
given subject. This approach relies on a shortest path distance algorithm to compute the
proximity of the categories used in the graph exploration.

Similarly to [1], AURALIST [19] combines item-based collaborative filtering with
a clustering algorithm to produce serendipitous music recommendations. To introduce
serendipity among its results, AURALIST considers two approaches. First, it computes
the artist’s diversity by considering in how many users’ communities he is popular,
reasoning that an unheard artist may be considered in suggestions for that community.
Second, AURALIST adopts a similar approach to that of the Intra-List Similarity [20]
with cosine similarity to compute the similarity between items in a cluster of related
artists.

In [2] a recommender system is presented. It aims at improving user’s satisfaction
by combining unexpectedness with utility. To achieve this goal, the system calculates
unexpectedness as the distance between an unvisited item and the set of all items
visited by the user. Utility is understood as the overall rate of an item.

In the scenario of Web search, Bordino et al. [4] create a recommender system that
induces serendipity by suggesting search queries that are relevant to the content of a
page. The system extracts entities representing the content of a page and then builds a
graph containing entities and queries. Finally, it adapts the PageRank algorithm to this
graph to associate entities with relevant query suggestions.

A different approach is taken by FEEGLI [15], that augments search results with
information extracted from Facebook ‘like’ activity from the user. Results that match
the user interests are highlighted with a different color.

Our proposal, the SOL-Tool, combines some characteristics of these works. Sim-
ilarly to our approach with analogy, Stankovic et al. [16] rely on the category repre-
sentation of DBpedia to present unexpected suggestions. Although our approach uses
the category structure of DBpedia, it does not depend on any specific category while
[16] uses a set of categories as a starting point for the proximity computation.

Our serendipitous component (Sect. 4.2) augments the search results similarly to
FEEGLI. While FEEGLI highlights only the information that matches the ‘like’
activity, the SOL-Tool search engine provides new information related to search results
and also provides some explanation of the connection by using the RDF syntax.

3 Serendipity

In an extensive study of serendipity, Van Andel [18] lists seventeen serendipity pat-
terns, each one representing a different form in which serendipity can occur. In this
section, we present the patterns that we found to be best amenable to be captured in the
context of Linked Data search.

The analogy pattern is characterized by seeking similarity between objects from the
same or totally distinct domains [18]. Basically, it consists of extracting relevant
characteristics of an object in order to apply this knowledge to identify another object.
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A widely popular example of analogy is the insight of Archimedes to measure a
crown’s volume after stepping into a bathtub.

The surprising observation pattern is characterized by surprise caused by an
unexpected event. It indicates a trail that can lead to new information about a known
entity and represents the fact that some entities can have different facets (or views)
covering different domains. A subpattern of surprising observation is the repetition of
surprising observation. As the name implies, it involves the recurrence of the previous
pattern and serves as a strong indication of the relevance of the respective observation.
To illustrate the repetition of the surprising observation pattern, Van Andel [18] cites
the discovery of AIDS as an epidemic after registering a high number of cases.

The inversion pattern depicts the unexpected aspect of serendipity, i.e., it changes
the expectation of the experiment, guiding the solution towards a completely new
direction. It establishes a breakthrough discovery where the insight is the opposite to
the previous intent.

The disturbance pattern is characterized by a change of perception caused by an
occurrence that affects the regular activity of a person. The disturbance pattern is fired
by a chaotic event that introduces other variables into the problem. For example, Van
Andel [18] narrates the creation of Radio-astronomy that originated from the noise
observed in transatlantic telephone calls, with a periodicity of 23 h and 56 min.

4 Capturing Selected Serendipitous Patterns in the Context
of Linked Data Search

This section discusses how to capture the serendipitous patterns of Sect. 3 in the
context of Linked Data search. It also provides a case study scenario with the purpose
of illustrating the use of the serendipity patterns. The scenario is based on the DBpedia
dataset and focuses on the music domain. In this scenario, serendipity search can
increase the user satisfaction by providing interesting and non-obvious artists or songs.
The section starts with a very brief review of RDF.

4.1 Basic Concepts

We start by recalling a few concepts related to the Resource Description Framework
(RDF) data model [5] and the SPARQL query language [7].

