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Preface

Aggregation functions are usually defined as those functions that are monotonic and
that satisfy some boundary conditions. In particular settings, these conditions are
relaxed. Aggregation functions are used for data fusion and decision-making.
Examples of these functions include means, t-norms and t-conorms, uninorms and
nullnorms, copulas and fuzzy integrals (e.g. the Choquet and Sugeno integrals).
Besides the aggregation of real inputs, aggregation functions on general/particular
lattices are also considered.

This volume collects the final revised manuscripts of 26 accepted contributions
of participants to the 9th International Summer School on Aggregation Functions
that took place in Skövde (Sweden) on 19–22 June 2017. Note that AGOP con-
ferences are biannually organized by the working group AGOP of the EUSFLAT
association, and it is the ninth in a series of AGOP summer schools, including
AGOP 2001 (Oviedo, Spain), AGOP 2003 (Alcalá de Henares, Spain), AGOP 2005
(Lugano, Switzerland), AGOP 2007 (Gent, Belgium), AGOP 2009 (Palma de
Mallorca, Spain), AGOP 2011 (Benevento, Italy), AGOP 2013 (Pamplona, Spain)
and AGOP 2015 (Katowice, Poland). The volume also includes the abstracts of the
invited talks and tutorials given in the School. All included contributions were
reviewed by PC members and several external reviewers, and they include works
from theory and fundamentals of aggregation functions to their use in applications.
Together, they provide a good overview of recent trends in research on aggregation
functions.

March 2017 Vicenç Torra
Radko Mesiar

Bernard De Baets
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The Role of Aggregation Functions
on Auctions

Beatriz López

University of Girona, Campus Montilivi, Girona, Spain
beatriz.lopez@udg.edu

Auctions are mechanisms for allocating resources (tasks or goods) among
self-interested agents [3]. An auction consists in the following four steps:

1. Call for proposals: the auctioneer announces the resources to be committed
2. Bidding: the bidders express their preferences on the resources
3. Winner determination problem (WDP): the auctioneer decides which agents will

have the resources
4. Payment: the winner bidders pay to the auctioneer.

This basic mechanism could have several instantiations depending on the role
of the participants (forward if the auctioneer sells; reverse if the auctioneer buys),
number of bidding sides (one-side when an agent can be either auctioneer or bidder;
double-side when the agent can have both roles) bid composition (single attribute or
multi-attribute), number of different resources involved (single item versus com-
binatorial), number of items considered (single-unit versus multi-unit) [1, 6].
Moreover, the strategic decision made in each step depends on the kind of resource
being auctioned: static or dynamic (consumable, perishable), divisible or indivisi-
ble, controlled or uncontrolled (e.g. public goods) [6].

All of the agents make decisions in order to maximize their utility regarding the
selling (auctioneer) or buying (bidders) of the resources, u(R),

• Auctioneer: uðRÞ ¼ p� VðRÞ
• Bidder: uðRÞ ¼ VðRÞ � p

where p is the payment made for the resources and V(R) is a valuation function
that measures the value of R for the agent. When a single resource is being sold,
characterized by a single attribute as, for example, the price, the WDP is simple:
take the maximum value. However, when there is a set of resources to be allocated
or the number of attributes that characterizes the resources has some dimensionality,
then the WDP requires a more complex Vð�Þ function.
Mechanism design [3] is the study concerning on the definition of auction com-
ponents, as Vð�Þ. Other issues include social welfare measures, and dealing with
cheaters, among others. Social welfare assesses the quality of the allocation in a
global perspective. In that regard, a social welfare measure aggregates either the
utility, benefits, satisfaction, or other gratifications of the agents. In recurrent sce-
narios, in which auctions are repeated over time, an auctioneer could learn trust



models regarding the cheating behaviour of agents that later on conditions the Vð�Þ
function too. In this talk, we analyse the use of aggregation functions in all of these
issues [2, 8, 12].
First, from a design perspective, the set of requirements that the aggregation
function should fulfil to be Vð�Þ will be reviewed, so that the properties desired for
the mechanism are guaranteed [8]. There are some frameworks that could help, as
for example constraints, in order to verify the properties [11]. Two cases will be
studied in detail: the application of aggregation functions on multi-attribute auctions
[7, 10] and on combinatorial auctions [14] will be described. Second, the role of the
aggregation function in social welfare measures will be presented [9]. Third, an
example how the parameters of aggregation functions can be tuned thanks to trust
methods will be provided [13].
Cases study will be provided in several application domains, including different
types of resources: workflow resource allocation with energy constraints [14],
wastewater management [4, 5] and e-services [6].

Acknowledgement. This work was supported by the University of Girona (grant
number MPCUdG2016) and the Spanish MINECO (grant number DPI2013-
47450-C21-R).

Work developed with the support of the research group SITES awarded with
distinction by the Generalitat de Catalunya (SGR 2014-2016).
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Aggregation Operators in Information
Retrieval

Gabriella Pasi

Information Retrieval Laboratory,
Università degli Studi di Milano-Bicocca, Milan, Italy

In the context of Information Retrieval, the issue of employing aggregation oper-
ators in various phases of the retrieval process has been extensively investigated in
the literature. In particular, these approaches rely on the interpretation of
Information Retrieval as a Multi-Criteria Decision Making (MCDM) problem, from
various perspectives. The first, more straightforward perspective, is to interpret the
overall IR process as a MCDM process aimed at selecting the best alternatives
(documents) based on the assessment of the performance of multiple criteria (the
keywords specified in a user's query). Another and strongly related perspective is to
see the assessment of the overall relevance estimate of a document (still an alter-
native) to a query as the process of evaluating the performance of several relevance
dimensions (e.g. topicality, novelty, recency), which in this case represent the
criteria to be aggregated. Another process that may require the application of
appropriate aggregation operators is the indexing process, when applied to struc-
tured documents. Metasearch constitutes another interesting task that can be seen as
an instance of a Multi-Expert Decision Making (MEDM) problem, also strongly
relying on the appropriate choice of an aggregation operator. By this task, a user
query is separately evaluated by different search engines, each one providing its
own relevance assessment of the considered documents. Metasearch aims to merge
the ranked lists generated by the various search engines (experts) in response to a
query, to the aim of providing a unique, consensual ranked list of results. A quite
interesting aspect implied by the above interpretations of various phases of the IR
process is that the choice of different aggregation operators can produce different
results. In other words, the semantics of aggregation implies an interpretation of the
affected process. For example, if considering the aggregation of different relevance
assessments for a same query and the same documents, distinct rankings can be
obtained by applying distinct aggregation strategies. Despite the potential impact of
aggregation on the whole IR process, this aspect has not received the proper
attention in the literature. Only recently, some approaches have appeared demon-
strating the importance of this issue and its potential impact on the searching
process. This lecture aims to shortly review the main contributions that in the
literature have made use of aggregation operators in Information Retrieval.



Geometric Analysis on Cantor Sets
and Trees

Jana Björn

Department of Mathematics, Linköping University, Linköping, Sweden

This is a joint work with A. Björn, J.T. Gill and N. Shanmugalingam [1]. We
consider an infinite network represented by a weighted rooted tree which we equip
with a metric and measure structure enabling first-order Sobolev spaces and har-
monic and p-harmonic functions. This is a special case of a procedure called
uniformization, see Bonk, Heinonen and Koskela [2]. The visual boundary of the
tree at infinity is an ultrametric space and can be regarded as a Cantor type set, see
Semmes [4, 5].

In this setting, we show that the trace of the Sobolev space is exactly a Besov
space with an explicit smoothness exponent, cf. Bourdon and Pajot [3]. This, in
particular, means that such Besov boundary data have harmonic extensions to the
whole tree and it is possible to solve the Dirichlet and obstacle problems with such
boundary data. These harmonic extensions can be seen as potentials or stationary
flows in the network.

We also consider mappings between pairs of such trees and between their
boundaries. It turns out that quasi-symmetries between two Cantor sets exactly
extend to rough quasi-isometries between their generating trees, and vice versa.
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A Monometric-Based Approach to Data
Aggregation

Bernard De Baets and Raúl Pérez-Fernández

KERMIT, Department of Mathematical Modelling,
Statistics and Bioinformatics, Ghent University,

Coupure links 653, 9000 Gent, Belgium
{bernard.debaets,raul.perezfernandez}@ugent.be

Abstract. Data aggregation is a common problem in many fields of appli-
cation and is historically understood as a process of combining several real
values into a single one. However, the aggregation of other types of
structured data is lately receiving increasing attention [4]. Some examples
are the aggregation of multidimensional data [5], the aggregation of rank-
ings [6] and the aggregation of mappings [3].

As Yager described in his “general theory of information aggregation” [11], a
natural approach to data aggregation is based on the search for the element mini-
mizing some notion of “penalty”. In the framework of real numbers, this penalty is
usually provided with a well-founded semantic basis, for instance, with the
requirement of the property of quasi-convexity in the second argument [10]. Some
other examples can be found in [2, 12] or in the recent survey on the definition of
penalty functions in data aggregation [1]. Unfortunately, outside the framework of
real numbers, this well-founded semantic basis is usually disregarded.

