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Abstract. Process families consist of different related variants that rep-
resent the same process. This might include, for example, processes exe-
cuted similarly by different organizations or different versions of a same
process with varying features. Motivated by the need to manage vari-
ability in process families, recent advances in process mining make it
possible to discover, from a collection of event logs, a generic process
model that explicitly describes the commonalities and differences across
variants. However, existing approaches often result in flat complex mod-
els where it is hard to obtain a comparative insight into the common and
different parts, especially when the family consists of a large number of
process variants. This paper presents a decomposition-driven approach
to discover hierarchical consolidated process models from collections of
event logs. The discovered hierarchy consists of nested process fragments
and allows to browse the variability at different levels of abstraction. The
approach has been implemented as a plugin in ProM and was evaluated
using synthetic and real-life event logs.

Keywords: Process mining ·Consolidated process families ·Hierarchical
configurable models · Decomposed discovery · Configurable fragments

1 Introduction

As event data are becoming omnipresent, the importance of process mining is
becoming more and more significant. Process mining allows to automatically
discover, analyse and improve business processes from execution data referred
to as event logs [1]. Traditionally, event logs are assumed to describe the execu-
tion of static and homogeneous processes. However, business requirements and
regulations are continuously changing, and so are the processes. Municipalities,
banks, telecommunication service providers and many others execute the same
processes but with personalized features. For example, [2] reports on about 100
process variants executed by an asset management company to handle assets
for institutional clients and fund distributors. This results in a family of related
event logs that can be mined to discover their underlying process variants.

Discovering a collection of disconnected variants creates redundancy and
turns the management and maintenance of the process family a difficult task [3].
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Instead, organizations need to efficiently analyze and track changes in their
processes in a unified way. Recent advances in process mining make it possible
to mine process variants and to discover a generic consolidated process model
(e.g. [4,5]). However, as the number of process variants increases, it becomes
more common to observe partly shared behavior between a subset of the vari-
ants instead of one global behavior shared between all the variants. As a result,
the discovered consolidated models may quickly become large and complex [6].

To remedy this problem, we propose an approach to discover hierarchical con-
solidated process models from collections of event logs. The discovered hierarchy
helps in taming the complexity of consolidated models in two ways: (i) by mod-
eling variability at different levels of abstraction (i.e. variability is shown/hidden
according to the desired level of abstraction) and (ii) by expressing variabil-
ity in a coarse-grained way (i.e. commonalities and differences between process
fragments instead of individual elements).

Figure 1 describes the problem addressed and the desired output. Given a
process family consisting of a collection of events logs, state of the art discovery
approaches produce flat consolidated models as shown in Fig. 1b. The nodes’
sizes give an indication about the number of variants in which the activities
appear. Some edges are annotated with the logs’ identifiers from which they are
discovered. Clearly, the flat structure of the model and the increasing number of
variants make it hard to compare variants and to track where do they agree or
disagree unless applying some filtering techniques (e.g. filtering on digests [7]).

The hierarchical model discovered by our approach is shown in Fig. 1c. The
hierarchical structure allows to browse the process variability at different levels
of abstraction. The elements in the hierarchy refer to abstracted process frag-
ments shared between a (sub)set of process variants. To describe fragments, we
introduce the concept of SHared-Entry SHared-Exit (SHESHE) which is inspired
from the well-know concept of Single-Entry Single-Exit (SESE) [8]. SHESHEs
are independent subprocesses that are entered and exited via shared paths. They
have well-defined interfaces through which they interact with the rest of the
process. Their internal behavior encloses the variability between the entering
and exiting variants. The variability abstraction is achieved by hiding the inter-
nal behavior of each fragment and by keeping the interaction of its boundaries
with the rest of the process visible. Therefore, going down in the hierarchy corre-
sponds to expanding the internal behavior of abstracted fragments. For example,
in the process model shown at Level 2, the internal behavior of the parent at
Level 1 is expanded and the abstracted nested fragments at Level 2 become
visible.

