
Structural Descriptions of Process Models
Based on Goal-Oriented Unfolding

Chen Qian1, Lijie Wen1(B), Jianmin Wang1, Akhil Kumar2, and Haoran Li3

1 School of Software, Tsinghua University, Beijing 100084, China
qc16@mails.tsinghua.edu.cn, {wenlj,jimwang}@tsinghua.edu.cn

2 Smeal College of Business, Penn State University, 16802 State College, USA
akhilkumar@psu.edu

3 The Affiliated School of Peking University, Beijing 100080, China
lihaoran1@stu.pkuschool.edu.cn

Abstract. Business processes are normally managed by designing, oper-
ating and analysing corresponding process models. While delivering these
process models, an understanding gap arises depending on the degree
of different users’ familiarity with modeling languages, which may slow
down or even stop the normal functioning of processes. Therefore, a
method for automatically generating texts from process models was pro-
posed. However, the current method just involves ordinary model pat-
terns so that the coverage of the generated text is too low and information
loss exists. In this paper, we propose an improved transformation algo-
rithm named Goun to tackle this problem of describing the process mod-
els automatically. The experimental results demonstrate that the Goun
algorithm not only supports more elements and complex structures, but
also remarkably improves the coverage of generated text.

Keywords: Process model · Natural language text generation ·
Extended process structure tree · Matching · Unfolding

1 Introduction

Requirements analysis is the primary step in software development. In this step,
there are two kinds of important roles named domain expert and systems analyst
[3]. Through oral communications and documents, they try to thoroughly under-
stand how business processes run. After that, a systems analyst converts what he
or she has comprehended into business process models which can be expressed
by Petri net, Business Process Modeling and Notation (BPMN), Event-driven
Process Chains (EPC) or other modeling languages [1,8,14]. However, there is a
high possibility that the domain expert lacks the confidence to understand these
models, or even feels that it is too time-consuming to learn formal process mod-
eling, which may directly lead to interruption or even abortion of the project [3].
Therefore, our research goal here is to automatically generate the corresponding
natural language text for a given process model since natural language texts
could be read and understood by almost everyone.
c© Springer International Publishing AG 2017
E. Dubois and K. Pohl (Eds.): CAiSE 2017, LNCS 10253, pp. 397–412, 2017.
DOI: 10.1007/978-3-319-59536-8 25

398 C. Qian et al.

Against this background, Leopold et al. proposed a model-to-text transfor-
mation algorithm (abbr. Hen) which transforms a BPMN model into its cor-
responding textual description to avoid understanding gaps between different
roles [3]. Hen linearized a process model by traversing its corresponding Refined
Process Structure Tree (RPST) [2]. When processing the leaf nodes of the tree,
a data structure - Deep Syntactic Tree - is derived to represent a natural lan-
guage sentence. After refinement and realization [15], the textual description
with bullet points is generated. An example for illustrating the model-to-text
transformation scenario is presented next.

Fig. 1. A sample of BPMN 2.0 model (Color figure online)

Example 1. Taking the pool1 in Fig. 1 as an example, the Hen text is (for illus-
tration, we add 9 line numbers below to mark every sentence):

1. The ‘pool1’ process begins when the ‘role1’ does ‘v1’. Then one of the following
branches is executed.

2. • The ‘role1’ does ‘v2’.
3. • The ‘role1’ does ‘v3’.
4. Once one of the above branches is executed, there is a region which allows for

different execution paths. One option from start to end is the following.
5. • The ‘role1’ does ‘v6’. Subsequently, the ‘role1’ does ‘v5’.
6. However, the region allows for a number of deviations.
7. • After the region begins, the ‘role1’ can also do ‘v4’.
8. • After the region begins, the ‘role1’ can also do ‘v7’.
9. Then, the ‘pool1’ process is finished.

The sentences 1, 4 and 6 in Example 1 are pre-defined language templates to
express the semantics of certain patterns. Note that there is a nested structure
above to show the depth of a sentence using indentation with bullet points ‘•’.