This penalty-based approach to data aggregation is similar to that considered in
social choice theory for the aggregation of rankings. The monometric rationaliza-
tion of ranking rules [8] is the branch of social choice theory, where the process of
aggregating several rankings is characterized as the minimization of the distance to
a consensus state for some appropriate monometric. Formally, a monometric is a
function satisfying the axioms of nonnegativity and coincidence of a distance
function, while requiring the compatibility with a given betweenness relation [7, 9].
This monometric can be understood as a natural extension of a penalty function
outside the framework of real values, where the well-founded semantic basis is
provided by the compatibility with the chosen betweenness relation. In this con-
tribution, monometrics and betweenness relations will be considered for different
types of structured data (multidimensional data, maps, strings, compositional data,
among others), leading to a natural expansion of the definition of a penalty function
beyond its current confinement to real values.
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The Fusion of Uncertain Information:
Principles and Examples of Merging Rules

Across Uncertainty Theories

Didier Dubois

IRIT, Université de Toulouse, Toulouse, France
dubois@irit.fr

Abstract. We present basic principles for the fusion of incomplete or
uncertain information items that should apply regardless of the formalism
adopted for representing pieces of information coming from several sources.
This formalism can be based on sets, logic, partial orders, possibility theory,
belief functions or imprecise probabilities. The presented tutorial is based on
past work performed especially with Henri Prade, Weiru Liu and Jianbing
Ma, Ronald Yager.

Outline of the Presentation

Information fusion deals with extracting accurate knowledge from possibly
conflicting pieces of information stemming from a set of sources, without intro-
ducing arbitrary precision [5]. It differs from belief revision [11] and preference
aggregation [7]. Information fusion is useful in many areas ranging from databases
[6] to image processing [4] and expert opinion aggregation [8]. The main reference
for this presentation is the paper [12]. We propose a general notion of information
item representing incomplete or uncertain information about the value of an entity
of interest. Any kind of uncertain information is supposed to rank possible values in
terms of relative plausibility, and explicitly point out impossible ones. Important
issues affecting the results of the fusion process, such as the comparison of infor-
mation items by their relative information content, the consistency of information
items, as well as their mutual consistency, are discussed. For each representation
setting, we write a version of the fusion postulates, present known fusion rules that
obey them, and compare our postulates to existing ones proposed in the past and
specific to the representation setting. In the crudest (Boolean) setting (where an
information item is just defined as a set of possible values), we show that the
understanding of a set in terms of most plausible values, or in terms of
non-impossible ones matters for choosing a relevant fusion rule. In particular, in the
latter case, our principles justify the old method of maximal consistent subsets [23],
while the former is related to the fusion of logical bases [16, 17] that merges sets of
preferred values. Then, we consider several formal settings for incomplete or
uncertain information items, where our postulates are also instantiated: plausibility
orderings [19], qualitative and quantitative possibility distributions [10, 14]



and possibilistic knowledge bases [3, 18], the merging of probability distributions
[8, 15, 20, 26], of belief functions [9, 13, 24, 25, 28] and of convex sets of
probabilities [21, 27]. The aim of this work is to provide a unified picture of fusion
rules across such various uncertainty representation settings. Finally, we discuss the
connection with the Belnap approach [2] to inference under source-based incon-
sistent information, and discuss the possibility of non-destructive fusion methods
that preserve the original information provided by the sources [1].
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Abstract. Aggregation theory classically deals with functions to summarize
a sequence of numeric values, e.g. in the unit interval, see [6, 7]. Since the
notion of componentwise monotonicity plays a key role in many situations,
there is an increasingly growing interest in methods that act on diverse
ordered structures.

However, as far as the definition of a mean or an averaging function is concerned,
see, e.g., [1, 2], the internality (or at least idempotence) property seems to be of a
relatively higher importance than the monotonicity condition. In particular, the
Bajraktarević means or the mode are among some well-known non-monotone
means.

The concept of a penalty-based function was first investigated by Yager in [8]
and then extended in numerous works, see, e.g., for a recent summary and a critical
overview [3]. In such a framework, we are interested in minimizing the amount of
“disagreement” between the inputs and the output being computed; the corre-
sponding aggregation functions are at least idempotent and express many existing
means in an intuitive and attractive way.

In this talk, I focus on the notion of penalty-based aggregation of sequences of
points in R, this time for some d� 1, see [4, 5]. I review three noteworthy sub-
classes of penalty functions: componentwise extensions of unidimensional ones,
those constructed upon pairwise distances between observations, and those defined
by measuring the so-called data depth. Then, I discuss their formal properties,
which are particularly useful from the perspective of data analysis, e.g. different
possible generalizations of internality or equivariances to various geometric
transforms. I also point out the difficulties with extending some notions that are key
in classical aggregation theory, like the monotonicity property.
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Abstract. Based on the equality of survival functions related to n-ary
vectors and capacities on X = {1, . . . , n}, the equality of universal inte-
grals I(µ,x) = I(µ,y) is discussed and studied. Some particular cases are
highlighted, and a special stress is put on possibility and necessity mea-
sures. As a by-product, a new characterization of possibility (necessity)
measures is introduced.

1 Introduction

In the classical probability theory, two random variables cannot be distinguished
by means of their parameters (such as the expected value, variance, quantiles,
etc.) whenever they coincide in distribution functions. Equivalently, the coin-
cidence of survival functions ensures the coincidence in all parameters for the
considered random variables. In non-additive measure and integral theory, in
many cases we deal with the survival functions and the related integrals are
then computed based on the resulting survival functions. Recall that for a given
measure μ and variable f , the survival function hμ,f expresses a fusion of infor-
mation contained in μ and f in the form

hμ,f (t) = μ(f ≥ t).

By means of the survival function one can derive the Choquet integral [2] (as
the Riemann integral from hμ,f ), the Sugeno integral [10], etc. As a common
framework for all such survival function-based integrals, the concept of univer-
sal integrals was proposed in [7]. Though the literature contains a lot of results
concerning measures and integrals, see, e.g., handbook [8], monograph [11] or
edited volume [6], a deeper study of coincidences of survival functions (and,
consequently, of universal integrals) is missing. We did a first step in this direc-
tion in [1], where we have focused on possibility and necessity measures and
related survival functions. The aim of this contribution is a deeper study of sur-
vival functions in connection with some particular properties of the considered
measures.

The paper is organized as follows. In the next section, we recall capaci-
ties, survival functions and universal integrals, considering the finite universe
X = {1, . . . , n} and the domain [0, 1] for measures and functions, which become
c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 1
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n-dimensional vectors in our case. In Sect. 3, we discuss survival functions and
their link to capacities with some particular properties. In Sect. 4, we bring
several results connected to possibility and necessity measures. Finally, some
concluding remarks are added.

2 Preliminaries

Throughout this paper, we fix X = {1, . . . , n} for some n ≥ 2, and we
consider the corresponding power set 2X . Then any measurable function
f : X → [0, 1] can be represented as an n-dimensional vector x = (x1, . . . , xn) =
(f(1), . . . , f(n)) ∈ [0, 1]n.

A capacity μ : 2X → [0, 1] is a monotone set function satisfying two boundary
conditions μ(∅) = 0 and μ(X) = 1. We denote as Mn the set of all capacities
on X.

Observe that an additive capacity μ, i.e., μ(A) + μ(B) = μ(A ∪ B) for any
disjoint subsets A and B of X, is a discrete probability measure, and then

μ(A) =
∑

i∈A

pi, where pi = μ({i}), i ∈ X.

If a capacity μ is maxitive, i.e., μ(A) ∨ μ(B) = μ(A ∪ B) for any subsets A,
B of X, then μ is a discrete possibility measure, and then

μ(A) =
∨

i∈A

πi, where πi = μ({i}).

A dual (conjugate) μd : 2X → [0, 1] related to a capacity μ by μd(A) = 1 − μ
(X \ A) is also a capacity. Note that if μ is additive, then μ = μd.

If μ is a possibility measure, then its dual μd is called a necessity measure
and it is given by

μd = 1 −
∨

i/∈A

πi.

If a capacity μ depends on the cardinality of the considered set A only, then μ
is called a symmetric capacity, and then there are constants

v0 = 0 ≤ v1 ≤ · · · ≤ vn = 1 so that μ(A) = vcard(A).

For more details about capacities (sometimes called also as fuzzy measures) see
[11] or [5].

Among several integrals introduced for capacities from Mn we recall only 3
of them:

the Choquet integral [2,5,11] Ch(μ, ·) : [0, 1]n → [0, 1],

Ch(μ,x) =
∫ 1

0

μ({i ∈ X|xi ≥ t}) dt =
n∑

i=1

x(i) (μ(A(i)) − μ(A(i+1)),
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where (·) : X → X is a permutation such that x(1) ≤ · · · ≤ x(n), A(n+1) = ∅
and A(i) = {(i), . . . , (n)} for i = 1, . . . , n;

the Sugeno integral [5,10,11] Su(μ, ·) : [0, 1]n → [0, 1],

Su(μ,x) =
∨

0≤t≤1

(μ({i ∈ X|xi ≥ t}) ∧ t) =
n∨

i=1

(
x(i) ∧ μ(A(i))

)
;

the Shilkret integral [5,9,11] Sh(μ, ·) : [0, 1]n → [0, 1],

Sh(μ,x) =
∨

0≤t≤1

(μ({i ∈ X|xi ≥ t}) · t) =
n∨

i=1

(
x(i) · μ(A(i))

)
.

Recently, Klement et al. [7] have introduced the concept of universal integrals
as a common framework for all 3 above mentioned integrals, covering also many
other integrals known from the literature. This concept, when applied to the
unit interval as a domain for measures and functions, is related to the notion of
a semicopula ⊗ : [0, 1]2 → [0, 1], i.e., ⊗ is a monotone operation with neutral
element 1. For more details on semicopulas see [4,5].