A Uniform Resource Identifier (URI) represents an entity of the real world. A literal
is a string representing a (datatype) value. An RDF term is a URI or a literal. An RDF
triple is a triple (s,p,o), where s and p are URIs and o is either a URI or a literal; a triple
(s,p,o) states that its subject s has property p whose value is object o. We disregard the
so-called blank nodes in this paper, which could always be replaced by Skolem URIs
[5]. A dataset D is a set of RDF triples. We say that an entity of D is a URI that occurs
as a subject or object of a triple in D.

Entities are typically assigned to classes, which may in turn be organized as a class
hierarchy. This is captured in RDF with the help of the predefined terms rdf:type, rdfs:
Class and rdfs:subclassOf, where the first term belongs to the RDF vocabulary and the
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last two terms to the RDF Schema vocabulary. The term owl:Thing of the OWL
vocabulary denotes the universe, i.e., the set of all things.

We also take into consideration the annotation property rdfs:seeAlso and the OWL
property owl:sameAs. rdfs:seeAlso is used to indicate an entity that might provide
additional information about the subject entity whereas the owl:sameAs property is
used to indicate that two URI references refer to the same thing i.e. they represent the
same real-world object.

We use the SPARQL query language [7] to access a dataset. A SPARQL query has
a target clause that specifies how the results of the query are constructed. The query
language supports two basic query types. The target clause of a select query Q specifies
a list of variables; each solution mapping of Q therefore induces a tuple of variable
bindings, called a result of Q. The target clause of a construct query Q in turn specifies
a set of triple patterns; each solution mapping of Q in this case induces a set of RDF
triples, also called a result of Q. In either case, the evaluation of a query Q may produce
several results, induced by several distinct solution mappings, which we assume to be
ordered in a result list.

4.2 Serendipitous Search

To perform a serendipitous search, we apply a query modification process that enables
the application to transform a submitted query. This allows the application to act before
or after the query is actually executed. Therefore, the application can adopt different
strategies at different phases of execution.

As already pointed out in the introduction, we resort to three main strategies to
capture the selected serendipity patterns with the query modification process. In order
to capture the analogy and the surprising observation patterns, the process uses the
results of the user’s query to invoke secondary queries with the recently acquired
information to augment the results list with serendipitous content. To capture the
inversion pattern, the process analyzes the query to formulate alternative queries.
Finally, to capture the disturbance pattern, the process follows strategies to change the
order of the result list.

The serendipitous search problem is formally defined as follows.
Given a query Q, a serendipitous processing of Q will add new triples to each result

of Q. More precisely, let D1,…,Dm be a set of datasets, called the query environment,
and Q be a query over Dk, with k 2 [1,m]. A serendipitous result list of Q over D1,…,
Dm is a list of pairs of sets ((T1,S1),…,(Tn,Sn)) such that, for each i 2 [1,n], Ti is a result
of Q over Dk, called the regular component of (Ti,Si), and Si is a set of triples, called the
serendipitous component of (Ti,Si), computed from the datasets in the query
environment.

We note that the triples in a serendipitous component Si may use terms in the
vocabulary and refer to entities outside the query environment. Indeed, in Sects. 4.3
and 4.4, we will formalize the analogy and the surprising observation patterns as new
queries that return triples which are serendipitously related to the original result of
Q. Such triples will form the second set in each pair of sets in the result list.
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Consider that a user is searching for English rock guitarists using DBpedia. To
address his goal the user may use the category English rock guitarists to formulate the
query. The regular component of the result list includes entities that match the solution
mapping of the query, such as, “Mick Jagger”, “George Harrison”, “John Lennon”. The
serendipitous component contains a set of triples that serendipitously connect new
entities to those in the result list. For example, the serendipitous component may return
a set of triples linking “John Lennon” to “Roy Harper” or “Ringo Starr” through the
analogy property soltool:analogousTo, created for SOL-Tool.

The following sections discuss the strategies to capture each serendipity pattern. To
simplify the discussion, all examples consider a query, referred to as UQ1, about
English rock guitarists:

UQ1 Entities from English rock guitarist category

SELECT distinct ?entity WHERE{
?entity dct:subject  

<http://dbpedia.org/resource/Category:English_rock_guitarists>. 
} 

Note that this query uses the English rock guitarists category of DBpedia and the
dct:subject property from Dublin Core vocabulary, used to assign entities to categories.