Structural Descriptions of Process Models Based on Goal-Oriented Unfolding 399

However, to the authors’ knowledge, Hen has the following four main draw-
backs. First, Hen fails to generate the text when a model contains some kinds
of complex elements, such as text annotation, complex gateway, message flow,
or subprocess [1]. For the pool2 in Fig. 1, Hen fails to generate sentences for
the complex gateways g11 and g12, the subprocess v10 and the error path N .
Second, Hen only works on free-choice models and omits some descriptions of
trivial paths, i.e. it suffers from information loss. For example, the Hen text in
Example 1 is somewhat incomplete because it omits some behavior such as when
only v5 is executed (without v6). Third, if we were to change the direction of a17
and a16 to create a loop structure, Hen fails to generate text for it due to the
existence of the loop structure in the non-structured part (i.e. R1). Fourth, the
generated text of non-structured part is a linear structure with limited expres-
sive power. Based on these insights, one of our goals is to solve these drawbacks
of Hen and improve the expressive power of model-to-text conversion.

Our research contributions are as follows. First, we proposed a fresh data
structure to express more model patterns. Second, we developed a new lineariza-
tion technique based on the basic architecture of Hen to transform a model into
a structured one and then convert it into textual description, which is the biggest
challenge. Third, we evaluated different methods along different dimensions and
discussed the results of the comparison.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces the definitions used in this paper. Section 3 presents the new data structure
EPST to express more model patterns, while Sect. 4 introduces Goun and exem-
plifies it with a specific model. Later, Sect. 5 evaluates the Goun algorithm and
compares it with the Hen algorithm. Finally, Sect. 6 describes related work and
Sect. 7 draws our conclusions.

2 Preliminaries

This section introduces Business Process Modeling and Notation (BPMN) and
Refined Process Structure Tree (RPST) [2–4].

2.1 BPMN

BPMN is a graphical process modeling language. BPMN version 2.0 contains
swimlanes (pools, lanes), nodes (events, activities, gateways), flows (sequence
flow, message flow) and artifacts (e.g. text annotation, data stores) [4].

Example 2. The full process model in Fig. 1 contains two pools denoted by the
two large rectangles. Events are represented as circles with thin or thick borders.
The corner-rounded rectangles v1, v2 etc. are activities. In particular, activity
v10 is a subprocess because it can be decomposed into three nodes s3, v11, e2
linked by edges a30 and a31. The diamonds with ‘X’ symbols g1, g2, etc. are
exclusive gateways which split or merge multiple branches. d1 and o1 are the
data store and text annotation, respectively. The message flows a37 and a38

400 C. Qian et al.

transfer messages between two activities belonging to different pools as shown
by dotted lines. The error path N occurs if there is an error while processing v12.
Node v1 precedes gateway g1; and v2, v3 follow g1; thus, the pre- and post-set
of g1 are •g1 = {v1} and g1• = {v2, v3}.

2.2 RPST

RPST is a kind of tree structure that indicates SESE (single entry single exit)
parts of a process model. We call these parts process components. A process
component is canonical iff (i.e., if and only if) it does not overlap with any
other process component, meaning that any two canonical process components
are either disjoint or nested. Therefore, canonical process components naturally
form a hierarchy, which leads to the definition of RPST [6].

Definition 1 (Trivial, Polygon, Bond, Rigid). Let C be a process compo-
nent of a process model. C belongs to one of T, P, B or R components.

• C belongs to a Trivial (T) component, iff C contains only a single edge.
• C belongs to a Polygon (P) component, iff C contains a set of components

linked consecutively.
• C belongs to a Bond (B) component, iff all components in C share one source

node and one sink node.
• C belongs to a Rigid (R) component, iff C is none of T, P or B.

Definition 2 (RPST). The refined process structure tree (RPST) of a process
model is the set of all its canonical process components.

