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Abstract. Service delivery organizations cater similar processes across
several clients. Process variants may manifest due to the differences in
the nature of clients, heterogeneity in the type of cases, etc. The organi-
zation’s operational Key Performance Indices (KPIs) across these vari-
ants may vary, e.g., KPIs for some variants may be better than oth-
ers. There is a need to gain insights for such variance in performance
and seek opportunities to learn from well performing process variants
(e.g., to establish best practices and standardization of processes) and
leverage these learnings/insights on non-performing ones. In this paper,
we present an approach to analyze two or more process variants, pre-
sented as annotated process maps. Our approach identifies and reasons
the key differences, manifested in both the control-flow (e.g., frequent
paths) and performance (e.g., flow time, activity execution times, etc.)
perspectives, among these variants. The fragments within process vari-
ants where the key differences manifest are targets for process redesign
and re-engineering. The proposed approach has been implemented as a
plug-in in the process mining framework, ProM, and applied on real-life
case studies.

Keywords: Process variants · Process comparison · Annotations ·
Process mining · Pair-wise · Unified process model

1 Introduction

Services organizations cater to a large number of clients on a daily basis. Ser-
vice providers typically implement/deploy a service delivery framework to meet
Service Level Agreements (SLAs) and closely monitor the performance and effi-
ciency of their operations to meet stringent compliance requirements, handle
cost pressures, inefficient processes and complex workflows. Subtleties specific to
clients, heterogeneity in types of cases, etc. lead to process variants. For example,
the way how a particular process (e.g., claims processing) is handled for different
clients (different insurance providers) lead to process variants; in large organi-
zations due to a lack of standardization, process variations may arise as a result
of, e.g., different teams handling the same process in different ways; in a loan
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application process, there could be different pathways followed depending on the
type of customer (e.g., gold, platinum, etc.); in an issue management process,
process variations might manifest depending on the type of issue.

The operational Key Performance Indices (KPIs) may vary across such
process variants. For instance, two clients requiring a similar process (e.g., docu-
ment verification) to be executed, may incur very different turnaround times for
process completion. In some cases, this can even result in the service provider
meeting SLA specifications for some variants, and violating those of others,
despite the similarity in processes executed. There is a need to gain insights
for such variance in performance and seek opportunities to learn from well per-
forming process variants and leverage these learnings/insights on non-performing
variants (e.g., establish best practices, standardization of processes, etc.). An
important step towards this is to identify key differences that manifest among
the process variants. Variants of a business process may be different in several
perspectives, such as control-flow and time. For example, in the time perspective,
the execution/flow time of activities/transitions across the variants may differ,
in the control-flow perspective, the paths of the process flows that are most often
executed may differ.

In this paper, we propose an approach for analyzing two or more process
variants to identify key differences among them. Our approach addresses not
just structural differences between the variants but also considers rich qualita-
tive information such as the frequencies and flow times (provided as annotations)
pertaining to the execution of processes. We present metrics and measures to
identify significant differences, detect cascaded components (due to the propaga-
tion of differences manifested at a source), and identify most aberrant processes
among the variants. The proposed approach has been implemented as a plug-in
in the ProM framework1 and tested on several real-life case studies. Our exper-
iments reveal that this approach is able to uncover useful insights on where and
how processes differ. Such insights are helpful to further explore and identify the
reasons for such aberrations (understand the why’s).

The rest of the paper is organized as follows: Related work is presented in
Sect. 2. Section 3 discusses some metrics that could be used to enrich process
models. Our framework for analyzing process variants is presented in Sect. 4.
Section 5 discusses the implementation of the proposed approach as a ProM plug-
in. Section 6 presents and discusses some experimental results. Finally, Sect. 7
concludes the paper.