Definition 1. A mapping I : Mn × [0, 1]n → [0, 1] is called a universal integral
(on [0, 1]n) whenever two next axioms are satisfied:

(I1) there is a semicopula ⊗ : [0, 1]2 → [0, 1] such that

I(μ, c · 1A) = c ⊗ μ(A) for any μ ∈ Mn, c ∈ [0, 1] and A ⊆ X;

(I2) for any (μ,x), (η,y) ∈ Mn × [0, 1]n such that

hμ,x(t) = μ({i ∈ X|xi ≥ t}) ≥ hη,y(t) = η({i ∈ X| yi ≥ t})

it holds I(μ,x) ≤ I(η,y).

Note that axiom (I2) ensures the non-decreasing monotonicity of the universal
integral I in both components, and the coincidence of integrals I(μ,x) = I(η,y)
whenever the survival functions hμ,x and hη,y coincide. Obviously, all 3 above
mentioned integrals belong to the class of universal integrals. The Choquet and
the Shilkret integrals are related to the product semicopula “·”, while the Sugeno
integral is related to the copula ∧ (=min, the greatest semicopula).

3 Capacities and Coincidence of Survival Functions

As already mentioned, the coincidence of survival functions ensures the coinci-
dence of all related universal integrals. This claim holds also from the opposite
direction, i.e., I(μ,x) = I(η,y) for any universal integral I only if hμ,x = hη,y.

For any fixed μ ∈ Mn, we introduce an equivalence relation ∼μ on [0, 1]n

given by

x ∼μ y if and only if hμ,x = hμ,y,
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and we denote by H (μ,x) the μ-equivalence class containing the n-tuple x ∈
[0, 1]n, i.e.,

H (μ,x) = {y ∈ [0, 1]n|hμ,y = hμ,x}.

In some particular cases, the knowledge of equivalence classes H (μ,x), x ∈
[0, 1]n, determines the capacity μ. This is, e.g., the case when

H (μ,x) = {y ∈ [0, 1]n| yi = xi} for some fixed i ∈ {1, . . . , n},

and then μ = δ{i} is the Dirac measure, δ{i}(A) =

{
1 if i ∈ A

0 otherwise
.

When considering dual capacities, it holds

H (μd,x) = 1 − H (μ, 1 − x) = {y ∈ [0, 1]n, hμ,1−y = hμ,1−x},

where hμ,1−x(t) = μ({i | 1 − xi ≥ t}).
We have also next general results.

Proposition 1. Let μ, η ∈ Mn satisfy H (μ,x) = H (η,x) for all x ∈
[0, 1]n, i.e., ∼μ =∼η. Then there is a strictly monotone function ϕ : [0, 1] →
[0, 1], ϕ(0) = 0 and ϕ(1) = 1, such that η = ϕ ◦ μ.

Proposition 2. Let μ ∈ Mn satisfy H (μ,x) = {x} for all x ∈ [0, 1]n.
Then card(range (μ)) = 2n, i.e., μ(A) �= μ(B) whenever A �= B.

Proposition 3. Let μ ∈ Mn satisfy H (μ,x) = {xσ|σ ∈ Pn} for all
x ∈ [0, 1]n, where Pn is the set of all permutations on X, and xσ =
(xσ(1), . . . , xσ(n)). Then μ is a symmetric capacity given by μ(A) = vcard(A),
where 0 = v0 < v1 < · · · < vn = 1.

Observe that if we replace the strict inequality in Proposition 3 by non-strict
inequalities, i.e., 0 = v0 ≤ v1 ≤ · · · ≤ vn = 1, then we can only claim

H (μ,x) ⊇ {xσ|σ ∈ Pn}.

Similarly, if we consider a monotone function ϕ : [0, 1] → [0, 1], ϕ(0) = 0 and
ϕ(1) = 1, which is not strictly monotone, compare Proposition 1, then we can
conclude only H (ϕ ◦ μ|x) ⊇ H (μ,x).

4 Survival Functions and Possibility and Necessity
Measures

When considering a possibility (necessity) measure μ related to a possibility
distribution π, we have several interesting results.

For a better clarification of survival function hμ,x, observe first that hμ,x(t) =
1 = u1 for any t ∈ [0, t1], t1 =

∨
π(i)=1

xi. Recall that u1 = μ(X).

For u2 = μ(X \ {i ∈ X|xi ≤ t1}) = μ({i|xi > t1}) =
∨

xi>t1

π(i), we have
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• either u2 = 0 and then hμ,x(t) = 0 for any t ∈ ]t1, 1],
• or u2 > 0 and then hμ,x(t) = u2 for any t ∈ ]t1, t2], where t2 =

∨
π(i)=u2

xi.

By induction, we have

• hμ,x(t) = uk > 0 for any t ∈ ]tk−1, tk] for k = 1, . . . , r, and
• hμ,x(t) = 0 for any t ∈ ]tr, 1],

where t0 = 0, uk =
∨

xi>tk−1

π(i), and

♦ either uk = 0 and then r = k − 1,

♦ or uk > 0 and then tk =
∨

π(i)=uk

xi.

Observe that if, by chance, an interval ]t, t] is considered, then the corre-
sponding claim is always valid due to the fact that ]t, t] = ∅.

Theorem 1. Let μ ∈ Mn be a possibility measure related to a possibility distri-
bution π and let x ∈ [0, 1]n be a score vector. Then y ∈ H (μ,x) if and only if

∨

π(i)=uj

yi = tj and yi ≤ tj whenever π(i) > uj+1 for all j = 1, . . . , r.

The set H (μ,x) is an upper semi-lattice with the top element xμ given by

xμ
i =

{
tj whenever uj ≥ π(i) > uj+1, j = 1, . . . , r

1 whenever π(i) = 0
,

for i = 1, . . . , n.

For the strangest capacity μ∗ ∈ Mn (i.e., possibility measure with constant
distribution function π = 1), it holds

H (μ∗,x) =

{
x ∈ [0, 1]n|

n∨

i=1

yi =
n∨

i=1

xi

}
,

and thus, evidently, the maximal element of H (μ∗,x) is given by

xμ∗
=

(
n∨

i=1

xi, . . . ,

n∨

i=1

xi

)
.

Note that the upper semi-lattice H (μ∗,x) has for any x �= 0 exactly n minimal
elements

(
n∨

i=1

xi, 0, . . . , 0

)
, . . . ,

(
0, . . . , 0,

n∨

i=1

xi

)
.
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Dubois and Rico [3] have introduced, for any x ∈ [0, 1]n, a vector x+ ∈ [0, 1]n

related to a possibility distribution π : X → [0, 1] by

x+
i =

∨

π(j)≥π(i)

xj , i ∈ X

and they have proved that Ch(μ,x) = Ch(μ,x+), where μ ∈ Mn is the possi-
bility measure induced by π. Similarly, they have shown Su(μ,x) = Su(μ,x+).

It is not difficult to check that x+ ∈ H (μ,x) and thus for any universal
integral I it holds I(μ,x) = I(μ,x+). Note also that x+ is the top element of the
class H (μ,x) whenever π(i) > 0 for all i ∈ X.

For a permutation σ : X → X and x ∈ [0, 1]n, we define a vector xσ,+ by

xσ,+(i) =
∨

j≤σ−1(i)

xσ(j), i ∈ X.

As an interesting characterization of possibility measures we have the next
results. They are independent of any (universal) integral and they follow from
the integral equivalence of 1A and (1A)σ,+ (resp. (1A)σ,−).

Theorem 2. Let μ ∈ Mn be a capacity. Then the following are equivalent:

(i) μ is a possibility measure;
(ii) there is a permutation σ : X → X such that for any A ⊆ X,

(1A)σ,+ ∈ H (μ,1A),

where 1A is the characteristic function of A, 1A(i) =

{
1 if i ∈ A

0 if i /∈ A
.

For the proof and some other details we recommend our paper [1].
Similar result can be formulated for necessity measures (this follows from the

duality of possibility and necessity measures). We introduce only two of them.

Theorem 3. Let μ ∈ Mn be a necessity measure related to a possibility distrib-
ution π : X → [0, 1]. Then H (μ,x) is a lower semilattice containing the vector
x− ∈ [0, 1]n given by

x−
i =

∧

π(j)≥π(i)

xj , i ∈ X.

If π(i) > 0 for all i ∈ X then x− is the bottom element of H (μ,x).

Recall that the vector x− was also introduced by Dubois and Rico [3] and
that the above theorem ensuring I(μ,x) = I(μ,x−) for any universal integral I
generalize the results of [3], where the equalities Ch(μ,x) = Ch(μ,x−) and



Capacities, Survival Functions and Universal Integrals 7

Su(μ,x) = Su(μ,x−) were shown. Similarly as the vector xσ,+, was introduced,
we define a vector xσ,− by

xσ,−
i =

∧

j≤π−1(i)

xσ(j), i ∈ X.

Theorem 4. Let μ ∈ Mn be a capacity. Then the following are equivalent:

(i) μ is a necessity measure;
(ii) there is a permutation σ : X → X such that for any A ⊆ X,

(1A)σ,− ∈ H (μ,1A).