Fig. 2. The two RPSTs of the two pools in Fig. 1

Example 3. In Fig. 1, the colored dotted-line rectangles represent different
depths in decomposition (blue, red represent depth 1, 2, respectively). Every
single node in Fig. 1 attaches to its following Trivial component. Except Trivial,
the other three kinds of canonical components can be decomposed. In pool1,
P1 contains six components T1, T2, B1, T3, R1, T4. More precisely, component
B1′s sub-polygon components P2, P3 share one source node g1 and one sink

Structural Descriptions of Process Models Based on Goal-Oriented Unfolding 401

node g2. R1 is unstructured since the edge a22 connects two separate branches
P5 and P6, which leads to the unstructured Rigid component. Every component
in a Rigid component is bounded by a gateway node such as P4, P5, P6, P7 and
non-decomposable Trivial components such as a8, a11, etc. These visual decom-
positions naturally form a hierarchy so that we can get the undirected tree
representation of a RPST in Fig. 2. For ease of representation, seven edges are
shown in the same ellipse in Fig. 2(a) but, in fact, they are seven independent
leaves of R1. The RPST of pool2 is generated in the same way.

3 Extending Expressive Patterns of RPST

From Example 3, we know that the lack of corresponding textual expressions for
some of the patterns in RPST prevents Hen from generating the corresponding
text, and impairs its expressive ability. Thus, we proposed a new data structure
EPST and added some language templates to enhance RPST.

Definition 3 (Extended Process Structure Tree). Extended Process Struc-
ture Tree (EPST) is a multi-tuple Em = (RS , rO, ER,M,O,MS , ϑ, μ).

• RS is a finite set of RPSTs for all pools in the whole model.
• rO is the super root node. rO connects every rs ∈ RS through edge set ER.
• M is a finite set of sub-models, which contains models corresponding to a

subprocess, an exceptional path, a group element, etc.
• O is a finite set of artifacts and data objects, i.e. text annotations, IT systems,

data objects and data stores.
• MS is a set of message flows that link two elements in different pools.
• ϑ is a function attaching a T component and a corresponding element in M .
• μ is a function attaching a T component and a corresponding element in O.

Fig. 3. The EPST of the BPMN 2.0 model in Fig. 1

Example 4. In Fig. 1, pool2 contains patterns that RPST cannot express such
as subprocess v10, exceptional path N , data store d1 and text annotation o1.
Besides, there are two message flows transmitting messages between the two

402 C. Qian et al.

pools. The EPST of the whole model in Fig. 1 is shown in Fig. 3. In the EPST,
RS = {P1, P8}; and, P1 and P8 connect with super root node rO. For M =
{P11, P12}, P11 and P12 are respectively attached to subprocess v10 and error
event n1. For MS = {a37, a38}, a37 and a38 are message flows. For O = {o1, d1},
o1 and d1 are attached onto corresponding elements a33 and a28. Therefore, the
set of patterns EPST can express is the superset of that of RPST.

4 Structural Description

Figure 4 shows the overview of Goun in which blue parts highlight our work
based on the Hen architecture. As Fig. 4 indicates, the input is a process model
passing through five main steps to generate the final textual description. Here,
converting a random model into a well-structured one is our biggest challenge.

Fig. 4. The overview of Goun (Color figure online)

(1) Structuring Step. This step generates two main data structures of a process
model, i.e. EPST and TLGG that will be introduced in this section.

(2) Pre-processing Step. Loop edges in a model are edges that can cause loops.
For the converting step, the model should be pre-processed by reversing
certain loop edges to break cycles. Splitting each MEME (multi-entry and
multi-exit) aims to simplify the complexity of the model.

(3) Converting Step. Based on the pre-processed model, we can match and
record each node with its goal nodes for structural unfolding, which is dif-
ferent from the unfolding of Petri nets [8]. The aim of unfolding is to create
a strictly structured model with repetitive or omissive polygons (Sect. 4.4).

(4) Post-processing Step. This step is the reverse of pre-processing. The gate-
ways that were split earlier are merged, and the edges that were reversed
are reset.

(5) Text generation Step. After obtaining the post-processed model, we can
generate the textual description by Deep Syntactic Tree analysis, cf. [3,15]
for details. As for repetitive or omissive polygons, we complement their
behavior descriptions by attaching additional messages.

In order to overcome the drawbacks of Hen in handling Rigid components, we
propose the Goun algorithm. Here, we first define TLGG with respect to the top
level. Goun will run recursively so that nodes on other levels can be processed
in the next successive iterations.