The approach has been implemented as a plugin in ProM and was evalu-
ated using both synthetic and real-life event logs. Experimental results show
that the hierarchical structure does not only reduce the structural complexity of
consolidated processes but also can improve their behavioral quality.

The paper is structured as follow. In Sect. 2, related work is discussed.
Some basic definitions used throughout the paper are introduced in Sect. 3. The
proposed approach is detailed in Sect. 4 through a running example. Section 5
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(b) Output of traditional approaches: a flat consolidated model
where variability (commonalities vs differences) is expressed at
the process elements’ level; For readability, some of the edges are
annotates with the logs’ identifiers from which they are discovered
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(c) Output of the proposed approach: a hierarchical consolidated model where vari-
ability is expressed at the fragment level and is shown/hidden according to the desired
level of abstraction

Fig. 1. Snapshot of the problem addressed and the proposed approach
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reports our experimental results. Finally, we discuss some limitations and exten-
sions of the proposed work in Sect. 6.

2 Related Work

Process variant management is a recent research body that addresses the
problem of modeling and maintaining large collections of related process vari-
ants [3]. Approaches developed in this area aim to represent the variants in a
consolidated manner. For this purpose, conventional process modeling languages
have been extended to explicitly support process variability modeling [9]. In this
work, we adopt the configurable modeling approach [10] since it allows to explic-
itly represent the common and different parts in one customizable model.

To consolidate a collection of process variants, two techniques can be applied:
model-merging (e.g. [2,7]) and model-mining (e.g. [4,5]). Model-merging tech-
niques construct consolidated process models by structurally merging existing
process variants. Model-mining techniques use process mining to discover con-
solidated process models from the execution behavior of process variants. All of
the existing approaches produce flat models with fine-grained variability.

To overcome the complexity of consolidated models, different approaches
have been proposed to abstract from the fine-grained variability expressed at the
process elements’ level to a coarse-grained variability expressed using domain ori-
ented models (e.g. [11,12]). The drawback of these approaches is that they heav-
ily rely on the domain expert knowledge. Another stream of works try to tame
the complexity by localizing variability in fragments instead of entire processes
(e.g. [6,13]). Subprocesses, often expressed in terms of SESE fragments, are
extracted from existing process variants and are consolidated if they are similar.
These techniques use model merging. The merged fragments show a local view
on the variability, while in our work, we aim at providing a global view of the
consolidated model and at different levels of abstraction.

Divide and conquer techniques have been also proposed to solve the com-
plexity of discovered models. They can be grouped into two categories: case-based
and activity-based. In case-based techniques, the log is split into homogeneous
clusters of traces and a model is mined per cluster (e.g. [14]). The aim here is to
mine a collection of simpler variants of a complex process. In this work, we deal
with activity-based decomposition where traces are split into clusters of sub-
traces. A fragment is mined from each cluster and finally, the mined fragments
are glued together into an overall model. In [15], a generic approach is presented
and the principles of correct decomposition are discussed. The decomposition
technique proposed in this paper rely on the theoretical results presented in [15].

Finally, our work can be also related to process model abstraction
(e.g. [16,17]) and hierarchical process discovery (e.g. [18]). In model abstrac-
tion, the aim is to create simpler views of the process by abstracting from process
details. The focus of existing works has been on defining aggregation and hiding
operators that preserve some correctness criteria. The focus of our work is not
on defining new abstraction operators. Instead, we aim at automatically creating
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different abstraction levels of the variability in a process family. For this purpose,
we introduce the notion of SHESHE fragments which, by definition, allows us to
achieve our goal. On the other hand, the works on hierarchical process discovery
explore the information recorded in event logs in order to infer a hierarchical
structure that can explain the flow of the process. In our work, we discover a
hierarchical structure that explains the flow of the variability in a process family.

3 Preliminaries

Set, Multiset. Let S be a finite set. The multiset B(S) over S is a set
where elements may appear multiple times. The elements in the multiset are
listed between square brackets. For example, B =[ ] is the empty multiset,
B(S)= [a, a, b, c, b]= [a2, b2, c] is a multiset over S ={a, b, c}. B(S) is the set of
all multisets over S.