5 Concluding Remarks

Based on the equality of survival functions, we have introduced and studied
equivalence classes H (μ,x) of all score vectors y ∈ [0, 1]n satisfying hμ,y =
hμ,x. Consequently, for each y ∈ H (μ,x) and for each universal integral I,
the equality I(μ,y) = I(μ,x) holds. We have introduced several original results
dealing with equivalence classes H (μ,x), with a particular stress on possibility
and necessity measure. In that later case, recent characterizations of possibility
and necessity measures of Dubois and Rico [3] considering the Choquet and the
Sugeno integrals were generalized to cover all universal integrals.

Our approach allows to find new links between particular capacities and
universal integrals. Consider, for example, an additive capacity μ ∈ Mn such that
μ({i}) = 2i−1

2n−1 . Then μ(A) �= μ(B) whenever A �= B, and for any automorphism
ϕ : [0, 1] → [0, 1], ϕ ◦ μ ∈ Mn is a capacity such that for any x �= y there is a
universal integral such that I(ϕ ◦ μ,x) �= I(ϕ ◦ μ,y).

As an interesting topic for the further study, we expect generalization of our
results dealing with possibility/necessity measures to some particular subclasses
of plausibility/belief functions. As another promising direction is the possibility
to consider some other scale different from [0, 1], for example a finite ordinal
(linguistic) scale.

Acknowledgements. The support of the grants APVV-14-0013, VEGA 1/0420/15
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Abstract. The concept of a point-interval-valued set (PIV set) is pro-
posed as a tool for summary characterization of data from a two-way
table. A PIV set is an L-fuzzy set whose membership labels can be num-
bers as well as special subintervals from the unit interval. Two relations
of partial order of PIV sets are introduced and corresponding opera-
tions of union and intersection are studied. Aggregation of PIV sets by
bounded t-norms is suggested.

1 Introduction

In decision making, the choice of the best object (product, individual, method,
etc.) with respect to a given set of criteria is often based on evaluation of the
degree of compatibility of each object with respect to each criterion by a group of
experts. Usually the degrees of compatibility are numbers from the unit interval,
where 1 represents full compatibility, while 0 represents no compatibility. Then
evaluations of objects from a set X = {x1, . . . , xn} by experts E1, . . . , Em can
be described by a two-way table

τ = {δij : δij ∈ [0, 1], i = 1, . . . , n, j = 1, . . . ,m}. (1)

Numerous methods and aggregation functions for a summary characterization of
τ were proposed, see e.g., [1–3,14] and references therein. In this contribution, a
new summary characterization of τ is introduced as a mapping ϕ on X satisfying
the following properties: if all experts agree that xi has low compatibility with
a criterion C, then ϕ(xi) ∈ [0, 0.5), if all experts agree that xi has high compat-
ibility with C, then ϕ(xi) ∈ (0.5, 1], and if some experts assume that there is a
low compatibility between xi and C while other think that the compatibility is
high, then ϕ(xi) = [a, b], where 0 ≤ a ≤ 0.5 ≤ b ≤ 1, a �= b. A special consider-
ation needs to be given to the evaluation δij = 0.5. In applications, 0.5 can be
viewed as the largest small value or the smallest large value. This is the reason
why 0.5 needs to be handled separately, as a middle value. Then the mapping ϕ

c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 2
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discussed above is a point-interval-valued set on X (PIV set) which is formally
introduced in Definition 1.

Definition 1. Let X be a universe of discourse and D = {[a, b] : 0 ≤ a ≤
0.5 ≤ b ≤ 1, a �= b}. A point-interval-valued set (PIV set) on X is any mapping
ϕ : X → [0, 1] ∪ D.

Note that a fuzzy set f : X → [0, 1], as well as a shadowed set on X intro-
duced by Pedrycz [12] as any mapping S : X → {0, [0, 1], 1}, are examples of
PIV sets (see also [13] for computing with shadowed sets). Further in this paper
it is assumed that X is a finite set and Γ (X), F (X) and Ω(X) denote the set of
all PIV sets on X, the set of all fuzzy sets on X and the set of all shadowed sets
on X, respectively.

Recall that in the theory of fuzzy sets [5,10,15] for f, g ∈ F (X), operations
of union and intersection are defined pointwise for all x ∈ X by

(f ∪ g)(x) = max{f(x), g(x)}, (f ∩ g)(x) = min{f(x), g(x)}. (2)

In the case of shadowed sets A,B ∈ Ω(X), the union and the intersection are
defined in Tables 1 and 2, respectively.

Table 1. Union of shadowed sets

A�B 0 [0, 1] 1

0 0 [0, 1] 1

[0, 1] [0, 1] [0, 1] 1

1 1 1 1

Table 2. Intersection of shadowed sets

A�B 0 [0, 1] 1

0 0 0 0

[0, 1] 0 [0, 1] [0, 1]

1 0 [0, 1] 1

Operations in Tables 1 and 2 are isomorphic with the logic connectives in
three-valued logic [7,11], in particular, �Lukasiewicz logic.

The intent of this contribution is to accomplish the following tasks: First, to
find operations of union and intersection of PIV sets which in the case of fuzzy
sets correspond to the union and intersection of fuzzy sets, and, in the case of
shadowed sets correspond to the union and intersection of shadowed sets. Then,
to find operations of union and intersection of PIV sets such that the union and
the intersection of membership labels of PIV sets expressed by intervals corre-
spond to the union and intersection of intervals of real numbers. In applications,
researchers can choose from a vast variety of aggregation functions [4,6]. Among
them, triangular norms (t-norms) and triangular conorms (t-conomrs) are the
most popular [8,9]. The next task of this contribution is to extend t-norms and
t-conorms used in aggregation of fuzzy sets to t-norms and t-conorms suitable in
aggregation of PIV sets. The final task is to propose a method for deriving a PIV
set from data given by τ = {δij : δij ∈ [0, 1], i = 1, . . . , n, j = 1, . . . ,m}. Note
that majority of mathematical propositions in this contribution can be proved
by simple algebraic manipulations. For this reason and because of the limited
space, the proofs are omitted.
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2 Operations on PIV Sets, Case I

The set of all possible labels of PIV sets on X is the set Λ = [0, 1] ∪ D. First, a
relation of partial order on Λ will be introduced.

Definition 2. Consider λ1, λ2 ∈ Λ. Then λ1 s-precedes λ2, denoted by λ1 ≤s λ2,
if one of the following holds:

(1) λ1, λ2 ∈ [0, 1] and λ1 ≤ λ2,
(2) λ1 ∈ [0, 0.5) and λ2 ∈ D,
(3) λ1 ∈ D and λ2 ∈ (0.5, 1],
(4) λ1 = [b, c] ∈ D,λ2 = [p, q] ∈ D and (b ≤ p, c ≤ q),
(5) λ1 = [b, 0.5] ∈ D,λ2 = 0.5,
(6) λ1 = 0.5, λ2 = [0.5, q] ∈ D.

Theorem 1. The relation ≤s is reflexive, antisymmetric and transitive and for
all λ ∈ Λ we have 0 ≤s λ ≤s 1.

For λ1, λ2 ∈ Λ, there is exactly one λ ∈ Λ such that with respect to the
relation ≤s, λ = inf(λ1, λ2) = λ1∧s λ2. Operation ∧s is defined in Table 3, where
u1 = min{b, p}, v1 = min{c, q},

u2 =

{
[p, 0.5] if p < 0.5,

0.5 if p = 0.5,
v2 =

{
[b, 0.5] if b < 0.5,

0.5 if b = 0.5.

Table 3. Relation ∧s on Λ

λ2�λ1 a < 0.5 [b, c] ∈ D d > 0.5 0.5

r < 0.5 min{a, r} r r r

[p, q] ∈ D a [u1, v1] [p, q] u2

t > 0.5 a [b, c] min{t, d} 0.5

0.5 a v2 0.5 0.5

For λ1, λ2 ∈ Λ, there is exactly one λ ∈ Λ such that with respect to the
relation ≤s, λ = sup(λ1, λ2) = λ1 ∨s λ2. Operation ∨s is defined in Table 4,
where u3 = max{b, p}, v3 = max{c, q},

u4 =

{
[0.5, q] if q > 0.5,

0.5 if q = 0.5,
v4 =

{
[0.5, c] if c > 0.5,

0.5 if c = 0.5.

Corollary 1. L1 = (Λ,≤s, 0, 1) is a bounded lattice.

Recall that a mapping f : X → L, where L is a lattice is called an L-fuzzy
set on X.
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Table 4. Relation ∨s on Λ

λ2�λ1 a < 0.5 [b, c] ∈ D d > 0.5 0.5

r < 0.5 max{a, r} [b, c] d 0.5

[p, q] ∈ D [p, q] [u3, v3] d u4

t > 0.5 t t max{t, d} t

0.5 0.5 v4 d 0.5

Corollary 2. PIV sets on X are L1-fuzzy sets on X.

For PIV sets from Γ (X), a relation of partial order can be defined pointwise,
using the relation ≤s.

Definition 3. Let f, g ∈ Γ (X). Then f is s-included in g, denoted by f ⊂s g,
if for all x ∈ X,

f(x) ≤s g(x). (3)

Theorem 2. PIV sets on X are partially ordered by the relation ⊂s. For all
g ∈ Γ (X), ∅ ⊂s g ⊂s X.

The corresponding operations of s-intersection and s-union of PIV sets can
be derived from operations ∧s and ∨s, respectively.

Definition 4. Let f, g ∈ Γ (X). Then the s-intersection of f and g, denoted by
f ∩s g, is defined for all x ∈ X by f(x) ∧s g(x).