Structural Descriptions of Process Models Based on Goal-Oriented Unfolding 403

Definition 4 (Top-Level Gateway Graph). Given a Rigid component node
in an EPST, we treat its direct children as Polygon components. A top-level
gateway graph (TLGG) is a triple MTLGG = (G,F, ν) where:

• G is a finite set of gateway nodes.
• F is a finite set of directional edges connecting two different nodes in G.
• ν is a binary function to mark whether a node in G can cause concurrent

behavior or not.

To illustrate, we give an example in Fig. 5(a) of a NFC (non-free choice) model
with a loop structure that Hen fails to handle. This whole model belongs to a
Rigid component, whose EPST is shown in Fig. 5(b). For ease of presentation,
eight independent edges are shown in one ellipse on the right. Note that the light
green parts in Fig. 5(b) are not at the top level of the tree. Moreover, the top
level (depth = 1) components are highlighted in blue. In general, we can treat
every blue EPST node as a Polygon. Thus, this Rigid component contains 11
top-level Polygons.

The TLGG of the original model is derived in Fig. 5(c). In this figure, only
the concurrent (or parallel) gateway nodes are shown in purple, while the “non-
concurrent” nodes (e.g. G3, G4) are in white. The non-top-level parts of the orig-
inal model (e.g. B1, E, F , at level 2) are not of interest here and were removed.

Fig. 5. An example process model and its EPST and TLGG (Color figure online)

404 C. Qian et al.

4.1 Pre-processing

Loop edges in a model are edges which can cause loop structures [6]. In general,
any edge attaches to its source node source(a) and target node target(a). The
in- and out-degrees of a node g are | • g| and |g • |.

For the conversion step, the model should be pre-processed to create an
acyclic model. We trivially traverse TLGG by breadth first search (BFS) to
number every node with its traversed depth (td). If there are two nodes gi, gj
and an edge al, where source(al) = gi ∧ target(al) = gj ∧ td(gi) > td(gj),
then al is marked as a loop edge and its direction is reversed.

Further, if |•gk| > 1 ∧ |gk•| > 1, i.e. gk is a MEME node, then gk is split into
two nodes gka and gkb, where | •gka| = | •gk| ∧ |gkb • | = |gk • | ∧ (gka, gkb) ∈ F .

As a result, the TLGG contains no loop structure so that we can get domi-
nators and goals from TLGG, which will be the basis of Goun.

Definition 5 (Dominator, Goal). For a pair of nodes A, B in a TLGG,
if starting from an arbitrary edge originating from A, there always exists one
path ending at B, then we say that A is B’s pre-dominator and B is A’s
post-dominator. If the post-dominator set of A is AD = {AD1, AD2, . . . , ADn},
and there exists i (1 ≤ i ≤ n) such that |ADi • | = 0 ∧ len(A,ADi) =
min{len(A,ADj)} for any j (1 ≤ j ≤ n), we say ADi is a goal node of A.

Fig. 6. An example of the pre-processing step

Example 5. After pre-processing the TLGG in Fig. 6, the direction of the loop
edge (G7, G6) has been reversed. Note that G1 has two out edges in the
pre-processed model. Starting along both edges, one can reach all the nodes
G3, G4, G5, G7 and G8. Therefore, the set of these five nodes is the post-
dominator set of G1. Note that |G8 • | = 0 ⇒ goal(G1) = {G8}. When a
certain node Gi has many goal nodes, they all belong to the goal set of Gi.

4.2 Converting

This part is the most crucial step in Goun. We match and record each node with
its goal node set for structural unfolding [6–8]. The purpose of matching and
unfolding is to create a strictly structured model with repetitive and omissive
edges (introduced in Sect. 4.4). More details are given next.