2 Related Work

There has been some prior work in identifying the similarities in process
graphs [4,6,10,13]. [6] presents metrics to identify the key similarities between
two process graphs based on presence, absence, or changes in nodes and edges in
the graphs while [4] discusses techniques to identify semantic equality between

1 See www.processmining.org for more information and to download ProM.

www.processmining.org
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process graphs when the names of the activities among processes are not pro-
vided correctly. [13] presents fast classification of process models into relevant,
irrelevant, and potentially relevant, as a way to quickly identify similarities in
different business processes. The aforementioned papers fail to account for the
attributes/annotations of the edges in a process model. In this work, we iden-
tify the differences in the transitions (i.e., edges) in processes apart from the
activities (i.e., nodes).

Structural differences among process graphs have been studied in [2,7,8,12].
While [2] uses graph distance metrics based on whether or not an edge is present
between two process dependency graphs, [8] uses spectral graph analysis to detect
structural changes. However, these do not consider the qualitative differences
based on attributes of the nodes and/or edges in process graphs.

Differences between process variants considering attributes of nodes/edges
were studied in [3,5]. [5] detects only categorical differences among attribute
values i.e., it only indicates whether there is an increase/decrease/no change in
attribute values but doesn’t quantify the magnitude of differences. In contrast,
in this paper, we quantify the magnitude of differences. [3] uncovers statistically
significant differences between two process models represented as transition sys-
tems. The statistical significance of the difference is computed using Welch’s two
sided T-test, which assumes that the two distributions are normal. However, this
assumption may not hold true in many real-life circumstances. In fact, most of
the transition time annotations in the processes we have studied are observed
to have non-normal distributions. In this paper, we propose a much robust dif-
ference metric using Wasserstein distance [11] based on cumulative distribution
functions. Furthermore, our approach enables the analysis of multiple (more than
two) process variants and also detects cascading effects in the differences.

Table 1 summarizes the result of our comparative analysis. We can see that
our proposed work extends the state-of-the-art with capabilities missing in those.
We evaluated the various plug-ins/tools available for process comparison on their
functional and non-functional aspects. On the functional side, we checked for

– nature of differences: whether the tool supports the detection of structural
and/or quantitative annotation differences

– diagnostic insights: the ability to provide diagnostic insights through interac-
tive visualization (e.g., upon clicking on an element of the model)

– scalability: the ability to compare more than two variants
– cascaded components: the ability to detect cascaded components, i.e., propa-

gation of differences (cf., Sect. 4)
– flexibility: the ability to support multiple distance measures, handle different

types of annotations (e.g., scalar values, distributions, etc.)

On the non-functional side, we looked at the ease-of-use. We evaluated these
tools on the basis of usability and interpretability of the outputs. In particular,
we looked for interactive visualizations, drill downs and textual descriptions for
the identified differences for easy consumption by the user.
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Table 1. Comparison of state of the art with our approach

Functional Non-functional

Nature of differences Diagnostic

insights

Flexibility Scalability Ease of use

Structural

differences

Annotation

differences

Cascaded

components

[4,6,10,13] �
[2,8,12] �
[7] � �
[5] � � �
[3] � � � �
Our work � � � � � � �

3 Process Annotation Metrics

Variants of a process can manifest themselves across several different perspec-
tives, e.g., control-flow, performance, data, resource, etc. Process models can be
enriched with rich information (as annotations) to provide deep insights. Such
enriched process models can be viewed as process maps, analogous to carto-
graphic maps. With effective visualization, process map can provide multiple
seamless views of a process highlighting several facets w.r.t process executions,
e.g., highway paths followed in a process, bottleneck flows, etc. In this section, we
introduce some measures (metrics) that could be used as annotations in process
maps.

Given a process model, frequency and time of execution are two measures that
provide insightful information on the control-flow and performance perspectives
of the process.

– Frequency is a control-flow measure that captures the number of times
a node/edge of process map is traversed (visited) during the execution of
process instances.

– Time is a performance measure that captures the amount of time spent
during the execution of process instances. Different notions of time can be
captured, e.g., execution time (of an activity), turnaround time (of an activity
and process instance), flow time (between two activities), etc.

Process
Model

Event
Log

Replay Annotated
Process Map

Fig. 1. Deriving metrics and annotating process maps by replaying event logs on
process models.
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If event logs capturing process executions are available, one can use replay tech-
niques [1] to accumulate such metrics and use them for generating process maps
as illustrated in Fig. 1. In case event logs are not available, we expect the process
owners to provide these metrics (e.g., expected flow time).