Observe that when f and g are fuzzy sets then f ∩s g = f ∩ g given by (2).
At the same time, when f and g are shadowed sets then f ∩s g = f ∩ g, where
∩ is defined in Table 2.

Theorem 3. The following properties are satisfied for g, h, k ∈ Γ (X):

(1) commutativity: g ∩s h = h ∩s g,
(2) associativity: g ∩s (h ∩s k) = (g ∩s h) ∩s k,
(3) idempotency: g ∩s g = g,
(4) boundary conditions: g ∩s ∅ = ∅ and g ∩s X = g.

Based on the label g(x) of a PIV set g defined on X, each object x ∈ X can
be classified as an object with low, high or neither low nor high (middle) com-
patibility with the concept described by g. Let L(g) = {x ∈ X : g(x) < 0.5}
be the low compatibility region of g, M(g) = {x ∈ X : g(x) ∈ D ∪ {0.5}} be
the middle compatibility region of g and H(g) = {x ∈ X : g(x) > 0.5} be the
high compatibility region of g. The relationship between compatibility regions
of PIV sets g, h and the compatibility regions of their s-intersection is given in
Theorem 4.
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Theorem 4. Let g, h ∈ Γ (X). Then

(1) L(g ∩s h) = L(g) ∪ L(h),
(2) M(g) ∩ M(h) ⊂ M(g ∩s h) ⊂ M(g) ∪ M(h),
(3) H(g ∩s h) = H(g) ∩ H(h).

Note that M(g ∩s h) = X \ ((L(g) ∪ L(h)) ∪ (H(g) ∩ H(h))).

Definition 5. Let f, g ∈ Γ (X). Then the s-union of f and g, denoted by f ∪s g,
is defined for all x ∈ X by f(x) ∨s g(x).

When f and g are fuzzy sets then f ∪s g = f ∪ g given by (2). At the same
time, when f and g are shadowed sets then f ∪s g = f ∪ g, where ∪ is defined in
Table 1.

Theorem 5. The following properties are satisfied for g, h, k ∈ Γ (X):

(1) commutativity: g ∪s h = h ∪s g,
(2) associativity: g ∪s (h ∪s k) = (g ∪s h) ∪s k,
(3) idempotency: g ∪s g = g,
(4) boundary conditions: g ∪s ∅ = g and g ∪s X = X.

Theorem 6. Let g, h ∈ Γ (X). Then

(1) L(g ∪s h) = L(g) ∩ L(h),
(2) M(g) ∩ M(h) ⊂ M(g ∪s h) ⊂ M(g) ∪ M(h),
(3) H(g ∪s h) = H(g) ∪ H(h).

Note that M(g ∪s h) = X \ ((L(g) ∩ L(h)) ∪ (H(g) ∪ H(h))).

Theorem 7. Let g, h, k ∈ Γ (X). Then

(1) g ∩s (h ∪s k) = (g ∩s h) ∪s (g ∩s k),
(2) g ∪s (h ∩s k) = (g ∪s h) ∩s (g ∪s k),
(3) M(g ∩s h) ∪ M(g ∪s h) = M(g) ∪ M(h).

Corollary 3. (Γ (X),⊂s, ∅,X) is a distributive bounded lattice.

3 Operations on PIV Sets, Case II

In this section, another operation of partial order on Λ = [0, 1] ∪ D will be
introduced and than extended to Γ (X).

Definition 6. Consider λ1, λ2 ∈ Λ. Then λ1 p-precedes λ2, denoted by λ1 ≤p

λ2, if one of the following holds:

(1) λ1, λ2 ∈ [0, 0.5] and λ1 ≥ λ2,
(2) λ1, λ2 ∈ [0.5, 1] and λ1 ≤ λ2,
(3) λ1 ∈ [0, 1] and [b, c] = λ2 ∈ D and b ≤ λ1 ≤ c,
(4) λ1 = [b, c] ∈ D and λ2 = [p, q] ∈ D and p ≤ b ≤ c ≤ q.
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Theorem 8. The relation ≤p is reflexive, antisymmetric and transitive and for
all λ ∈ Λ we have 0.5 ≤p λ ≤p [0, 1].

Corollary 4. The relation ≤p is partial order on Λ with the least element 0.5
and the largest element [0, 1].

Note that the number 0.5 is the smallest element from all numbers in [0, 1]
and the interval [0, 1] is the largest interval from all intervals in D.

For λ1, λ2 ∈ Λ, there is exactly one λ ∈ Λ such that, with respect to the
relation ≤p, λ = inf(λ1, λ2) = λ1 ∧p λ2. Operation ∧p is defined in Table 5,
where

u1 =

{
[max{b, p},min{q, c}] if max{b, p} < min{q, c},

0.5 if max{b, p} = 0.5 = min{q, c}.

Table 5. Relation ∧p on Λ

λ2�λ1 a ≤ 0.5 [b, c] ∈ D d ≥ 0.5

r ≤ 0.5 max{a, r} max{r, b} 0.5

[p, q] ∈ D max{a, p} u1 min{d, q}
t ≥ 0.5 0.5 min{t, c} min{t, d}

For λ1, λ2 ∈ Λ, there is exactly one λ ∈ Λ such that with respect to the
relation ≤p, λ = sup(λ1, λ2) = λ1 ∨p λ2. Operation ∨p is defined in Table 6,
where u2 = min{b, p}, v2 = max{c, q} and

u3 =

{
[r, d] if r �= d,

0.5 if r = d,
v3 =

{
[a, t] if a �= t,

0.5 if a = t.

Table 6. Relation ∨p on Λ

λ2�λ1 a ≤ 0.5 [b, c] ∈ D d ≥ 0.5

r ≤ 0.5 min{a, r} [min{r, b}, c] u3

[p, q] ∈ D [min{a, p}, q] [u2, v2] [p, max{d, q}]

t ≥ 0.5 v3 [b, max{c, t}] max{t, d}

Corollary 5. L2 = (Λ,≤p, 0.5, [0, 1]) is a bounded lattice.

For PIV sets from Γ (X), a relation of partial order can be defined pointwise,
using the relation ≤p.

Definition 7. Let f, g ∈ Γ (X). Then f is p-included in g, denoted by f ⊂p g,
if for all x ∈ X,

f(x) ≤p g(x). (4)
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Theorem 9. PIV sets on X are partially ordered by the relation ⊂p. For all
g ∈ Γ (X),

0.5 ⊂p g ⊂p [0, 1].

Definition 8. Let f, g ∈ Γ (X). Then the p-intersection of f and g, denoted by
f ∩p g, is defined for all x ∈ X by

f(x) ∧p g(x). (5)

Note that when f(x) = [b, c] ∈ D and g(x) = [r, q] ∈ D then f(x) ∧p g(x) =
[b, c] ∩ [r, q].

Theorem 10. The following properties are satisfied for g, h, k ∈ Γ (X):

(1) commutativity: g ∩p h = h ∩p g,
(2) associativity: g ∩p (h ∩p k) = (g ∩p h) ∩p k,
(3) idempotency: g ∩p g = g,
(4) boundary conditions: g ∩p 0.5 = 0.5 and g ∩p [0, 1] = g.

Then compatibility regions of g ∈ Γ (X) are: the low compatibility region L(g) =
{x ∈ X : g(x) < 0.5}, the high compatibility region H(g) = {x ∈ X : g(x) > 0.5}
and the middle compatibility region M(g) = X \ (L(g) ∪ H(g)) consists of two
parts, M1(g) = {x ∈ X : g(x) = 0.5} and M2 = {x ∈ X : g(x) ∈ D}.

Theorem 11. Let g, h ∈ Γ (X). Then

(1) L(g) ∩ L(h) ⊂ L(g ∩p h) ⊂ L(g) ∪ L(h),
(2) H(g) ∩ H(h) ⊂ H(g ∩p h) ⊂ H(g) ∪ H(h),
(3) M1(g) ∩ M1(h) ⊂ M1(g ∩p h) ⊂ M1(g) ∪ M1(h),
(4) M2(g) ∩ M2(h) = M2(g ∩p h).

Definition 9. Let f, g ∈ Γ (X). Then the p-union of f and g, denoted by f ∪p g,
is defined for all x ∈ X by

f(x) ∨p g(x). (6)

Note that when f(x) = [b, c] ∈ D and g(x) = [r, q] ∈ D then f(x) ∨p g(x) =
[b, c] ∪ [r, q].

Theorem 12. The following properties are satisfied for g, h, k ∈ Γ (X):

(1) commutativity: g ∪p h = h ∪p g,
(2) associativity: g ∪p (h ∪p k) = (g ∪p h) ∪p k,
(3) idempotency: g ∩p g = g,
(4) boundary conditions: g ∪p 0.5 = g and g ∪p [0, 1] = [0, 1].

Theorem 13. Let g, h ∈ Γ (X). Then

(1) L(g ∪p h) = L(g) ∩ L(h),
(2) H(g ∪p h) = H(g) ∩ H(h),
(3) M1(g ∪p h) = M1(g) ∩ M1(h),
(4) M2(g ∪p h) ⊃ M2(g) ∩ M2(h).
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Theorem 14. Let g, h, k ∈ Γ (X). Then

(1) g ∩p (h ∪p k) = (g ∩p h) ∪p (g ∩p k),
(2) g ∪p (h ∩p k) = (g ∪p h) ∩p (g ∪p k).

Corollary 6. (Γ (X),⊂p, 0.5, [0, 1]) is a distributive bounded lattice.