Furthermore, we stress that a serendipitous result is an ordered list of pairs of sets.
Hence, we may devise a presentation process that gradually exhibits the pairs of sets
returned – including those found by serendipity – and that allows the user to browse
through the partial result list and perhaps change the focus of the search to one of the
entities in a serendipitous component. In Sect. 4.6, we will formalize the disturbance
pattern as strategies to modify the order of the sets of triples in the result list.

4.3 Capturing the Analogy Pattern

To capture analogy, we first introduce a new property, analogousTo, to be expressed by
triples of the form (s,analogousTo,o), which intuitively indicate that entities s and o are
analogous.

More precisely, let Q be a query submitted to a dataset Dk and Ti be a result of Q for
Dk. If e is an entity that occurs in Ti, then the search process might look for or compute
a triple of the form (e,analogousTo,o) in Dk and include the triple in the serendipitous
component corresponding to Ti.

We propose to compute analogousTo using a family of similarity functions
adopting the same strategy used to compute the sameAs property, except that the
properties to be compared would be chosen according to some set of criteria that better
capture analogy, rather than the sameAs property.

One approach is to define a query context that reflects the interests of a group of
users. For example, consider the entities “John Lennon” and “Roy Harper”, both
belonging to the English rock guitarists category and both of which were influenced by
the American novelist and poet “Jack Kerouac”, a pioneer of the Beat Generation; that
is, “John Lennon” and “Roy Harper” are both linked to “Jack Kerouac” through the dbo:
influenced property of the DBpedia property ontology. For this point of view,
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“John Lennon” and “Roy Harper” are understood to be analogous, in that, as noted, they
belong to the same category and are connected to the same entity with respect to the dbo:
influenced property. For this scenario, the search process must fill in the Analogy Query
Template 1, AQT1, with information acquired from the user’s query. To do so, the
search process executes a valid SPARQL query by replacing the [result-uri] field with
the results of the UQ1query:

AQT1 Using influenced property to find analogous entities

CONSTRUCT {[result-uri] soltool:analogousTo ?analogousEntity} WHERE {
?auxInfluence dbo:influenced ?analogousEntity; 
            dbo:influenced [result-uri].
[result-uri] dct:subject ?auxCategory. 
?analogousEntity dct:subject ?auxCategory. 
FILTER (?analogousEntity != [result-uri] ) }

We also propose a different query context to take advantage of DBpedia category
hierarchy. For example, we might move up in the category hierarchy from English rock
guitarists to English guitarists and then down to English bass guitarists, a narrower
category. Thus, we would conclude that an entity of English rock guitarists is analo-
gous to an entity of English bass guitarists with respect to the English guitarists
category. Similarly to AQT1, the search process must fill in the Analogy Query
Template 2, AQT2, with information acquired from the user’s query in order to capture
this pattern. One characteristic of this template is that the subquery selects, among the
categories of the UQ1 results, that with the lowest number of entities linked to it in
order to find a more specific category subset. To achieve this goal, AQT2 uses the skos:
broader property from SKOS ontology, a standard vocabulary for organization
systems:

AQT2 Using category hierarchy to find analogous entities

CONSTRUCT {[result-uri] soltool:analogousTo ?analogousEntity} WHERE { 
?analogousEntity dct:subject ?category.   
?auxCategory skos:broader ?superCategory.    
?category skos:broader ?superCategory.  
{ 

SELECT ?auxCategory (count(?categoryClient)) 
WHERE { 

[result-uri] dct:subject ?auxCategory. 
?categoryClient dct:subject ?auxCategory.    