Depending on the richness of process execution data and process model spec-
ification, some or several of these metrics can be computed. For example, if the
event log captures the various life cycle stages of an activity (e.g., start, sus-
pend, resume, complete, etc.), one can compute the execution time, turnaround
time, waiting time, etc. If the process model specification also captures the life
cycle stages of an activity (e.g., a flow from activity-start to activity-suspend,
activity-suspend to activity-resume, etc.), several of the primitive time metrics
can be captured as flow-time of edges (flows) in the process.

We consider three variants of the frequency measure

– absolute frequency: is the absolute value of the number of times a node/edge
is traversed/visited during process executions.

– trace frequency: is the number of process instances (or traces) that visited
a node/edge. Multiple visits of a node/edge within a process instance are
ignored here.

– normalized trace frequency: is the fraction of process instances that visited
a node/edge. This is helpful if the metrics are derived from event logs. This
metric normalizes the differences in the number of process instances among
the process executions of the variants.

Figure 2(a) depicts an issue management process with no annotations.
Figure 2(b) depicts the issue management process map annotated with fre-
quency measures. For each node/edge, there are two measures, the absolute
frequency and trace frequency (enclosed in parenthesis). For example, the num-
ber of instances of execution of In Progress is 146 and these are manifested in
137 traces. It must be noted that the absolute frequency and the trace frequency
for a node/edge will differ when it is visited multiple times due to the presence
of a cycle/loop in a process instance. The absolute frequency of that node/edge
will be the number of times it was visited in all the process instances. But the
trace frequency will only count the number of process instances (or traces) in
which the node/edge was present.

We consider two variants of the time measure

– distributions: capture the actual execution/flow time of all instances of a
node/edge in the process executions.

– scalars: sometimes, comparing derived metrics for the distributions may pro-
vide useful insights. Examples of scalar metrics for time are average time, min-
imum time and maximum time. The average time captures the average execu-
tion/flow time of a node/edge of a process. If this is computed from the event
log, this corresponds to the average of the flow/execution time of all instances
of the node/edge manifested in the process executions. If this is to be pro-
vided by a process owner, this can correspond to the expected execution/flow
time. The minimum time corresponds to the minimum flow/execution time of
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(a) No annotations (b) frequency (c) time

Fig. 2. Issue management process and its annotated versions.

all the manifestations of a node/edge in the process maps. Comparing min-
imum times can provide useful insights to the process owner at times. For
instance, a node/edge in a process variant having twice the minimum time
than the same node/edge in another variant of the process could suggest an
improvement that could be made in the first variant.

Figure 2(c) depicts the issue management process map enriched with average
flow time measure on the edges. For example, the average flow time between In
Progress and Waiting UAT Deployment is 129.26 h.

4 Framework to Analyze Process Variants

Given a set of annotated process map variants, our framework for analyzing
those variants comprises of five steps as depicted in Fig. 3.

– Generate Unified Process Map: To provide a global view of all process
map variants, we generate a unified process map that is formed by taking a
union of all nodes and edges of the input map variants. In other words, if
P1 = (V1, E1), P2 = (V2, E2), . . . , Pn = (Vn, En) are the n process variants,
the unified process map PU = (VU , EU ) where VU = ∪n

i=1Vi and EU =
∪n
i=1Ei.
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Annotated
Process Maps
(See Fig. 1)

PM1 PM2 . . . PMn

Inputs

Generate
Unified
Map

Compute
Differences

Generate
Difference

Map

Compute
Cascaded

Components
Visualize

Fig. 3. Framework for analyzing process variants.

The annotations for the unified map can be derived from the annotations of
the input maps. For example, we can choose the minimum, maximum, or the
average of the input annotations.

– Compute Differences: Detecting nodes/edges that are absent in some
process maps but present in others is pretty straightforward. For nodes/edges
present in all maps but might differ in the annotations, we propose two strate-
gies to compute the differences:

• unified map differences: here we find the differences of each input map
w.r.t the unified map and then take an aggregate of these differences.