Structural Descriptions of Process Models Based on Goal-Oriented Unfolding 405

Matching. In this part, we match every valid TLGG node with its goal set.
Goun begins at collecting nodes without incoming edges (entry list) and nodes
without outgoing edges (exit list). For a valid entry node, there should be at
least one exit node corresponding to it. If the sizes of the entry and exit lists are
both equal to one, then the unique entry u and the unique exit v are matched
and recorded, meaning v is the goal node of u. As for multiple exit nodes, we
use a heuristic rule to guide the matching procedure. For a node u1 and two exit
nodes v1 and v2, the len function calculates the minimum length paths that
originate from u1 to v1 and v2. If len(u1, v1) < len(u1, v2), then v2 is no more
a goal of u1.

The node matching problem is slightly similar to the parentheses matching
problem. At every step, we delete matched nodes and their connecting edges.
Subsequently, whether the TLGG is still reasonable should be taken into consid-
eration. If the exit (entry) list of the remaining graph contains concurrent nodes
(purple), and its entry (exit) list does not, then an unreasonable situation is said
to occur. If so, we reset the deleted source nodes to keep the reasonableness of
the current graph intact.

After every deletion step, a simplification operation is performed. We trivially
regard ZEZE (zero entry and zero exit) and SESE nodes as invalid nodes because
they both do not change the behavior of the present model and can simplify the
model if removed. Thus, the algorithm checks whether an invalid node g in TLGG
such that (| • g| = |g • | = 0 or | • g| = |g • | = 1) exists, and, if so, erases it.

Fig. 7. An example of the matching step

In Fig. 7, G8 is marked as the goal node of G1 since they are the entry and
exit nodes in the TLGG. After deleting them six nodes are left, and G2 and G6
need to be matched because they are entry nodes now. Note that G2 can always
reach G5 and G6 can always reach G7, thus goal(G2) = {G5}; goal(G6) = {G7}.
If a conflict occurs in matching, the minimum path length first heuristic rule
should apply. In the simplification step, the SESE nodes G3 and G4 are
erased. Lastly, G7 is marked as the goal node of G6; thus, the goal set is:
{(G1, {G8}), (G2, {G5}), (G6, {G7})}.

Unfolding. Based on the matched node set, this step aims to create a structured
process model with repetitive and omissive edges which is essential for structured
text generation. Specifically, a repetitive edge is one that exists in the original
model once, and in the unfolded model more than once (i.e. it is unfolded many
times). An omissive edge exists in the original model but not in the unfolded
model.

406 C. Qian et al.

Goun begins at creating reachable paths from node u to v. In every path, it
checks whether there is a goal node, and, if so, it skips all the succeeding nodes
of the goal node, and continues recursive unfolding. In doing so, some nodes may
be copied many times to avoid generating a Rigid component. If not, it unfolds
every gateway directly. For every edge in the current path, the corresponding
polygon is added.

Fig. 8. An example of the unfolding step

In Fig. 8, after unfolding (G1, {G8}) (at level 1), there are two nodes (yellow) in
the unfolded model. Then, after unfolding (G2, {G5}) and (G6, {G7}) (at level 2),
there are ten nodes in the unfolded model. When all levels are similarly unfolded,
the model is strictly structured, i.e. the EPST of it contains no Rigid components.

4.3 Post-processing

This step performs pre-processing in reverse. The gateways which were split
should be merged and the edges which were reversed should be restored. Guided
by the matched node set {(G1, {G8}), (G2, {G5}), (G6, {G7})}, we have unfolded
and post-processed the original model as Fig. 9 shows. This generated model is
strictly structured compared with the one in Fig. 5(a). Note that some activities
can be generated twice or more; therefore, some elements appear in the unfolded
model many times (i.e. they are repetitive edges).

Fig. 9. An example of the post-processing step

4.4 Text Generation

Goun assumes that all generated statements capturing the new elements are
correct and well-placed within the text. e.g. a text annotation should directly
follow the sentence(s) of its corresponding node and be placed in parentheses.

Transformation of Trivial. After traversing an EPST until its Trivial compo-
nents are found, we can generate a natural language sentence by Deep Syntactic
Tree analysis of every trivial component [3,5]. Goun detects whether all elements
are attached, and if so, their corresponding templates are loaded.

Structural Descriptions of Process Models Based on Goal-Oriented Unfolding 407

Adding Additional Description. Text generation consists of three further
aspects as follows.

