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Abstract

Rainfall and earthquakes are considered two of the major causes of landslides worldwide.
These landslides cause billions of dollars in property damage and revenue losses, as well as
the deaths of thousands of people each year. While researchers have been examining the
effect of either rainfall or earthquakes on the deformation and stability of slopes, the
combined effect of rainfall and earthquakes on deformation and slope stability has not been
evaluated systematically. In this study, a series of model slopes were constructed in a
Plexiglas container placed on top of a shake table. The model slopes were prepared to have
different initial void ratios of 0.89, 1.0 and 1.2 and various slope inclinations of 30°, 40°,
and 45°. These slopes were instrumented with accelerometers, tensiometers and
inclinometers and subjected to a number of sinusoidal seismic motions with different
seismic accelerations from 0.1 to 0.3 g, with several frequencies ranging from 1 to 3 Hz for
various durations ranging from 10 cycles to 50 cycles of loading. Following the earthquake
event, a rain simulator system was used to induce rainfall at intensities of either 18, 30 or
60 mm/h. The seepage velocity, spatial variation of suction and the deformation of the
slopes were determined. The results obtained were compared to those obtained from similar
slopes subjected to rainfall without an earthquake event. The study showed that the seismic
shaking resulted in a reduction in the seepage velocity in the slope, which led to an increase
in the factor of safety of the slope with time.
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prominent causes of landslides, which result in thousands of
injuries and deaths, and billions of dollars of property
damage and revenue losses each year. In recent history, the
2014 Oso Landslide in Washington, which was said to be
triggered by heavy rainfall, is among the worst landslide
disasters in the United States (Keaton et al. 2014; Iverson
et al. 2015). Researchers, including Tiwari et al. (2016),
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(2012), and Tiwari and Caballero (2015), have studied the
effect of various parameters such as slope geometry, soil
density, and intensity of rainfall on the stability of
rainfall-induced slope failures. Furthermore, databases con-
taining over 3400 landslides after the 2011 Tohoku Earth-
quake in Japan (Wartman et al. 2013), over 14,000
landslides after the 2015 Gorkha Earthquake in Nepal
(Tiwari et al. 2016), over 56,000 landslides after the 2008
Wenchuan Earthquake in China (Dai et al. 2011) and over
10,000 landslides after the 1999 Chi-Chi Earthquake in
Taiwan (Khazai and Sitar 2004) clearly demonstrated the
disastrous consequences of earthquake-induced landslides.
Following strong ground shaking, a major concern for res-
idents and the local officials in the region is the potential
damage and consequences that could result if additional
landslides are triggered during the future rainstorms and
monsoon seasons. Despite this, there has been little research
geared at understanding the influence of post-earthquake
rainfall on the stability of slopes. This study aims to fill that
gap by examining the effect of rainfall and seismic shaking
on model soil slopes and numerical simulations using the
GeoStudio software suite.

The soil used in the model soil slopes was collected from
a housing development project in Mission Viejo, California.
At this project site, slope movements were reported to have
occurred on January 20, 2005 near the residences on
Encorvardo Lane on the eastern side of Ferrocarril. Heavy
rainfall from December 28, 2004 through January 11, 2005
resulted in almost 254 mm of precipitation. It was following
this storm that initial movements were recorded on a 70 ft
tall graded slope constructed in 1967. Model soil slopes
tested in this study were prepared from compacted fill slope
material obtained from this housing development project.
Several standard laboratory tests were also conducted to
determine the material properties. This paper will detail the
influence of post-earthquake rainfall on the stability of
slopes by presenting the results of the model soil slopes and
the numerical simulations conducted.

Materials and Methods

The soil used in this study was collected from the housing
development project in Mission Viejo, California. It was
used to measure the grain size distribution (ASTM D422),
the index properties (ASTM D4318), maximum dry density
and the optimum moisture content (ASTM D1557), the
saturated coefficients of permeability (ASTM D5084), the
soil water characteristic curve and the shear strength
parameters (ASTM D3080). Table 1 outlines the material
properties for the soil properties.