• pair-wise differences: here, we find pair-wise differences between every
pair of input maps and then take an aggregate of these differences.

The computation of difference between two maps depends on the nature of
the annotation in the maps’ nodes/edges. We suggest three different distance
measures

• absolute difference of an annotation is defined as the magnitude (absolute
value) of the difference between the annotation values of the two maps.
This measure is applicable when the annotation values are numeric and
normalized, e.g., as in normalized trace frequency.

• relative difference of an annotation is defined as the relative change in the
values of the annotation in the two maps. Here, we choose one map as a
reference.

reldiff(vi, vj) =
|vi − vj |
vref

where vref is the annotation value of the reference map.
However, using this definition makes reldiff(vi, vj) asymmetric depending
on the choice of reference. If the reference map is the unified process map,
then the denominator is always the same (that of the unified process
map). However, for pair-wise differences, we can take either of the maps
as reference. In order to make it symmetric, we use the same strategy
that is used to make the KL-Divergence symmetric [9], which is:

reldiff(vi, vj) =
1
2

|vi − vj |
vi

+
1
2

|vi − vj |
vj

i.e., we consider the relative difference taking both the input values as a
reference and then average the differences.
This measure is applicable when the annotation values are numeric but
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not normalized, e.g., as in average flow time. In non-normalized annota-
tions, the magnitude of the difference will not be informative. For exam-
ple, the absolute difference of flow time between 1000 ms and 1002 ms
and between 1 ms and 3 ms is the same. However, the latter difference
might be significant than the former.

• statistical difference of an annotation is defined over those annotations that
contain collections of values, e.g., flow time distributions. For such anno-
tations, we propose the use of Wasserstein distance based on cumulative
distribution functions (CDFs) as a distance measure, which is defined as

dWasserstein(V1, V2) =
∫ ∞

k=−∞
|P(x ≤ k) − P(y ≤ k)|

where x and y are random variables representing the two distributions V1

and V2 respectively. P(x ≤ k) is the fraction of elements in x that are less
than or equal to k.
Intuitively, Wasserstein distance measures the difference in the areas of
the CDFs. Figure 4(a) depicts CDFs for two populations and Fig. 4(b)
depicts the Wasserstein’s distance, which is captured as the difference in
areas between the two cdfs (shaded region).

(a) CDFs of two populations (b) Wasserstein distance captures the dif-
ference in areas under CDFs.

Fig. 4. Illustration of Wasserstein’s distance.

– Generate Difference Process Map: The difference process map is a uni-
fied process map annotated with the differences computed for the nodes and
edges. As discussed above, the differences among the input process maps can
be computed either with the unified graph annotations or using pair-wise
differences.

– Compute Cascaded Components: Control-flow differences between
process maps due to a change at a single node (e.g., being executed more/less
often) in a process map variant may cause a set of related nodes to also
have significant differences w.r.t. frequency measure. Identifying such frag-
ments is interesting to a business user for root-cause analysis. We discover
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such cascaded effects by identifying connected components in the difference
map. The basic idea in detecting cascading components is as follows. First,
we identify the nodes/edges that have significant differences. Then in each
process map, we consider only that view of the process map involving the
nodes/edges with significant differences. For each such component, we extract
those nodes/edges that have a similar annotation value as compared to the
node/edge under consideration, i.e., the relative difference is below a thresh-
old. The extracted nodes/edges are considered to be in the same cascaded
fragment. The fragments containing both the components are then merged to
obtain a bigger connected component of cascaded differences. The process is
repeated for each node/edge in the view until no other connected component
can be formed.