Fig. 10. An example model with an omissive edge and its unfolded model

(1) Body text. If the model contains no Rigid component, we can employ the tra-
ditional text generation method to solve all the components [3]. The descrip-
tion of this part needs to be decorated with statements for the behavior of
other elements to avoid information loss.

(2) Repetitive behavior. From our experience, activities described more than
once do not need additional language templates.

(3) Omissive behavior. For some models, those edges which can cause different
behavior are dropped after unfolding. In Fig. 10(a), after matching g1 and
g3, its unfolded model is shown in Fig. 10(b). Note that edge (g4, g2) is an
omissive edge since it cannot be mapped in Fig. 10(b). Accordingly, edges
that cannot be mapped in the unfolded model are recorded. Every omissive
edge should be clarified through a language template. Taking Fig. 10(a) as
an example, the additional statement is, “After the ‘role’ does ‘v1’, it can
also do ‘v3”’.

Having described the Goun algorithm, we give an example to show how it works.

Example 6. The structured Goun text of the pool1 in Fig. 1 is:

01. The ‘pool1’ process begins when the ‘role1’ does ‘v1’. Then one of the fol-
lowing branches is executed:

02. • The ‘role1’ does ‘v2’.
03. • The ‘role1’ does ‘v3’.
04. Once one of the above branches is executed, there is a region which allows

for different execution paths:
05. One of the following branches is executed:
06. • The ‘role1’ does ‘v4’.
07. • The ‘role1’ does ‘v5’.
08. One of the following branches is executed:
09. • The ‘role1’ does ‘v6’.
10. • The ‘role1’ does ‘v7’.
11. However, the region allows for other behavior.
12. • After the ‘role1’ does ‘v6’, it also can do ‘v5’.
13. Once the region is executed, the ‘pool1’ process is finished.

408 C. Qian et al.

5 Experimental Evaluation

We have implemented Goun1 based on an open source BPM tool named jBPT2.
In this section, we compare Goun with Hen [3]. All the experiments were run on
a Macbook Pro with Intel Core I7 CPU@2.2 GHz, 16G DDR3@1600 MHz, and
OS X 10.11.4 operating system.

5.1 Experimental Setting

We created3 artificial test cases [9] and collected real-life test cases from dif-
ferent sources such as books (24.6%, textbook), online tutorials (7.4%, acad-
emic), papers (27.6%, academic), modeling tools (5.9%, industry), enterprises
(30.5%, industry), and so on. We divided them into 10 datasets based on their
domain. Their structural characteristics vary from easy (with just one activity)
to complex (with hundreds of nodes with sub-processes, message flows, bound-
ary events, etc.). The ratio of real-life cases is 61.76%. To eliminate artificial
factors as much as possible, these 130 models4 from different sources are ran-
domly selected and sorted. Afterwards, we run the Hen and Goun algorithms to
generate two separate texts for each case. Finally, text coverage, time cost, text
property and user evaluation are measured as well.

5.2 Handling Ability

We analyzed the features of the Hen and Goun algorithms, in the context of both
simple and complex models, and present a qualitative comparison in Table 1
(symbols ‘+’ for supported; ‘−’ for not supported; ‘±’ for partial support).

Table 1. Comparison on handling abilities of Hen and Goun

Item Hen Goun

Structural model + +

Gateway ± +

Artifacts − +

Message flow − +

Subprocess ± +

Text annotation − +

Boundary events ± +

Loop in Rigid − +

NFC models − +

1 https://github.com/qc529491527/ModelToText/tree/master/SourceCodes.
2 https://code.google.com/archive/p/jbpt/.
3 www.signavio.com.
4 https://github.com/qc529491527/ModelToText/tree/master/TestModels.

https://github.com/qc529491527/ModelToText/tree/master/SourceCodes
https://code.google.com/archive/p/jbpt/
www.signavio.com
https://github.com/qc529491527/ModelToText/tree/master/TestModels

Structural Descriptions of Process Models Based on Goal-Oriented Unfolding 409

The results show that Goun enhances the completeness of structural descrip-
tions, and the patterns it can handle is a superset of those of Hen.