} 
GROUP BY ?auxCategory 
ORDER BY (count(?categoryClient)) 
LIMIT 1 

} 
FILTER (?analogousEntity != [result-uri] ) 

}  LIMIT 2

A variation of AQT2 is the Analogy Query Template 3, AQT3, that randomly
selects categories of the [result-uri] field:
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AQT3 Using category hierarchy to find analogous entities

CONSTRUCT {[result-uri] soltool:analogousTo ?analogousEntity} WHERE {
?analogousEntity dct:subject ?category.   
?auxCategory skos:broader ?superCategory.    
?category skos:broader ?superCategory. 
{

SELECT ?auxCategory  
WHERE { 

[result-uri] dct:subject ?auxCategory. 
} 
LIMIT 1 OFFSET RAND()

}
FILTER (?analogousEntity != [result-uri] )

} LIMIT 2

Note that AQT1 relies on a vocabulary specific to the arts domain, the dbo:influ-
enced property, while AQT2 and AQT3 use only Linked Data standard vocabularies
and, therefore, they can be adopted for several domains.

Finally, we observe that this approach uses the familiar notion of similarity func-
tions and, therefore, it may take advantage of tools, such as Limes [13] and Silk [9] to
offline precompute analogousTo triples, and add these triples to a dataset.

4.4 Capturing the Surprising Observation Pattern

To capture the surprising observation pattern, we suggest to reinterpret the rdfs:seeAlso
property in such a way that a triple of the form (s,rdfs:seeAlso,o) would intuitively
indicate that any user interested in entity s might also be interested in entity o. Indeed,
the rdfs:seeAlso property is commonly used as a wildcard to relate contents with loose
connections.

In DBpedia, for example, there is a rdfs:seeAlso property linking “George Harrison”
to “Apple Records”. This link may be motivated by an analysis of the connection
between “George Harrison” and “The Beatles” and the connection between “The
Beatles” and the “Apple Records”. For this scenario, the search process must fill in the
Surprising Observation Query Template 1, SOQT1, with information from the UQ1
results:

SOQT1 Using seeAlso property to find surprising observation

CONSTRUCT {[result-uri] rdfs:seeAlso ?surprise} WHERE {
[result-uri] rdfs:seeAlso ?surprise. }

Another surprising observation is the inclusion of other members of the same band
of a given musical artist. This can be captured with the associatedBand property, as
described in the Surprising Observation Query Template 2, SOQT2:

SOQT2 Using associatedBand property to find surprising observation
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CONSTRUCT {[result-uri] rdfs:seeAlso ?surprise} WHERE {
[result-uri] dbo:associatedBand ?band. 
?surprise dbo:associatedBand ?band.

}

Computing the rdfs:seeAlso property is a difficult issue though. A simple solution
would be to define (s,rdfs:seeAlso,o) as (s,owl:sameAs,o), provided that entity s is
defined in the dataset the query refers to and that o is an entity defined in another
dataset listed in the query environment, but coming from a different domain. For
example, consider the case of a dataset Dk about the music domain, which contains
information, such as musical artists, their albums and their songs. Suppose that Q is a
query submitted to Dk and Ti is a result of Q over Dk. If e is a singer that occurs in Ti,
then the search process might look for a triple of the form (e,owl:sameAs,o) in Dk,
where o is an entity defined in Dj, with j 6¼ k, and include (e,owl:sameAs,o) in the
serendipitous component corresponding to Ti. If Dj is a dataset about actors, the user
may be told that singer e is also an actor, like “David Bowie” or “Jared Leto”.

According to this strategy, using the query UQ1, the surprising observation pattern
suggests the “David Bowie” entity of New York Times dataset for users who searches
for “David Bowie” in DBpedia, if the New York Times dataset belongs to the query
environment. The Surprising Observation Query Template 3, SOQT3, depicts the
template to capture this occurrence:

SOQT3 Using sameAs property to find surprising observation

CONSTRUCT {[result-uri] rdfs:seeAlso ?surprise} WHERE {
[result-uri] owl:sameAs ?surprise. }

4.5 Capturing the Inversion Pattern

As anticipated in the introduction, we suggest to adopt a completely different strategy
to capture the inversion pattern. Very briefly, the suggested strategy allows the user to
stop consuming the result list obtained for a query Q, and restart the search process
with a new query Q’ based on some entity observed in the serendipitous component of
a result of Q. That is, the user would retarget his search based on some entity the search
process may have passed in a serendipitous component. This pattern may be quite
useful when the user does not find enough information with his query but does not
know what else to search for.