– Visualize: The unified and difference process maps are to be presented to the
user in an interactive and intuitive visualization. We use color and thickness
properties of graph visualization to represent the intensity of an annotation
in time and frequency respectively. For the time-based annotations, we divide
the range of annotation values into bins and represent them in a color spec-
trum ranging from green to red (with red indicating most significant value in
time). For example, a red edge indicates bottleneck flow in a unified process
map while it indicates the flow with the most significant difference in flow
time (among process variants) in a difference map. Using four quartiles, we
can color the flows in green, yellow, orange, and red. Nodes/edges that are
absent in some and present in others are shown in blue color.
Similarly, the thickness of nodes/edges can be used to signify annotations
related to frequency. Thick edges signify the most frequent flows (highways)
in a unified process map and flows with significant differences in a difference
process map respectively. Nodes/edges that do not have significant differences
w.r.t frequency or time are grayed out (made invisible) while cascaded com-
ponents are displayed using filled nodes.
In addition, we can provide insightful information upon drill-down on an
edge/node. For example, upon clicking on an edge in a difference map, we
can show the pair-wise differences of the edge’s annotation (e.g., flow time)
w.r.t the input process maps.

Detecting the Most Aberrant Process Map

Given a set of process maps, an interesting question is to find the process map
that is most aberrant from the rest. Using the pair-wise difference matrix, we can
rank the maps according to their contribution of differences w.r.t other maps by
sorting the rows/columns according to the sum of values in each row/column.
We can then answer questions such as what are the top k process maps that
contribute the maximum to the differences or the process maps that contribute
to p percentage of differences.
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5 Implementation

The proposed framework has been implemented as a plug-in in ProM. Although
our framework is generic and can be applied to process models represented in
any formalism, in this implementation, we use Heuristic nets as base process
models and annotate them with metrics discussed in Sect. 3. We have adapted
the Heuristics miner plug-in to compute these metrics. Heuristic models are
annotated with these metrics to generate Heuristic maps. Given process variants
as multiple Heuristics maps, the plug-in implements the framework discussed
in Sect. 4 to analyze these variants and presents the results in an interactive
visualization. We can drill down into the components (nodes/edges) identified as
significantly different to gain further insights into how the variants are different.

6 Experiments and Discussion

In this section, we discuss the results of applying the proposed framework on the
event logs pertaining to an issue management process in the customer care divi-
sion within a large service delivery organization. The organization is interested
in analyzing the differences in product development issue management process
when handling different types of products. The product development issue man-
agement process at a very high-level involves the movement of cases from backlog
to in progress. Subsequently, some cases can be completed while some can be sent
for user acceptance tests and then are deployed live. Cases can be abandoned at
any point in time. We considered the event logs from this product issue manage-
ment process related to three different products P1, P2, and P3 to analyze how
these variants differ. The characteristics of these logs are depicted in Table 2.
Figure 5 depicts the process maps obtained by using the heuristics miner. The
heuristics nets are annotated with the frequency, trace frequency, and average
flow time metrics. The numbers in parenthesis at each node/edge correspond to
the trace frequency of that node/edge.

Table 2. Event log characteristics of product issue management process pertaining to
three products.

Log No. cases No. events No. activities No. resources

P1 140 505 8 20

P2 158 912 8 28

P3 122 668 8 24

Figure 6 depicts a screenshot of the plug-in’s output highlighting the differ-
ence process map and the summary of pair-wise differences between the input
variants both for frequency (bottom-left diagonal matrix) and time (bottom-
right). From the figure, we can see that variant P1 is the most aberrant model
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Fig. 6. Screenshot of the output of the plug-in showing the difference process map and
pair-wise differences between the variants both in frequency and time.

(a) Unified process map (b) Difference process map

Fig. 7. Unified and difference process maps of the three process variants P1, P2 and
P3.
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w.r.t the frequency and variant P3 is the one w.r.t time. Let us discuss the
interpretation of these differences in detail.

Figure 7(a) and (b) depict the unified process map and the difference process
map for the three process variants. The unified graph is annotated with the
maximum normalized trace frequency for the frequency measure and average flow
time for the time measure w.r.t the process variants. For example, the normalized
trace frequency metric for the node Waiting UAT Deployment is 0.75, which
is the maximum among the normalized trace frequencies 0.16, 0.31 and 0.75
for the three process variants. Similarly, the flow time from In Progress to
Waiting UAT Deployment is 130.53 h, which is the average of the flow times
129.26, 33.15, and 229.19 h.