The slope was constructed ina 1.2 m X 1.2 m X 1.2 m
Plexiglas container mounted on a shake table. At the bottom

of the container, a drainage layer consisting of a 5-cm-thick
gravel layer and perforated plastic pipe drainage network
were installed. To prevent the soil from clogging the drai-
nage layer and the perforated pipe, a geo-textile was placed
on top of the gravel drainage layer. The soil used to con-
struct the model slopes was first sieved through a #40 sieve
using a mechanical shaker and mixed with sufficient water to
have an initial moisture content of 12%, corresponding to the
field moisture content. The soil was placed in 5 cm thick lifts
compacted to a void ratio of 1.2 to create a slope inclined at
40°. The completed model slope is pictured in Fig. 1.

Tensiometers and accelerometers were installed at vari-
ous locations and depths (Figs. 2 and 3) within the slope to
instrument the slope in order to measure the pore water
pressure during the seismic loading and the post-earthquake
rainfall event. Decagon TS5 tensiometers with an active sur-
face area of 0.5 cm® and a 5 mm diameter ceramic tip were
used in this study. They are capable of recording pore water
pressures ranging from +100 to —85 kPa. The holes made to
install the tensiometers were backfilled with the slope
material and the surface was covered with a bentonite slurry
to prevent preferential movement of water through those
locations.

The slope was then subjected to different ground motions
using the shake table at California State University, Fuller-
ton. The 1.5 m X 2 m shake table uses a 25 kN actuator and
has a £6.5 cm horizontal capacity. The model slope was
subjected to sinusoidal motions with accelerations ranging in
amplitude from 0.1 g to 0.3 g with frequencies between 1
and 3 Hz. Each motion was applied for 10 to 50 cycles of
loading. The ground motion recorded at Station 90095
during the 1994 Northridge Earthquake was also applied to
the slope model. The ground motions applied are shown in
Fig. 4. Following the seismic loading, a rain simulator sys-
tem was placed on top of the slope. The system was used to
apply rainfall at an intensity of 3.6 cm/h until the slope
became completely saturated, as determined from the loca-
tion of the wetting front. A photograph of the rain simulator
system applying rainfall to the model slope is presented in
Fig. 5.

A second model was prepared following the procedure
described above and instrumented as illustrated in Fig. 2. In
this model, the slope was subjected to rainfall without any
seismic excitation. The results obtained served as baseline in
order to compare the effect of the seismic loading on the
observed responses.

The slope geometry and material properties were used to
perform numerical simulations using the SEEP/W,
SIGMA/W, and QUAKE/W modules in the GeoStudio
software suite. SEEP/W was used obtain the pore-water
pressure distribution. The seismic loading was simulated
using QUAKE/W, in which the input motion was the same
as that used in the experimental models, as shown in Fig. 4.
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Table 1 Soil properties Property

Gravel (%)

Sand (%)

Silt (%)

Clay (%)

Liquid Limit (%)

Plasticity Index (%)

USCS Classification

Maximum Dry Density (pcf)
Optimum Moisture Content (%)

Saturated permeability at (m/s)
Void ratio of 0.89
Void ratio of 1.00
Void ratio of 1.20

Friction angle (°) and cohesion (kPa) at void ratio of 1.2 at

Degree of Saturation of 33%
Degree of Saturation of 100%

Rate of increase in shear strength relative to matric suction

Fig. 1 Slope model used in this
study

The seepage patterns as a result of the rainfall were simu-
lated using SIGMA/W.