Sequence, Projection. A sequence σ = 〈s1, s2, ..., sn〉 ∈ S∗ is an ordered list
of elements. The empty sequence is denoted as 〈 〉. The projection of σ on a subset
S′ ⊆ S denoted as σ�S′ is a subsequence of σ containing only the elements of S′.
For example 〈a, a, b, d〉�{a,d} = 〈a, a, d〉. Projection is also defined for multisets.
For example, [a3, b2, c]�{a,b} = [a3, b2].

Event Log. An event log is a multiset of traces. A trace is a sequence of activities
describing the lifecycle of a particular process instance. Let A ⊆ UA be a set
of activities in some universe of activities. A trace σ ∈ A∗ is a sequence of
activities. L ∈ B(A∗) is an event log. We denote by AL = {a ∈ σ | σ ∈ L} the
set of activities occurring in L.

Causal Graph. A causal graph CL = (AL, EL) constructed from an event log
L is a graph showing the causal relations between the log activities. Most process
mining algorithms build such a graph in a preprocessing step by scanning the
event log to see how many times an activity a1 is followed by another activity
a2. If this occurs above a certain threshold, then it is assumed that a1 causally
precedes a2 (i.e. (a1, a2) ∈ EL). The selection of an appropriate threshold is out
of scope of this paper. In this work, we assume that CL is constructed using an
existing algorithm. We also assume that CL is connected.

Configurable Process Models. Configurable process models allow to explic-
itly represent the common and different parts in one customizable process model.
They need to be configured to specific requirements by (de)selecting (ir)relevant
parts. The essence of configuration can be captured in terms of two operators,
hiding and blocking [10]. Hiding an activity corresponds to skipping it. In other
words, the activity is either removed or renamed to a silent step. Blocking an
activity corresponds to disabling it, i.e. the path from the activity cannot be
taken anymore. There exist several extensions to existing process modeling nota-
tions. They all share the same configuration basis but differ according to the
language notation. In this work, we use Petri nets as a process modeling nota-
tion since a great number of the process mining techniques assume or generate
Petri nets. However the results are not restricted to this notation.
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4 Proposed Approach

In this section, we first present a running example (Sect. 4.1) that will be used
to illustrate the three steps of our discovery approach (Sects. 4.2, 4.3 and 4.4).

4.1 Running Example

We consider a scenario of four different variants of a loan process: home, student,
business and small. Example event logs corresponding to these variants are as fol-
low: L1 = [〈a, b, c, d, e, h, i, j, l, k,m, n, o, p, w〉47, 〈a, b, d, c, e, h, i, j, k, l,m, n, o, q,
w〉28, 〈a, b, d, c, e, h, i, k, j, l,m, n, o, p〉25]; L2 = [〈a, b, r, s, t, u, v, w〉50]; L3 = [〈a,
b, c, d, f, g, e, h, n, w〉48, 〈a, b, d, c, f, g, e, h, n, w〉52]; L4 = [〈a, b, r, s, t, v, s, u, v, o,
p, q, w〉48, 〈a, b, r, s, u, v, o, q, p, w〉52]. Figure 2 shows the causal graphs of the four
event logs. To ease the understanding of the processes, we split and annotate
them with the names of different phases. There are in total 22 distinct activities.
Three activities appear in all the four event logs and 13 activities appear in
different subsets of the logs.
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(a) C1: home loan process
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(d) C4: small loan process

a: receive application m: loan type approved g: check revenue s: check amount
b: start processing n: request approval h: end checking t: check system funds
c: register client o: check income i: verify mortage type u: check eligibility (small)
d: check client credit p: archive request j: check property information v:end checking phase
e: contact bank q: contact client k: request mortage underwriter
f: check company funds r: check profile l: check eligibility (big)

(e) Activities’ names

Fig. 2. The causal graphs of four event logs of different loan process variants

Our approach for discovering a hierarchical consolidated model consists of
three main steps:

1. An integrated representation of the causal graphs is created and is referred
to as multi causal graph (Sect. 4.2);
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2. The multi causal graph is decomposed into a hierarchical structure of nested
SHESHE fragments. For this, we formally introduce the concept of SHESHE
and their induced hierarchical structure (Sect. 4.3);

3. The abstraction of SHESHE fragments is generated and the event logs are
mined accordingly to discover a hierarchical consolidated model (Sect. 4.4).