The inversion pattern relies on the category representation of DBpedia to present
alternative queries to the user. To do so, the search process executes the user query and
retrieves the three most popular categories of the results i.e. the categories that most
appear in the results. With this information, the search process builds an alternative
query allowing the user to restart the search process with a different perspective.

To reproduce this behavior, the search process must proceed in two steps. First, it
uses the Category Frequency Query Template 1, CFQT1, to get the three categories
with more entities linked to it. The search process fills the template with two
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information from the user’s query string: the output variable of the query string rep-
resented by the [var] field and the query string itself represented by the [user-query]
field:

CFQT1 Extracting the most used categories from the subquery

SELECT  (COUNT(?s) AS ?counter) ?category WHERE { 
?s  dct:subject ?category.  
FILTER ( ?s = [var])  
{ 

[user-query] 
} 

} 

Second, the search process fills in the Inversion Query Template 1, IQT1, with
information acquired from the CFQT1 by replacing the [categories-list] term with
results of the previous query.

IQT1 Building alternative query

SELECT ?entity ?catAux WHERE { 
?entity dct:subject ?catAux.   
FILTER (?catAux IN ([categories-list]) ) 

} LIMIT 100

For example, assume the search process receives UQ1. First, the search process
uses CFQT1, to discover that the three most frequent categories of UQ1 are: English
rock guitarists, Living people and English male singers. Then, it completes the IQT1
template with the acquired information as depicted in the example below.

Example of alternative query to UQ1

SELECT ?entity ?catAux WHERE { 
?entity dct:subject ?catAux. 
FILTER (?catAux IN  

(<http://dbpedia.org/resource/Category:English_rock_guitarists>, 
<http://dbpedia.org/resource/Category:Living_people>, 
<http://dbpedia.org/resource/Category:English_male_singers>))} 

4.6 Capturing the Disturbance Pattern

We also suggest to adopt a strategy based on the result list to capture the disturbance
pattern. This strategy perturbs the order of the result list obtained for a query Q by
randomly bringing results further down the result list to near the top of the list. The user
who issued query Q would therefore be exposed to results that he would normally
neglect, and consequently his perception of the query result list would be changed.

This strategy stems from two motivations. First, if query Q returns a result list
ordered by any ranking criterion X, then the disturbance pattern has the ability to
smooth the impact of X. Second, if no ordering criterion is provided, the dataset
endpoint may use its own ordering, in other words, the query will highlight results
using a criterion that is not clear for the application or the user.

For example, consider that a user modifies the UQ1 so that the results are ordered
alphabetically. The disturbance pattern switches the position of “Adrian Portas” and
“Würzel”, both English rock guitarists.
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5 SOL-Tool the Serendipity Over Linked Data Search Tool

The Serendipity Over Linked Data Search Tool – SOL-Tool was developed in Java
with the Jena framework1, a well-stabilized framework for Linked Data query pro-
cessing and data manipulation, and Java Concurrent API2 to parallelize the task of
invoking remote datasets.

5.1 Architecture

The SOL-Tool modular architecture is organized in way that allows the search process
to: (1) isolate the logic task of displaying the results from the rest of the search process;
(2) permit not only users but also other applications to consume the search process of
the tool; (3) take actions before, during and after the execution of the user’s query;
(4) attach additional information to every item of a query result; (5) address remote
datasets independently; (6) enable the different query strategies for different scenarios;
and (7) parallelize the query execution. Figure 1 depicts the SOL-Tool architecture.

To handle (1) and (2), the SOL-Tool Interface merely acts as the interface of the
search engine with the user or other application receiving a SPARQL query and
returning its results. This enables future versions of the SOL-Tool search engine to be
instantiated as a Web service for other applications. Then, the SOL-Tool Interface starts
the Dataset Orchestrators with a catalogue of datasets.

Motivated by (3), (4) and (5), the Dataset Orchestrator is responsible for inter-
acting with a single dataset and managing the acquired data. The Dataset Orchestrator
first uses the Basic Query Executor to process the user’s query and retrieves its results.