In applications, the primary use of PIV sets is to characterize compatibility of
objects from X with a concept defined on X by labels small, large or neither small
nor large, described by numbers or intervals. The preference of researchers for
s-inclusion or p-inclusion (and corresponding aggregation functions) of PIV sets
depends on properties of PIV sets on lattices (Γ (X),⊂s, ∅,X) and (Γ (X),⊂p,
0.5, [0, 1]).

4 Aggregation of PIV Sets by T-norms

T-norms and t-conorms applied to aggregation of fuzzy sets can be extended to
t-norms and t-conorms on the lattice (Γ (X),⊂s, ∅,X) or on the lattice (Γ (X),
⊂p, 0.5, [0, 1]). An extension based on the notion of the bounded t-norm and the
bounded t-conorm is proposed in this section.

Definition 10. Let T be a t-norm on [0, 1] and δ ∈ [0, 1]. Then the δ-bounded
t-norm T is the mapping T(δ) : [δ, 1]×[δ, 1] → [δ, 1] such that for all (x, y) ∈ [δ, 1]2

T(δ)(x, y) = max{δ, T (x, y)}. (7)

Theorem 15. T(δ) is a commutative, associative and nondecreasing function
satisfying

T(δ)(x, 1) = x and T(δ)(x, δ) = δ (8)

for all x ∈ [δ, 1].

Any t-norm T is the δ-bounded t-norm T when δ = 0. Obviously, Tmin,(δ) =
Tmin for all δ ∈ [0, 1].

Definition 11. Let S be a t-conorm on [0, 1] and δ ∈ [0, 1]. Then the δ-bounded
t-conorm S is the mapping S(δ) : [0, δ] × [0, δ] → [0, δ] such that for all (x, y) ∈
[0, δ]2

S(δ)(x, y) = min{δ, S(x, y)}. (9)

Theorem 16. S(δ) is a commutative, associative and nondecreasing function
satisfying

S(δ)(x, 0) = x and S(δ)(x, δ) = δ (10)

for all x ∈ [0, δ].

Any t-conorm S is the δ-bounded t-conorm S when δ = 1. Obviously,
Smax,(δ) = Smax for all δ ∈ [0, 1].
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Theorem 17. Consider a t-norm T on [0, 1] and the lattice (Γ (X),⊂s, ∅,X).
Let ϕT : Γ (X)×Γ (X) → Γ (X) be defined for all f, g ∈ Γ (X) in Table 7, where

u1 =

{
[T (b, p), T(0.5)(c, q)] if T (b, p) < T(0.5)(c, q),
0.5 if T (b, p) = T(0.5)(c, q) = 0.5,

u2(s) =

{
[T (s, 0.5), 0.5] if T (s, 0.5) < 0.5,

0.5 if T (s, 0.5) = 0.5.

Then ϕT is a t-norm on (Γ (X),⊂s, ∅,X),

Table 7. T-norm on Γ (X), Case I

g�f f(x) < 0.5 f(x) = [b, c] f(x) > 0.5 0.5

g(x) < 0.5 T (f(x), g(x)) g(x) g(x) g(x)

g(x) = [p, q] f(x) u1 g(x) u2(p)

g(x) > 0.5 f(x) f(x) T(0.5)(f(x), g(x)) 0.5

0.5 f(x) u2(b) 0.5 0.5

When T = Tmin then ϕT (f, g) = f ∩s g.

Theorem 18. Consider a t-conorm S on [0, 1] and the lattice (Γ (X),⊂s, ∅,X).
Let ϕS : Γ (X)×Γ (X) → Γ (X) be defined for all f, g ∈ Γ (X) in Table 8, where

u3 =

{
[S(0.5)(b, p), S(c, q)] if S(0.5)(b, p) < S(c, q),
0.5 if S(0.5)(b, p) = S(c, q) = 0.5,

u4(s) =

{
[0.5, S(s, 0.5)] if S(s, 0.5) > 0.5,

0.5 if S(s, 0.5) = 0.5.

Then ϕS is a t-conorm on (Γ (X),⊂s, ∅,X).

Table 8. T-conorm on Γ (X), Case I

g�f f(x) < 0.5 f(x) = [b, c] f(x) > 0.5 0.5

g(x) < 0.5 S(0.5)(f(x), g(x)) f(x) f(x) 0.5

g(x) = [p, q] g(x) u3 f(x) u4(q)

g(x) > 0.5 g(x) g(x) S(f(x), g(x)) g(x)

0.5 0.5 u4(c) f(x) 0.5

When S = Smax then ϕS(f, g) = f ∪s g.
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Theorem 19. Consider a t-norm T on [0, 1], its dual t-conorm S and the lattice
(Γ (X),⊂p, 0.5, [0, 1]). Let ρT : Γ (X) × Γ (X) → Γ (X) be defined for all f, g ∈
Γ (X) in Table 9, where

u1 =

{
[S(0.5)(b, p), T(0.5)(q, c)] if S(0.5(b, p) < T(0.5)(q, c),
0.5 if S(0.5(b, p) = 0.5 = T(0.5)(q, c).

Then ρT is a t-norm on (Γ (X),⊂p, 0.5, [0, 1]).

Table 9. T-norm on Γ (X), Case II

g�f f(x) ≤ 0.5 f(x) = [b, c] f(x) ≥ 0.5

g(x) ≤ 0.5 S(0.5)(f(x), g(x)) S(0.5)(g(x), b) 0.5

g(x) = [p, q] S(0.5)(f(x), p) u1 T(0.5)(f(x), q)

g(x) ≥ 0.5 0.5 T(0.5)(g(x), c) T(0.5)(f(x), g(x))

When T = Tmin then ρT (f, g) = f ∩p g.

Theorem 20. Consider a t-conorm S on [0, 1] and the lattice (Γ (X),⊂p,
0.5, [0, 1]). Let ρS : Γ (X) × Γ (X) → Γ (X) be defined for all f, g ∈ Γ (X) in
Table 10, where

Table 10. T-conorm on Γ (X), Case II

g�f f(x) ≤ 0.5 f(x) = [b, c] f(x) ≥ 0.5

g(x) ≤ 0.5 T (f(x), g(x)) [T (g(x), b), c] u3

g(x) = [p, q] [T (f(x), p), q] [u2, v2] [p, S(f(x), q)]

g(x) ≥ 0.5 u3 [b, S(c, g(x))] S(f(x), g(x))

u2 = T (b, p), v2 = S(c, q), u3 =

{
[f(x), g(x)] if f(x) �= g(x),
0.5 if f(x) = g(x).

Then ρS is a t-conorm on (Γ (X),⊂p, 0.5, [0, 1]).

When S = Smax then ρS(f, g) = f ∪s g.

5 Construction of PIV Sets

Different methods for construction of PIV sets from available data can be pro-
posed. A simple approach based on a preselected aggregation function Ag is
outlined below.
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Assume a fuzzy set f on a finite universal set U and an aggregation function
Ag such that for (δ1, . . . , δn) ∈ [0, 1]n

min(δ1, . . . , δn) ≤ Ag(δ1, . . . , δn) ≤ max(δ1, . . . , δn).

Let W1(f) = {u ∈ U : f(u) ≤ 0.5},W2(f) = {u ∈ U : f(u) ≥ 0.5}, a =
Ag(f(u), u ∈ W1(f)) and b = Ag(f(u), u ∈ W2(f)). Then the summary charac-
terization of f based on Ag can be expressed by

SAg(f) =

⎧⎪⎪⎨
⎪⎪⎩

a if W2(f) = ∅,
b if W1(f) = ∅,
[a, b] if W1(f) �= ∅,W2(f) �= ∅ and a �= b,
0.5 if a = b = 0.5.

(11)

The task is to find a summary characterization of data τ (see formula (1)). In our
illustrative example τ may represent evaluations of objects from X by experts
from E = {Ej , j = 1, . . . ,m}. Then the following method can be used:

Method 1:

Step 1: For each i = 1, . . . , n, construct fuzzy set fi on E such that for Ej ∈ E :
fi(Ej) = δij . Then choose aggregation function Ag and create SAg(fi).
Step 2: Construct PIV set ϕ on X such that for xi ∈ X,ϕ(xi) = SAg(fi).

Example 1. Suppose that data in Table 11 represent evaluations of objects
x1, . . . , x5 by experts E1, . . . , E6 with respect to criterion C1. Let Ag be the
arithmetic mean. Then, using Method 1, summary characterizations of Table 11
can be obtained by PIV set ϕC1 with labels presented in Table 12.

Table 11. Evaluations with respect to criterion C1

X x1 x2 x3 x4 x5

E1 0.5 0.8 1.0 0.2 0.7

E2 0.3 0.4 0.9 0.0 0.6

E3 0.1 0.6 0.8 0.1 0.4

E4 0.2 0.5 0.7 0.1 0.4

E5 0.1 0.7 0.8 0.3 0.3

E6 0.4 0.4 0.9 0.4 0.8

Table 12. Summary of evaluations with respect to criterion C1

X x1 x2 x3 x4 x5

ϕC1 [0.267, 0.5] [0.433, 0.65] 0.85 0.183 [0.367, 0.7]



20 S. Bodjanova and M. Kalina

6 Conclusion

PIV sets allow evaluation of compatibility of objects from a set X with a concept
defined on X in terms (labels) that can be interpreted as either small or large
(described by either a small or a large number from the unit interval), or neither
small nor large (described by 0.5 or a subinterval from the unit interval cover-
ing 0.5). Description of the label “neither small nor large” by an interval gives
researchers more flexibility in decision making under uncertainty. A method for
a simple summary characterization of a family of finite fuzzy sets by a PIV set
was suggested.