4.2 Multi Causal Graph Construction

Given a collection of event logs L1, . . . , Ln ∈ B(A∗), we first unify the start and
end of all the event logs by adding start (ST) and end (ET) activities to all the
traces. Then, we construct a causal graph Ci for each event log Li. The causal
graphs are merged into a multi-causal graph. Edges in the multi causal graph
have different identities according to the causal graph from which they originate.
In this work, we assume that activities having the same labels are identical.

Definition 1 (Multi causal graph). Let L = {Li | i ≥ 2} be a collection of
events logs with unique start (ST) and end activities (ET) and Ci = (Ai, Ei) a
causal graph constructed for each Li ∈ L. A multi causal graph C◦ = (A◦, E◦)
is the graph resulting from merging the causal graphs such that A◦ =

⋃
i≥2 Ai

and E◦ =
⋃

i≥2 {((a1, a2), i) | (a1, a2) ∈ Ei}.
Figure 3 shows an example of the multi causal graph resulting from merging

the causal graphs in Fig. 2 (for now ignore the dashed rectangles).

ST a b
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d

r s t u v

f g

e h i

j l

k

m n o

p

q

w ET

F0
F1

F5

F2
F3

F4

F6

C1
C2
C3
C4

Fig. 3. Maximal SHESHE decomposition on the multi causal graph resulting from
merging the causal graphs in Fig. 2

4.3 SHESHE Decomposition

The second step of our approach is to find a hierarchical decomposition of the
multi causal graph in terms of fragments organized in a hierarchical contain-
ment relationship. To define fragments, we introduce the concept of SHared-
Entry SHared-Exit (SHESHE). SHESHE fragments are subprocesses with well-
defined interfaces through which they interact with the rest of the process. They
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represent parts in the process where variants enter and exit through the same
interfaces. In the following, we give some definitions to introduce a SHESHE.

Let L = {Li | i ≥ 2} be a collection of event logs with unique start (ST) and
end (ET) activities; C1, . . . , Cn be the casual graphs constructed for each Li ∈ L
and C◦ = (A◦, E◦) be the multi causal graph constructed from C1, . . . , Cn.

Definition 2. Let F ⊆ E◦ be a non empty set of weakly connected edges. We
define the following notations:

– The shareability level of F : id(F ) = {i | ((a1, a2), i) ∈ F};
– The edges with the identifier i in F : F�i = {((a1, a2), i′) ∈ F | i′ = i};
– The set of activities: act(F ) =

⋃
((a1,a2),i)∈F {a1, a2};

– The complement of F in E◦: F = E◦ \ F ;
– For an activity a ∈ act(F ), the following is defined:

• The incoming edges that belong to F : in(a, F ) = {((a1, a), i) ∈ F};
• The incoming edges that do not belong to F : in(a, F ) = in(a, F ) =

{((a1, a), i) ∈ F};
• The outgoing edges that belong to F : out(a, F ) = {((a, a1), i) ∈ F};
• The outgoing edges that do not belong to F : out(a, F ) = out(a, F ) =

{((a, a1), i) ∈ F};
• The edges connected to a: conn(a, F ) = in(a, F ) ∪ in(a, F ) ∪ out(a, F ) ∪

out(a, F ).

The activities in F can be split into three categories: local if the activity is
connected only to activities in F , boundary if it is connected to elements not
in F , and shared boundary if, in addition to being boundary, the activity is
connected only to edges having the identifier included in the shareability level
of F . This latter category allows us to introduce the concept of SHESHE.