SOL Tool 
Interface

Dataset Orchestrator

Analogy 
QueryExecutor

SurprisingObservation
QueryExecutor 

Query Executor

Disturbance 
Balancer

Basic
Query Executor

Query Builder

Inversion 
QueryBuilder

Result Balancer

Fig. 1. The SOL-Tool architecture

1 https://jena.apache.org/.
2 https://docs.oracle.com/javase/8/docs/api/?java/util/concurrent/package-summary.html.
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The Basic Query Executor is just a basic type of Query Executor that receives a
SPARQL query, processes it and returns its results.

For every result of the user’s query, the Dataset Orchestrator invokes Query
Executors to process secondary queries and locate content that is serendipitously
related to the respective result. The Dataset Orchestrator then delegates the task of
querying its dataset to the Query Executor.

Motivated by (5) and (6), the Query Executor defines how to query the dataset. It
encapsulates the logic of the query executed, in other words, it describes the serendipity
patterns in terms of a SPARQL query that can be submitted to the dataset. To adapt the
search process to different scenarios and behaviors, the SOL-Tool provides different
Query Executors as described in Sects. 4.3 and 4.4, and it also provides an interface to
easily build new ones. Secondary tasks of the Query Executor include parsing the
results and handling eventual network exceptions.

It is worth noting that the Dataset Orchestrator encompasses the strategy of the
search process while the Query Executor retains its logic. Thus, a Dataset Orchestrator
acts as a façade for encapsulating several Query Executors to address the same dataset
with different approaches. This design allows the application to adopt different
approaches and control the level of effort to produce serendipity in the results.

Then, the Dataset Orchestrator invokes Query Builders to create alternative query
suggestions to the user’s query. The Query Builders receives a query string and returns a
different query string in order to enable an inversion pattern experience. It encapsulates
the logic of the query transformation and it can be invoked before, during or after the
Basic Query Executor is executed. The current version of SOL-Tool presents only one
Query Builder as described in Sect. 4.5. Query Builders are also motivated by (5).

Finally, the Dataset Orchestrator may also invoke a Result Balancer to reorder the
obtained results. The Result Balancer encapsulates the logic to reorder the results. The
current version of SOL-Tool only provides an interface for the construction of new
Result Balancers.

5.2 Concurrent Dataset Request

As most of the effort spent by the application relies on invoking remote dataset end-
points, a critical factor since early implementations is the impact of latency in overall
performance, i.e., the time that the application waits for remote servers to respond. To
address this problem, the application resorts to the Java concurrent API to invoke
SPARQL requests concurrently.

To reproduce this behavior, every Query Executor must implement a call method
that is responsible for executing the SPARQL request and returning the query results.
Therefore, the Dataset Orchestrator invokes the Query Executors asynchronously and
aggregates the results that come from the remote dataset endpoint. The Dataset
Orchestrator incorporates a MapReduce strategy [10] to combine the results related to
an entity from many Query Executors. For example, assume that the user query returns
an entity e. The Dataset Orchestrator will invoke Query Executors to find content that
is serendipitously related to e. All data content found are grouped together using the
URI from e.
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With this configuration, the SOL-Tool application executes a basic search in less
than 6% of the time of the single thread version. For comparison, UQ1 was executed 10
times using the single thread and the multi-thread version of SOL-Tool. The average
time of the single thread is 144 s, while the average time of the multi-thread (with a
pool of 50 threads) is 7.4 s.

6 Experiments

From the recommender systems literature, a common approach to evaluate quality is to
measure the accuracy of the results. However, as argued in [12], other metrics should
be considered since very accurate results may lead the user to a bubble where he is only
exposed to similar and obvious information. To overcome this problem we adopt
unexpectedness to measure the serendipity of the results.

In [12] the unexpectedness of the results is evaluated by comparing the acquired
results to a more primitive baseline system. However, as Kaminskas and Bridge [11]
point out, this approach has several drawbacks: for example, the evaluation is sensitive
to the baseline system. They then propose a different approach for measuring unex-
pectedness based on the dissimilarity of content labels. It uses the complement of the
Jaccard similarity to compute the distance between two items. Therefore, the unex-
pectedness of an item is computed as the minimum distance of this item to previously
seen items.