From the theoretical point of view, relations s-inclusion and p-inclusion of
PIV sets were introduced and corresponding operations of union and intersec-
tion were defined. A restriction of t-norms (t-conomrs) to bounded t-norms (t-
conorms) was proposed and used in construction of t-norms (t-conorms) suitable
for aggregation of PIV sets.
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Abstract. We show several interesting examples of connection between
distribution of a positively valued random variable and an Archimedean
copula through Williamson’s transformation (and Laplace transform),
especially when arranged in a sequence. Naturally, there appears a ques-
tion: how can we use statistical properties of distance functions to draw
statistical properties of copulas, and vice versa? This question is formu-
lated in two open problems.

Keywords: Archimedean copula · Williamson’s transform · Laplace
transform

1 Introduction

Copulas [5,14,17] are particular functions describing the dependence stucture of
random vectors. Not going into details, recall that one of the prominent copula
classes important for numerous applications is the class of Archimedean copulas.
Formally, for n ≥ 2, a function C : [0, 1]n → [0, 1] is an n-ary Archimedean cop-
ula whenever it is a Post associative n-ary copula (i.e., for any (x1, . . . , x2n−1) ∈
[0, 1]2n−1 it holds C (C(x1, . . . , xn), xn+1, . . . , x2n−1) = C (x1, C(x2, . . . , xn+1),
xn+2, . . . , x2n−1)= . . . =C (x1, . . . , xn−1, C(xn, . . . , x2n−1)) and C(x, . . . , x)<x
for any x ∈]0, 1[, see [18]. Due to [9] we have next representation of n-ary Archi-
medean copulas.

Theorem 1. Let f : [0, 1] → [0,∞] be a continuous strictly decreasing function
such that f(1) = 0 (i.e., f is an additive generator of a continuous Archimedean
t-norm, see [7]). Then the n-ary function C : [0, 1]n → [0, 1] given by

C(x1, . . . , xn) = f (−1)

(
n∑

i=1

f(xi)

)
. (1)

(where f (−1) : [0,∞] → [0, 1] given by f (−1)(u) = f−1
(
min(u, f(0))

)
is the

pseudo-inverse of f) is an n-ary copula if and only if the function g : [−∞, 0] →
[0, 1] given by g(u) = f (−1)(−u) is (n− 2)-times differentiable with non-negative
derivatives g′, . . . , g(n−2) on ] − ∞, 0[ (or equivalently, (−1)n(f (−1))(n)(u) ≥ 0),
and g(n−2) is a convex function (Fig. 1).
c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 3
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Fig. 1. Illustration of a generator f and its corresponding function g

We denote by Fn the class of all additive generators that generate n-ary
copulas as characterized in Theorem 1.

Additive generators, which generate an n-ary copula for any n ≥ 2, are called
universal generators. Due to Theorem1, we have the next result, see [6,9].

Corollary 1. Let f : [0, 1] → [0,∞] be an additive generator of a binary copula
C : [0, 1]2 → [0, 1]. Then the n-ary extension C : [0, 1]n → [0, 1] given by (1) is an
n-ary copula for each n ≥ 2 if and only if the function g : [−∞, 0] → [0, 1] given
by g(u) = f (−1)(−u) is absolutely monotone, i.e., g(k) exists and is non-negative
for each k ∈ N = {1, 2, . . .}.

The class of all universal additive generators will be denoted by F∞. It is
not difficult to check that F2 ⊃ F3 ⊃ . . . ⊃ F∞.

For any n ≥ 2, there is an important link between the additive genera-
tors of n-ary Archimedean copulas and distance functions F : [0,∞[ → [0, 1],
i.e., distribution functions of positive random variables restricted to [0,∞[.
Observe that then F (0) = 0, F is monotone non-decreasing right-continuous
and limx→∞ F (x) = 1. We denote the class of all distance functions as D.

Based on the results of Williamson [19], we recall the next important result.

Theorem 2 (McNeil and Nešlehová [9], Corollary 3.1). The following
claims are equivalent for an arbitrary n ∈ {2, 3, . . .}:
(i) f ∈ Fn

(ii) Under the notation of Theorem1, the function F : [0,∞[→ [0, 1] given by
F (0) = 0 and for x > 0,

F (x) = 1 −
n−2∑
k=0

(−1)kxk(f (−1))(k)(x)
k!

− (−1)n−1xn−1(f (−1))(n−1)
+ (x)

(n − 1)!
, (2)
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is a distance function from D, where ·(n−1)
+ denotes the right-derivative of order

n − 1.

Note that due to [19], if F is a positive distance function, i.e., a distribution
function of a positive random variable X, then for a fixed n ∈ {2, 3, . . .} the
Williamson n-transform provides an inverse transformation to (2),

f (−1)(x) =
∫ ∞

x

(
1 − x

t

)n−1

dF (t) =

{
max

(
0, E

[
1 − x

X

]n−1
)

, x > 0

1 − F (0), x = 0,
(3)

where x ∈ [0,∞[ and f (−1)(∞) = 0.
Note that a similar relationship can be shown between additive generators

from F∞ and positive distance functions, based on the Laplace transform, i.e.

f (−1)(x) =
∫ ∞

0

e−xtdF (t). (4)

For more and interesting details we recommend [9].
Note that if FX ∈ D is a distance function linked to a positive random vector

X, then for any positive real constant c, also FcX ∈ D, and for the related
additive generators (independently of n ≥ 2), fcX(x) = cfX(x). However, both
fX and fcX generate the same (n-ary) Archimedean copula.

The aim of this paper is to discuss some applications of the introduced link
between additive generators and distance functions in the copula theory. The
paper is organised as follows. In Sect. 2, some examples are given. In Sect. 3,
we introduce and discuss particular sequences of additive generators (distance
functions) related to a fixed distance function (additive generator). In Sect. 4,
we open several interesting problems dealing with relations between classes Fn

and Fm for n �= m and between distance functions related to classes Fn and
Fm, respectively. Finally, some concluding remarks are given.

2 Examples

Example 1. Let F be equal to a Dirac function δa focused at point a > 0,

F (x) = δa(x) =

{
0 x < a

1 a ≤ x
,

then, as is also shown in [9], by the Williamson n-transform we get generator
fn(x) = a

(
1 − x

1
n−1

)
of the weakest n-dimensional Archimedean copula, i.e.,

the non-strict Clayton copula with parameter λ = −1
n−1 , see Fig. 2. By rescaling

generator to f̃n(x) = f(x)
f(1/2) , x ∈ [0, 1], the copula would not change, yet such a

generator is fixed to the value f̃n( 12 ) = 1.
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Fig. 2. Dirac function F , the corresponding generators fn for different n and rescaled
generators f̃n.

Example 2. Let F be a uniform probability distribution function

F (x) =

⎧⎪⎨
⎪⎩

0 x < 0
x 0 ≤ x < 1
1 1 ≤ x

.

Then for dimension n = 2 we get

f
(−1)
2 (x) =

∫ ∞

x

(
1 − x

t

)2−1

F ′(t)dt =

{∫ 1

x

(
1 − x

t

)
dt 0 ≤ x < 1∫ ∞

x

(
1 − x

t

)
0dt 1 ≤ x

=

=

{
[t − x log t]1x = 1 − x + x log(x) 0 ≤ x < 1
0 1 ≤ x

(where F ′ denotes the density related to F ) from which the corresponding gen-
erator can be obtained only numerically, and so is the case also with the higher
dimensions, e.g.,

f
(−1)
3 (x) =

{
1 + 2x log x − x2 0 ≤ x < 1
0 1 ≤ x

.

We continue with the examples of constructing generators of non-strict Archi-
medean copulas while restricting the support of univariate distribution in the
unit interval. By applying a suitable increasing transformation (such as power
function) to a positive distance function on [0, 1] we obtain a new distribution.

Example 3. Consider a positive distance function F (x) = min(1, x2) and the
corresponding density F ′(x) = 2x on [0, 1]. Then

f
(−1)
2 (x) =

∫ ∞

x

(
1 − x

t

)2−1

dF (t) =

{∫ 1

x
(t − x) 2t

t dt = (1 − x)2 0 ≤ x ≤ 1
0 1 < x

=

= max(1 − x, 0)2.
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Then the generator f2(x) = 1−√
x, x ∈ [0, 1], is the generator of Clayton copula

for parameter λ = − 1
2 . Nevertheless, in higher dimensions, n ≥ 3, the generator

has no closed form, e.g., f
(−1)
3 (x) = 1 − 4x + x2(3 − 2 log x) for x ∈ [0, 1] and 0

otherwise (Fig. 3).

Fig. 3. Illustration of Example 3 with a = 1

Example 4. For any distance function F ∈ D related to a random variable X
a shifted random variable a + X, a ≥ 0, generates a distance function Fa ∈ D
given by

Fa(x) =

{
0 x ≤ a

F (x − a) otherwise
.