5.3 Quantitative Comparison Results

We compared the coverage rate of Hen and Goun algorithms as shown in Fig. 11
(coverage-sources graphs). The element coverage, activity coverage, gateway cov-
erage, flow coverage, message flow coverage and artifact coverage, respectively,

(a) Element coverage (b) Activity coverage

(c) Gateway coverage (d) Flow coverage

(e) Message flow coverage (f) Artifact coverage

Fig. 11. The comparison results on text coverage rates

410 C. Qian et al.

represent the ratio of covered elements, activities, gateways, control flows, mes-
sage flows and artifacts to their maximum values. As for the BQG source in
Fig. 11(c), since this set contains no gateway elements it is not shown. Next, we
reverse constructed the process models from the generated text manually [12],
and then compared the models with the “gold” models created manually. From
the single source or total statistic, we can clearly see that the coverage rates of
Goun are either equal to or more than those of Hen. The below-100% perfor-
mance of Goun is explained by the fact that Goun ignores invalid gateways, i.e.
SESE gateways, to avoid overfitting; thus, the coverage rates of these models
are less than 100%. Note that for message flow coverage and artifact coverage,
Goun achieved 100% while Hen got 0%. In sum, if we use cov(f) to denote the
coverage of method f , we can conclude that cov(Hen) ≤ cov(Goun).

Finally, the time cost, text property and user evaluation are measured. First,
we tested these datasets and got an average generation time of around 1162 ms.
Then, from the text property experiments, we find that the Goun text is more
detailed than Hen’s based on word count, number of sentences, and so on. Lastly,
we randomly polled almost 22 BPM (business process management) researchers
and experts, from graduate students to professors, to independently understand
and evaluate the consistency scores of all the 130 model-text pairs on a 1–5 scale.
They were not given any prior guidance. The average score of Goun (4.58) is
1.59 points higher than that of Hen (2.99).

6 Related Work

The interdisciplinary, natural language text generation of process model, has
been studied for several years. The model-to-text generation system proposed
in [3] neglects many complex elements and structures which may be used in
enterprises. Our approach is developed based on the Hen architecture. It not
only overcomes some drawbacks but also makes the text generation system more
robust, and generates texts that are more compliant with the original models.

The tool Realizer takes a Deep Syntactic Tree as input, and outputs its
English description [15]. We used the tool for sentence generation.

Meziane et al. developed an application which generates texts for UML class
diagrams [10]. Malik et al. provide SBVR rules to map corresponding elements
to its language templates [16]. We applied some of their generation rules in our
system with modifications.

The simplification or conversion of model structure is valuable [6–8] since con-
verted structures are in some ways easier to understand. Our approach applied
the ideas of behavioral equivalence and proper complete prefix unfolding.

Model construction is the reverse of text generation [5,12,13]. Our approach
can be applied to evaluate such systems also, especially when using machine
learning techniques since raw texts are required as input. Under this circum-
stance, our system will enormously reduce the manual efforts of modeling.

Furthermore, consistency checking between models and texts is proposed in
[11]. This technique can also be applied in a generation system to quantitatively
evaluate multiple generated results.

Structural Descriptions of Process Models Based on Goal-Oriented Unfolding 411

7 Conclusion

In this paper, we proposed a new data structure EPST, and an algorithm for
transforming general business process models to their textual descriptions. The
EPST is an extended version of RPST since it can describe more patterns of
process models. In addition, we implemented the Goun method which computes
the goal sets of the original models, unfolds them into strictly structured ones
and generates corresponding structured texts for them. Afterwards, test cases
were collected to evaluate the Goun and Hen transformation methods along dif-
ferent dimensions. Experiments show that Goun not only extends the expressive
patterns, but also presents a strictly structured text to readers. Furthermore, we
showed that it improves the text coverage and reduces information loss.

Although the Goun technique can handle arbitrary Rigid components with
loops and possesses good extensibility, the Goun texts are expressed by similar
expression templates and are somewhat longer than those of Hen. In the future,
we will try to decorate and shorten generated texts, and also do more extensive
testing using enterprise models. In the meantime, we will give formal proofs to
validate the properties and abilities of Goun. We will also employ automatic
consistency checking to avoid subjective evaluation [11,13].