Results and Discussion

The movement of the wetting fronts with time for the two
models prepared in the laboratory that were subjected to
post-earthquake rainfall and to rainfall without earthquake

Value
0

15

65

20

57

30
CH
110
15

4%x107°
5x107°
9x107°

27°, 34 kPa
26°, 0 kPa

27.2°

shaking are compared and presented in Fig. 6. The locations
of the tensiometers, denoted by T, are also shown in this
figure. Unfortunately, all except one of the tensiometers
malfunctioned in the slope model that was subjected to
rainfall without any shaking (Fig. 6b). Figure 6 also con-
tains the values of the seepage velocity computed, based on
the time required for the wetting front to reach Point A. It is
clear from Fig. 6 that more time was required for the com-
plete saturation of the model that was subjected to
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Fig. 2 Locations of tensiometers
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Fig. 3 Plan view of slope showing locations of the accelerometers

earthquake loading than the time required for complete sat-
uration of the model that was not subjected to any shaking.
Specifically, the seepage velocity in the slope subjected to
post-earthquake rainfall was 14.6 cm/h in comparison to the
seepage velocity of 25.7 cm/h in the slope subjected to
rainfall without earthquake loading. A comparison of the
results from the tensiometers (Fig. 7) also agrees with
the observations made of the wetting fronts. Specifically, the
results show that approximately 2.7 h were required for the
suction to reduce to a value of zero at the location of T1 in
the slope subjected to rainfall without earthquake loading,
while approximately 3.2 h were required in the slope sub-
jected to post-earthquake rainfall.

Acceleration (im’sz}

0 50 100 150 200

Time (second)

Fig. 4 Applied cyclic loading

Results from Numerical Simulations

Figure 8 shows the movement of the wetting front with time
obtained from the numerical simulations conducted as part
of this study. The results in Fig. 8 were used to calculate the
seepage velocity to point A and compared with the experi-
ment results. As it can be observed from Fig. 6b and Fig. 8,
the seepage velocity from the numerical simulations are
similar to those obtained from the experimental models.
SLOPE/W was used to calculate the factor of safety of the
slope subjected to post-earthquake rainfall. The variation in
the factor of safety during the earthquake loading is pre-
sented in Fig. 9, while the results for the factor of safety
during the post-earthquake rainfall are presented in Fig. 10.
Figure 10 also contains the results for the factor of safety for
the slope subjected to rainfall without any earthquake
loading. The figure shows that the factor of safety for the
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Fig. 5 Rain simulator system on slope model
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Fig. 6 Comparison of the wetting fronts and seepage velocities for slopes subjected to a post-earthquake rainfall and b rainfall without earthquake
loading
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Fig. 7 Comparison of suction recorded at tensiometer 1 (T1) for slopes subjected to a post-earthquake rainfall and b rainfall without earthquake
loading
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Fig. 8 Movement of the wetting front with time from numerical simulations
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Fig. 9 Factor of safety computed from SLOPE/W during earthquake loading
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Fig. 10 Factor of safety computed from SLOPE/W in a slope
subjected to rainfall following earthquake shaking and a slope subjected
to rainfall without any earthquake loads

slope subjected to rainfall following earthquake shaking was
higher than the slope subjected rainfall without any earth-
quake shaking. This can be attributed to the fact that the
seepage velocity in the slope subjected to post-earthquake
rainfall was lower than in the slope subjected to rainfall
without earthquake loading.

Conclusions

In order to determine potential causes for the computed
factors of safety, soil was collected from a landslide site
and used to prepare the laboratory slope models in a
Plexiglas container. The model slopes, instrumented with
tensiometers and copper wires, were subjected to rainfall
using a rain simulator system. A second model prepared

to the same slope geometry and density was constructed
on top of a shake table and subjected to a series of
sinusoidal earthquake loading functions, as well as to the
motion recorded from the 1995 Northridge Earthquake,
before being subjected to rainfall at the same intensity as
the previous model. The results showed that the slope
subjected to post-earthquake rainfall required more time
to become completely saturated and had a lower seepage
velocity than the slope subjected to rainfall without
earthquake shaking. The results suggest that the earth-
quake shaking was responsible for increasing the density
of the slope material and thereby effectively reducing the
permeability of the material, resulting in a more stable
slope.
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