The experiment in this section uses the content-based metric [11] to evaluate the
level of unexpectedness of the serendipitous component of the SOL-Tool, compared to
its regular component. In order to select the item labels properly, the experiment adopts
the Type Query Template, TQT1, that extracts the types associated with a given [entity]
entity.

TQT1 Extracting the type of an entity

SELECT distinct ?type WHERE{ 
[entity] rdf:type ?type. } 

Due to the size of DBpedia, we adopted the same strategy as [14] and limited the
scope of the evaluation by restricting the user’s query to retrieve entities of the type
MusicalArtist and Band from DBpedia ontology, which have 50,978 and 33,613
entities, respectively. The User Query 2, UQ2, selects entities of the typeMusicalArtist.

UQ2 Entities from MusicalArtist type

SELECT distinct ?subject WHERE{ 
?subject rdf:type <http://dbpedia.org/ontology/MusicalArtist>. } 

The User Query 3, UQ3, selects entities of the type Band and is defined similarly to
UQ2.

Table 1 depicts the average unexpectedness of the serendipity component of UQ2
and UQ3 with SOL-Tool and SOL-Tool-1, a variation of SOL-Tool that limits the
number of results to one entity per Query Executor. This customization is possible due
to the parameterization of the limit value of the Query Executor templates.
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The overall result of Table 1 indicates that the SOL-Tool performs well when
proving unexpected results for the selected inputs. This outcome illustrates the fact that
the application adopts different strategies to present serendipitous content.

A concern of the metric [11] is the influence of very dissimilar items on unex-
pectedness computation. This issue is partially addressed by the SOL-Tool application
because each serendipity pattern explores how entities are related. For example, con-
sider the entity that represents the “Juli” band retrieved by executing UQ3. The exe-
cution of TQT1 extracts 32 type labels of the “Juli” entity and 320 type labels of the
entities encountered with the serendipitous search of UQ3, but from those 320 labels,
there are 27 type labels that also belong to “Juli”. The unexpected score of this item is
0.93, in spite of finding 85% of “Juli” type labels.

An additional interesting information of Table 1 is the loss of unexpectedness when
limiting the number of results per Query Executor. The configuration of these
parameters may be used to leverage the tradeoff between the quality of results and the
effort spent in the search. This matter represents an interesting topic for future study.

7 Conclusions and Future Works

In this paper, we addressed Linked Data serendipitous search, with three main con-
tributions. First, we proposed three main strategies to capture selected serendipity
patterns in the context of Linked Data search. Second, we briefly described the
architecture of a Linked Data serendipitous search application, SOL-Tool, which
supports extensions to customize different steps of the search process. Third, we
described experiments with the tool to illustrate the serendipity effect, using DBpedia.

The implementation of the SOL tool is ongoing work. In parallel, we are designing
experiments to measure the user degree of satisfaction and the quality of the
serendipitous results, which proved to be a challenging goal. This qualitative evaluation
enables the analysis of what strategies are more useful for the users.

A prime objective of the SOL-Tool architecture is to aid the user, as much as
possible, to achieve his goals when responding to queries. One way to enhance
serendipity is to employ query modification to encompass latent goals [6], which are
not explicitly addressed in the current query. New queries may be directed to stress
whatever is eventually found related to other recent queries. For (a real) example,
apparently, there is nothing in common between such disparate domains as “guitarists”
and “salads”. And yet, a user visiting Quebec, who first asks about “Quebec” and
“guitarists”, and later, when planning for dinner, asks about “restaurants” and “salads”,

Table 1. Experimental results.

Query Unexpectedness
average

Query Unexpectedness
average

UQ2 0.90 UQ2 with limited Query
Executors

0.80

UQ3 0.88 UQ3 with limited Query
Executors

0.81
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may be told – in unexpected detail – that one restaurant features “good salads, nice live
guitarist”. Thus, the serendipitous component can be made more responsive to the
user’s interests and goals, either merely involved in a multiple-query session as in the
above example, or registered among the objectives of a daily agenda, or more elabo-
rately deduced from some user profile representation.

Another future work we intend to conduct is the development of a keyword-based
search application that uses the SOL-Tool search engine to locate Linked Data
serendipitous content, which will abstract the complexity of writing SPARQL queries.
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