Definition 3 (Local, boundary, shared boundary). Let F ⊆ E◦ be a
non empty set of weakly connected edges such that ST,ET /∈ act(F ). The local,
boundary and shared boundary nodes in F are defined as following:

– lact(F ) = {a ∈ act(F ) | in(a, F ) ∪ out(a, F ) = ∅};
– bact(F ) = {a ∈ act(F ) | a /∈ lact(F )};
– sact(F ) = {a ∈ bact(F ) | id(conn(a, F )) = id(F )}.

For example, in Fig. 3, the set of edges represented by the fragment F5

has: lact(F5) = {s, t, u}, bact(F5) = {r, v} and sact(F5) = {r, v}. The bound-
ary activities in F can be further classified into entry and exit activities. In [8],
SESEs are defined as sets of edges having single entry and single exit activities.
In this work, we define SHESHEs as sets of edges having shared entry and shared
exit nodes. Roughly speaking, a shared entry is a shared boundary through which
it is possible for every variant to enter inside the region represented by F . The
same holds for a shared exit. For example, in Fig. 3, c and d are shared entries
for F2 since both variant 1 (which corresponds to L1) and variant 3 can enter
F2 through them; n is a shared exit, since both variants can exit F2 through it.
The formal definition of shared entry and exit nodes is given in Definition 4.
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Definition 4 (Shared entry and exit nodes). Let F ⊆ E◦ be a non empty
set of weakly connected edges such that ST,ET /∈ act(F ). A node a ∈ sact(F )
is a shared entry iff:

1. id(in(a, F )) = id(out(a, F )) = id(F ) and
2. [(∀i∈id(F ) out(a, F )�i = ∅ ∨ in(a, F )�i = ∅) or
3. (id(out(a, F )) = id(in(a, F )) = id(F ))].

a ∈ sact(F ) is a shared exit iff:

1. id(out(a, F )) = id(in(a, F )) = id(F ) and
2. [(∀i∈id(F ) in(a, F )�i = ∅ ∨ out(a, F )�i = ∅) or
3. (id(in(a, F )) = id(out(a, F )) = id(F ))].

We denote by entry(F ) and exit(F ) the set of entry and exit nodes respectively.

The first requirement of a shared entry states that the set of identifiers of the
incoming edges that do not belong to F should be equal to the set of identifiers
of the outgoing edges that belong to F , which in turn, should be equal to the
shareability level of F . This requirement ensures that all variants can enter F
through the entry node. Since we do not impose single entry nodes, the second
and third requirement ensure that the entry node can either be only an entry
(i.e. no variant can exit through this node) or a shared exit (i.e. all variants have
the possibility to exit the node).

Definition 5 (Shared-Entry Shared-Exit). Let F ⊆ E◦ be a non empty
set of weakly connected edges such that ST,ET /∈ act(F ). F is a shared-entry
shared-exit iff: act(F ) = lact(F ) ∪ entry(F ) ∪ exit(F ).

A SHESHE fragment allows to localize the variability between a subset of
variants. As all involved variants can enter and exit through its entry and exit
nodes, the fragment can be treated as a black box (similar to a macro activity)
and the variability can be expressed at the fragment level. Blocking a fragment
corresponds to blocking the subprocess executed by the corresponding variants.
On the process elements’ level, this requires only to blocking the fragment inter-
faces (i.e. entry and exit activities). On the other hand, any local configuration
inside the fragment does not affect its interfaces and therefore is independent
from outside. Examples of SHESHE fragments are shown in Fig. 3.

The edges formed by E◦ define a specific type of a SHESHE with no incom-
ing or outgoing edges. This fragment is called the root and is not considered
in any operation on SHESHEs. In this work, we are interested in a hierarchical
representation of SHESHE fragments where a child fragment restricts the share-
ability level of its parent. This requires that SHESHE fragments do not overlap.
In the following, we give some definitions to derive non-overlapping SHESHEs.