The difference graph (Fig. 7(b)) is annotated with the average differences of
each node/edge w.r.t the unified graph for both the frequency and time (the
frequency differences are annotated with the label ‘f’ and time differences with
‘t’). Nodes/flows that are absent in some input variants but present in others
are drawn in blue. Table 3 depicts such flows along with the variants where they
manifest and where they do not. Nodes/flows that do not exhibit significant dif-
ferences are made invisible (grayed out). For example, the nodes Start, Backlog
and In Progress and the flows between them are all greyed out because, no sig-
nificant difference exists between them both in frequency and time.

Table 3. Flows that are present in some variants but absent in others.

Flow Present Absent

In Progress to In Progress {P3} {P1, P2}
In Progress to Abandoned {P1, P2} {P3}
Waiting UAT Deployment to In Progress {P1, P2} {P3}
Waiting Live Deployment to In Progress {P1, P3} {P2}
Live to Waiting Live Deployment {P2, P3} {P1}

Figure 8 depicts the diagnostic information on the uncovered significant dif-
ference w.r.t frequency for the flow In Progress to Done. Detailed information
on the differences is provided by the plug-in upon clicking any edge/node. The
normalized trace frequency for this flow across the three variants are 0.81, 0.16,
and 0.32 respectively, i.e., 81% of the issues in P1 takes the route to Done after
In Progress is performed while only 16% and 32% of the cases take that route in
P2 and P3. Clearly, P1 behaves distinctly when compared to P2 and P3, which is
reflected in the pair-wise difference matrix in Fig. 8 as the most aberrant process.
Figure 10 depicts the diagnostic information on the uncovered significant differ-
ence w.r.t time for the flow In Progress to Waiting UAT Deployment. Table 4
depicts the flow time values of this flow across the three variants while Fig. 9
depicts the cumulative distribution functions (CDFs) of the sets of time values
for the three variants. Clearly, we can see that the cdf of P3 is much distinct
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Fig. 8. Diagnostic information on the frequency difference of the flow In Progress to
Done.

from that of P1 and P2. This is also reflected in the average and standard devi-
ation values of P3, which is much larger than that of P1 and P2. As discussed
in Sect. 4, we use the Wasserstein distance to quantify the difference between
the time distributions. The pair-wise differences between the variants on this
particular flow is shown in Fig. 10. We can see that P3 is reflected as the most
aberrant process.

Table 4. Flow time values for the dif-
ferent variants.

Map Avg Std. dev No. cases

P1 129.26 278.16 28

P2 33.15 94.52 135

P3 229.19 819.59 95

Fig. 9. Cumulative distribution
functions for the different variants.

Furthermore, the difference process map highlights the cascaded component,
Waiting UAT Deployment, Waiting Acceptance, Waiting Live Deployment and Live
(Ref. Figure 7(b)). As discussed earlier, process P1 exhibits distinct behavior in
the flow In Progress to Waiting UAT Deployment (81% of traces in P1 take that
flow as against 16% and 32% in the other two variants). Because of this, the
subsequent flows in P1 after Waiting UAT Deployment also exhibit a significant
difference. Apart from identifying the individual differences, it is insightful to
identify the root-cause of the propagation of the change. Using the detection of
cascaded components, we are able to identify the root-cause in this context to
be the node Waiting UAT Deployment.
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Fig. 10. Diagnostic information on the time difference of the flow In Progress to Waiting
UAT Deployment.

7 Conclusions

Analyzing variants of process execution provides valuable insights on where
the variants differ. Such elements are potential candidates for process re-
engineering/redesign efforts. One can try to learn from better performing vari-
ants and adopt them to others. In this paper, we presented an approach to
analyze two or more process variants to identify nodes/flows where key differ-
ences manifest along the control-flow and time dimensions. The results of our
experiments show that our approach is capable of providing insights at various
levels that cannot otherwise be derived with existing tools as easily. While the
present paper addresses the where and how aspects (where variants differ and
how they differ), as future work, we would like to focus on alluding root-causes
for such aberrations, i.e., address the why’s [1].
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