Acknowledgement. The work was supported by the National Key Research and
Development Program of China (No. 2016YFB1001101) and the National Nature Sci-
ence Foundation of China (Nos. 61472207, 61325008 and 71690231).

References

1. BPMN Task Force, Business Process Model and Notation (BPMN) Version 2.0,
Object Management Group, 2011 (OMG Document Number formal 2011-01-03)

2. Vanhatalo, J., Vlzer, H., Koehler, J.: The refined process structure tree. Data
Knowl. Eng. 68(9), 793–818 (2009)

3. Leopold, H., Mendling, J., Polyvyanyy, A.: Supporting process model validation
through natural language generation. IEEE Trans. Softw. Eng. 40(8), 818–840
(2014)

4. Leopold, H., Mendling, J., Polyvyanyy, A.: Generating natural language texts from
business process models. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S.
(eds.) CAiSE 2012. LNCS, vol. 7328, pp. 64–79. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-31095-9 5

5. Friedrich, F.: Automated generation of business process models from natural lan-
guage input. Humboldt University at zu Berlin, Berlin, Germany, Institute of Infor-
mation Systems (2010)

6. Polyvyanyy, A., Garca-Bauelos, L., Dumas, M.: Structuring acyclic process models.
Inf. Syst. 37(6), 518–538 (2012)

7. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Program. Lang. Syst. 1, 121–141 (1979)

8. McMillan, K.L., Probst, D.K.: A technique of state space search based on unfolding.
Form. Methods Syst. Des. 6(1), 45–65 (1995)

9. Yan, Z., Dijkman, R., Grefen, P.: Generating process model collections. Softw.
Syst. Model. 16, 1–17 (2015)

http://dx.doi.org/10.1007/978-3-642-31095-9_5
http://dx.doi.org/10.1007/978-3-642-31095-9_5

412 C. Qian et al.

10. Meziane, F., Athanasakis, N., Ananiadou, S.: Generating natural language speci-
fications from UML class diagrams. Requir. Eng. 13, 1–18 (2008)

11. van der Aa, H., Leopold, H., Reijers, H.A.: Detecting inconsistencies between
process models and textual descriptions. In: Motahari-Nezhad, H.R., Recker, J.,
Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 90–105. Springer, Cham
(2015). doi:10.1007/978-3-319-23063-4 6

12. Schumacher, P., Minor, M., Schulte-Zurhausen, E.: Extracting and enriching work-
flows from text. In: 2013 IEEE 14th International Conference on Information Reuse
and Integration (IRI), pp. 285–292. IEEE (2013)

13. Zhang, Z., Webster, P., Uren, V., Varga, A., Ciravegna, F.: Automatically extract-
ing procedural knowledge from instructional texts using natural language process-
ing. In: International Conference on Language Resources and Evaluation (2012)

14. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes, 1st edn. Springer, Heidelberg (2011)

15. Lavoie, B., Rambow, O.: A fast and portable realizer for text generation systems.
In: Proceedings of the fifth conference on Applied natural language processing.
Association for Computational Linguistics (1997)

16. Malik, S., Bajwa, I.S.: Back to origin: transformation of business process models
to business rules. In: La Rosa, M., Soffer, P., et al. (eds.) BPM Workshops 2012.
LNBIP, vol. 132, pp. 611–622. Springer, Heidelberg (2013)

http://dx.doi.org/10.1007/978-3-319-23063-4_6

	Structural Descriptions of Process Models Based on Goal-Oriented Unfolding
	1 Introduction
	2 Preliminaries
	2.1 BPMN
	2.2 RPST

	3 Extending Expressive Patterns of RPST
	4 Structural Description
	4.1 Pre-processing
	4.2 Converting
	4.3 Post-processing
	4.4 Text Generation

	5 Experimental Evaluation
	5.1 Experimental Setting
	5.2 Handling Ability
	5.3 Quantitative Comparison Results

	6 Related Work
	7 Conclusion
	References