Lemma 1 (SHESHE inclusion). Let F1, F2 ⊆ E◦ be two SHESHEs such
that F1 ⊆ F2. The following hold: (i) id(F1) ⊆ id(F2) and (ii) if entry(F1) ∩
entry(F2) �= ∅ or exit(F1) ∩ exit(F2) �= ∅ then id(F1) = id(F2).
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Lemma 2 (SHESHE union). Let F1, F2 ⊆ E◦ be two SHESHEs and F =
F1 ∪ F2 be their union such that F is weakly connected. F is a SHESHE iff
id(F1) = id(F2) or F1 ⊆ F2.

Many of the SHESHEs in a multi causal graph are less informative. For
instance, in Fig. 3, F ′

1 = {((e, h), 1), ((e, h), 2)} ⊂ F1
1 has the same shareability

level {1, 2} as F1. Given F1, F ′
1 does not provide any additional information. This

does not hold for F8 ⊂ F1 as F8 has a new restricted shareability level. In this
work, we are interested in maximal SHESHE fragments that are the largest
fragments having a specific shareability level.

Definition 6 (Maximal SHESHE). Let F ⊆ E◦ be a SHESHE. F is maxi-
mal iff �F ′ ⊆ E◦, F ′ �= F where F ∪ F ′ is a SHESHE and id(F ) = id(F ′).

Proposition 1 (Non overlapping SHESHE). Let F, F ′ ⊆ E◦ be two max-
imal SHESHEs. One of the three statements holds: (i) F ⊆ F ′, (ii) F ′ ⊆ F or
(iii) F ∩ F ′ = ∅.
Proposition 1 allows to derive a hierarchical topology of the SHESHE fragments
organized in a tree-like structure (Fig. 3 shows an example).

Definition 7 (SHESHE decomposition tree). Let C◦ be a multi causal
graph and F be the set of its maximal SHESHEs including E◦. D = (F ,≺)
is a tree of maximal SHESHE fragments where F is the set of tree nodes and
≺ ⊆ F ×F is the set of parent-child relations such that (F1, F2) ∈≺ iff F2 ⊂ F1

and F1 is the smallest SHESHE containing F2.

4.4 Hierarchical Discovery

Given a SHESHE decomposition tree, we aim at discovering a hierarchical con-
solidated model that shows the fragments at different levels of abstraction. The
abstraction of fragments allows to show the most shared behavior and to hide the
local variability between the involved variants. For instance, given F2 in Fig. 3,
we would like to see that the variants of both L1 and L3 start with executing
c and d; both execute the fragment represented by e and h and end with the
execution of n; the fragments F3 and F4 are hidden since they are executed by
L3 and L1 respectively and therefore depict a local variability. In terms of event
logs, this abstraction can be achieved by projecting the traces of the logs L1 and
L3 on the activities c, d, e, h and n and discovering the corresponding fragment.
The fragment is discovered by merging the projected traces of L1 and L3 into
one log and using existing discovery techniques (e.g. Inductive Miner).

In addition to the shared behavior, we should be able to link the discovered
abstracted fragments with their children in order to create the entire process.
For example, the abstracted fragment of F2 includes the activities c, d, e, h and
n; the abstracted fragment of F3 includes f and g and the abstracted fragment

1 This SHESHE is not shown because it is not maximal according to Definition 6.
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of F4 includes i, j, l, k and m. In order to construct the whole behavior of F2

(i.e. non abstracted version), we should be able to link the discovered abstracted
fragment of F2 with its children. In this case two solutions are possible. The
trivial one is to restart from scratch by projecting the traces of L1 and L3 on
all the activities of F2 and discovering their corresponding fragment. However,
this solution requires an excessive and repeated work of discovery which may be
expensive in case of a large number of parent-child relations in the tree.

Another more convenient solution is to include the boundary nodes of chil-
dren fragments in their abstracted parent fragment. In this way the children
boundary nodes act as a glue and allow to create the entire process by combin-
ing the discovered abstracted parents with their discovered abstracted children.
This solution corresponds to the output of the approach shown in Fig. 4.

SHESHE 0
Top level

SHESHE 1
Variants 1, 2, 3, 4

SHESHE 2
Variants 1, 3

SHESHE 5
Variants 2, 4

SHESHE 6
Variants 1, 4

SHESHE 3
Variants 3

SHESHE 4
Variants 1
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e h
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Fig. 4. Output of the discovery approach taking as input the logs of the variants in
Fig. 2. Transitions with dashed line represent the entry of the SHESHE fragment; those
with bold line represent the exit; gray transitions are the boundaries of the SHESHE
children. The fragments are discovered using Inductive Miner
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Fig. 5. A model provided at the second level of the tree in Fig. 4 by glueing the dis-
covered fragment of SHESHE 0 and its children (in this case SHESHE 1)

The tree shows the abstracted fragments of the SHESHE decomposition tree
in Fig. 3. The discovered fragments of some nodes are shown on the right-hand
side. For example, the discovered fragment of SEHSHE 2 which corresponds to
the abstracted version of F2 includes the entry and exit of F2, the shared behavior
including the activities e and h as well as the boundary nodes of SHESHE 3
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and SHESHE 4. Each level of the tree shows a local behavior on the abstracted
SHESHE. To construct an entire process, parents and children can be recursively
glued at each level using the approach presented in [15]. For example, the model
shown in Fig. 5 corresponds to the entire process of the second level in the tree.
It is obtained by glueing together the fragment of SHESHE 0 and its children
(in this case SHESHE 1). The entire process of the third level can be obtained
by glueing the entire process of the second level with the children of the third
level (i.e. SHESHE 5, 6 and 2) and so on.

Having such hierarchical structure, it becomes easy to express variability
by identifying the configurable elements. The tree nodes shared between a sub-
set of the variants are configurable. They can be either blocked or allowed.
On the process level, this corresponds to making the entry and exit activities
configurable.

5 Evaluation

The approach has been implemented as a plugin in ProM2(www.processmining.
org). The plugin takes a collection of event logs as input and produces a hierar-
chical consolidated process model as output.

5.1 Synthetic Logs

We used event logs of four variants of a travel booking process3. The base process
allows for booking a flight with the option of booking a hotel and/or a car in
a subset of the variants. Figure 6a shows the flat configurable process model
discovered using Inductive Miner (IM) with the default parameters in ProM.
Because of the high variability in the logs, IM generates an underfitting model
(i.e., a flower construct) which allows for any behavior. All the activities in the
flower construct are configurable. This model is simple but scores very low on
precision. With Heuristics Miner (HM), a better model is discovered. However,
the number of configurable nodes is 21 which is still relatively high.

Figure 6b shows the hierarchical structure discovered using our approach.
The tree hierarchy contains 5 configurable fragments (i.e. 5 out of 7 nodes are
shared between a subset of the variants). Figures 6c and d show the discovered
root fragment SHESHE 0 and the fragment SHESHE 4 using IM. Compared to
the flower model in Fig. 6a, the flower construct in the root fragment is reduced
and is completely broken in the child fragment.

5.2 Real-Life Logs

We used the dataset from BPI challenge 2015 [19] which corresponds to five
process variants of building permit applications executed by five Dutch municipal-
ities. We evaluated the quality, in terms of structural complexity and behavioral
2 https://svn.win.tue.nl/repos/prom/Packages/NourAssy/.
3 The process models and logs can be downloaded from: https://svn.win.tue.nl/repos/

prom/Packages/NourAssy/Trunk/artificialLogs.

www.processmining.org
www.processmining.org
https://svn.win.tue.nl/repos/prom/Packages/NourAssy/
https://svn.win.tue.nl/repos/prom/Packages/NourAssy/Trunk/artificialLogs
https://svn.win.tue.nl/repos/prom/Packages/NourAssy/Trunk/artificialLogs
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(a) IM: flower model - all activities
are configurable

SHESHE 0 
Variants 
1,2,3,4

SHESHE 3 
Variants 
1,2,3,4

SHESHE 1 
Variants 

1,3,4

SHESHE 4 
Variants 1,2

SHESHE 2 
Variants 3,4

SHESHE 5 
Variants 1

SHESHE 4 
Variants 1,4

(b) IM: discovered hierarchy (5 configurable
fragments)

(c) fragment of SHESHE 0 shared be-
tween all variants

(d) fragment of SHESHE 4 shared between
variants 1 and 2

Fig. 6. (a) flat vs (b), (c) and (d) hierarchical discovered process models

accuracy, of the discovered models using traditional approaches for discovering
flat models versus using our approach for discovering hierarchical models.

The structural quality of the discovered models is measured in terms of the
hierarchy quality and the fragments complexity. To evaluate the quality of the
hierarchy, we compute (i) the number of configurable nodes in the discovered
models (# conf. nodes), (ii) the average number of configuration steps needed
to derive a variant (# conf. dec.), (iii) the depth of the tree and (iv) the average
number of shared variants per node (# Avg. share). Regarding the fragments’
complexity, we measured their average size and compared it to the size of one flat
model (Size(# arcs)). The behavioral accuracy is measured in terms of fitness,
precision and generalization of the merged log against the discovered consoli-
dated model. The results are reported in Tables 1 and 2.

The results show that, with the hierarchical discovery, the sizes of fragments
in the hierarchy are greatly reduced compared to the size of one flat model.
Instead of looking to one big process model, one can scan the hierarchy and
inspect smaller fragments. On the other hand, the depth of the tree is small.
This means that the decomposition was not able to find a hierarchy of nested
fragments. Because of the small depth, the difference in the number of config-
urable nodes between the hierarchical model and the flat model is not in our
favour. In the hierarchical model, the fragments shared between different vari-
ants contain shared activities but exhibit different behavior (this is explained by
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the high number of configurable nodes in the flat model). The reasons for this
can be explained by the fact that we assumed that activities with the same labels
are the same across variants. By doing so, we reduce the chance to find valid
SHESHEs. Regarding the behavioral quality, we noticed that our decomposition
approach was able to improve the precision of hierarchical models with a small
decrease in the fitness. The decrease in the fitness is not caused by the SHESHE
decomposition itself, but because of the glueing step presented in Sect. 4.4.

Table 1. Structural quality of the discovered flat vs hierarchical model

Dataset Flat Hierarchical

# conf. nodes # conf. dec Size Depth Avg. share #conf. nodes # conf. dec Size frag

BPI 15 29 16.6 102 2 2.92 7 2 45.53

Table 2. Behavioral quality of the discovered flat model vs hierarchical model

Fitness Precision Generalization

IM Flat 1 0.1 1

Hierarchical 0.86 0.57 0.97

Hierarchical (fragment avg.) 0.99 0.84 0.44

HM Flat 0.93 0.76 0.94

Hierarchical 0.96 0.8 0.95

Hierarchical (fragment avg.) 0.99 0.99 0.4

6 Conclusion

In this paper, we presented an approach for mining hierarchical consolidated
models from process families. The hierarchy allows to (i) browse the variability
at different levels of abstraction and to (ii) model it in a coarse-grained way.
Through experimental evaluation, we showed that our decomposition approach
is suitable to tame the complexity of consolidated models.

As already shown in Sect. 5, the quality of the discovered hierarchy highly
depends on the way the equivalence class is defined over the logs’ activities. In the
present work, we simply assumed that activities with common labels are equal.
However, one interesting feature of our shared-entry shared-exit fragments is that
they allow to bring structure to unstructured variability. Therefore, in our future
work, we will investigate the problem of discovering consolidated process models
with structured variability. This calls for the problem of finding an equivalence
class over the logs’ activities that optimizes the SHESHE decomposition quality.
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12. Gröner, G., Boskovic, M., Parreiras, F.S., Gasevic, D.: Modeling and validation of
business process families. Inf. Syst. 38(5), 709–726 (2013)

13. La Rosa, M., Dumas, M., Ekanayake, C.C., Garćıa-Bañuelos, L., Recker, J., ter
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