This observation allows to introduce parametric families of n-ary Archimedean
copulas. Continuing in Example 2, distance functions Fa are just distribution
functions of random variables uniformly distributed on [a, a+1] and the related
pseudo-inverses of additive generators are given by

f
(−1)
2 (x) =

∫ ∞

x

(
1 − x

t

)2−1

F ′(t)dt =

⎧⎪⎨
⎪⎩

∫ a+1

a

(
1 − x

t

)
dt x < a∫ a+1

x

(
1 − x

t

)
dt a ≤ x < a + 1∫ ∞

x

(
1 − x

t

)
0dt a + 1 ≤ x

=

=

⎧⎪⎨
⎪⎩

[t − x log t]a+1
a = 1 − x log

(
a+1

a

)
x < a

[t − x log t]a+1
x = a + 1 − x − x log

(
a+1

x

)
a ≤ x < a + 1

0 a + 1 ≤ x
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and

f
(−1)
3 (x) =

⎧⎪⎨
⎪⎩

1 − 2x log
(

a+1
a

)
+ x2

a(a+1) x < a

a + 1 − 2x log
(

a+1
x

) − x2

a+1 a ≤ x < a + 1
0 a + 1 ≤ x

.

displayed in Fig. 4.

Remark 1. Note that considering a random variable X uniformly distributed
on [a, b] ∈ [0,∞[, the random variable Y = X

b−a is uniformly distributed on
[ a
b−a , b

b−a ] = [c, c + 1] with c = a
b−a . Hence the additive generators of Archi-

medean copulas discussed in Example 4 covers all cases related to uniformly
distributed random variables.

Fig. 4. Uniform U(a, a + 1) probability distribution function F and pseudo-inverses of
the corresponding generators fn.

Example 5. Generalizing Examples 2 and 3 such that F (x) = min(1, xp), p ∈
]0,∞[, we get

f
(−1)
2 (x) =

{
1 − px−xp

p−1 0 ≤ x ≤ 1
0 1 < x

for p �= 1,

(with special case for p = 1 given in Example 2) whose corresponding generator
for most values of p can be obtained only numerically, and the copulas Cp it
generates span from M (p → 0) to W (p → ∞) excluding Π. Kendall’s correla-
tion coefficient as a function of parameter p can be expressed in the closed form
τ2(p) = 1 − 4 p

2(p+1) . Higher order Williamson transforms, e.g.,

f
(−1)
3 (x) =

{
1 − 2xp−p(p−1)x2+2p(p−2)x

(p−1)(p−2) 0 ≤ x ≤ 1

0 1 < x
for p �= 1, 2,
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(with special cases for p = 1, 2 given in Examples 2 and 3, respectively) neither
provide convenience of generator in closed form, nor the full span of dependence
range, e.g. τ3(p) = 1 − 4 p(p+3)

3(p+1)(p+2) , see Fig. 5.

Fig. 5. Kendall’s tau τn related to copula family generated by Williamson’s transform
of F (x) = min(1, xp) distance function.

3 Williamson’s Transforms and Sequences of Additive
Generators/Distance Functions

Example 6. Take a generator of the product copula f(x) = − 1
p log x with con-

stant p > 0 and inverse f−1(x) = exp(−px). From (2) for n = 2 we get
F (x) = 1 − exp(−px)(1 − px). By comparing the density ∂F (x)

∂x = p2x exp(−px)
and the convolution of two exponential distribution Dp densities with para-
meter p > 0,

∫ x

0
p exp(−pt)p exp(−p(x − t))dt = p2x exp(−px) it becomes

clear that the resulting distribution is a distribution of the random variable
Y = X1 + X2, where X1,X2 ∼ Dp are independent (and identically distributed)
random variables. The relation holds for any n ≥ 2, thus (2) yields a cumulative
distribution function of the sum of i.i.d. random variables X1, . . . , Xn ∼ Dp,
FX1+...+Xn

(x) = 1− exp(−px)
∑n

i=1
(px)i−1

(i−1)! with p > 0 which defines the Erlang
distribution with rate parameter p and shape parameter n.

Summarizing, we see that the sequence (Fn)∞
n=1 of the Erlang distribution

functions (with either fixed or variable parameter p) is related via Williamson’s
transforms with the product copula. Observe that when considering the Laplace
transform (4), then the product copula is related to Dirac function δp, p ∈]0,∞[.

Similarly, one can consider any other Archimedean copula for which each
n-ary version is an n-ary copula, i.e., possessing a universal additive generator.
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Example 7. Consider the generator of the Ali-Mikhail-Haq copula f(x) = 1
x − 1

corresponding to the parameter λ = 1 and denote by Fn, n = 2, 3, . . ., a positive
distance function related to f through (2). Then Fn(x) = 1 − 1

1+x − x
(1+x)2 −

. . . − xn−1

(1+x)n =
(

x
1+x

)n

which can be viewed as a parametric subfamily of all
positive valued distribution functions Fp with any positive parameter p.

Observe that when considering the Laplace transform (4), then the discussed
Ali-Mikhail-Haq copula is related to the exponential distribution with the dis-
tance function F (x) = 1 − e−λx, λ > 0

On the other hand, fixing a distance function F , one can introduce related
n-ary copulas (universal copula) by means of (3) (of (4)).

Example 8. Starting with positive distance function of

– discrete random variable with probability mass concentrated in λ > 0, i.e.
Dirac function F (x) = 0 for x < λ and 1 otherwise, then the sequence
from Example 1 is completed by the Laplace transform (4) that leads through
f−1(x) = exp(λx) to the product copula Π.

– exponential distribution F (x) = 1−exp(−λx), λ > 0, by (4) we get f−1(x) =
λ

x+λ and f(x) = λ
(
1
x − 1

)
which generates the same copula (Clayton and Ali-

Mikhail-Haq copula, both with parameter equal to 1) regardless of the choice
of λ.

– distribution from Example 5, that is F (x) = min(1, xp), p ∈ ]0,∞[ with
Kendall’s tau for n = 1, 2, 3 shown on Fig. 5, although no explicit form
of universal generator inverse can be drawn, one can observe sequence of
the lower bounds for Kendall’s correlation coefficient, {inf [τn(p)]}∞

n=2 =

{−1,− 1
3 ,− 1

5 ,− 1
7 , . . .} =

{
− 1

2n−3

}∞

n=2
.

4 Some Open Problems

In Sect. 3 we have indicated some interesting consequences of the discussed links
between additive generators of Archimedean copulas (of dimension n = 2, 3, . . .
and universal) and distance functions via Williamson’s transforms. Now we for-
mulate some interesting arisen open problems explicitly.

Problem 1. Are there some statistical links between Archimedean copulas of
dimensions n and m, n �= m, related to the same distance function? Recall,
for example, that fixing F = δp for some p ∈]0,∞[, the corresponding n-ary
(universal) Archimedean copulas are the smallest n-ary (universal) Archimedean
copulas.

Problem 2. For any fixed n,m ≥ 2, n �= m, one can define a transform
ϕn,m : D → D on distance functions obtained as follows: for a fixed distance
function F ∈ D one can define by means of (3) a pseudo-inverse f

(−1)
n con-

sidering n in transform (3). Then, taking into account that f
(−1)
n generates an
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m-dimensional Archimedean copula for any 2 ≤ m < n, applying the transform
(2), a new distance function Fn,m is obtained. Now we put ϕn,m(F ) = Fn,m. It
is not difficult to check that if 2 ≤ k < m < n, then ϕm,k ◦ ϕn,m = ϕn,k. Are
there some interesting properties of transforms ϕn,m? For example, does this
transform preserve the expected value, E(F ) = E(Fn,m)?

5 Conclusion

We have shown several interesting examples of connection between distribu-
tions of positively valued random variables (represented by distance function)
and Archimedean copulas (represented by generator and it’s inverse) through
Williamson’s transformation and Laplace transform, especially when arranged in
a sequence. For instance, Williamson’s n-transform (n = 2, 3, . . .) links the prod-
uct copula with distribution of sum of n exponentially distributed independent
random variables while the Laplace transformation links it to the most elemen-
tary distance function, the Dirac function. Naturally there appears a question:
how can we use statistical properties of distance functions to draw statistical
properties of copulas, and vice versa? This question was itemized into two open
problems, but surely more such problems could be formulated.
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Abstract. Nullnorms are generalizations of triangular norms (t-norms)
and triangular conorms (t-conorms) with a zero element to be an arbi-
trary point from an arbitrary bounded lattice. In this paper, we study
on the existence of idempotent nullnorms on bounded lattices. We show
that there exists unique idempotent nullnorm on an arbitrary distribu-
tive bounded lattice. We prove that an idempotent nullnorm may not
always exist on every bounded lattice. Furthermore, we propose the con-
struction method to obtain idempotent nullnorms on a bounded lattice
under additional assumptions on given zero element. As by-product of
this method, we see that it is in existence an idempotent nullnorm on
non-distributive bounded lattices.

Keywords: Bounded lattice · Idempotent nullnorm · Zero element ·
Nullnorm

1 Introduction

T-norms with 1 as neutral element and t-conorms with 0 as neutral element have
been introduced by Schweizer and Sklar in [24]. These operators have been exten-
sively used in many applications in fuzzy set theory, fuzzy logics, multicriteria
decision support and several branches of information sciences. For more details
on t-norms, we refer to [1,2,17,18,22]. Subsequently, the concept of nullnorms
and t-operators has been introduced in [4,19]. It has been stated that nullnorms
and t-operators are equivalent in [20]. The nullnorms on unit interval have been
also studied by many authors in other papers [7,10,23,25]. Nullnorms on the real
unit interval as generalizations of t-norms and t-conorms admit a zero element a
to be an arbitrary point from [0, 1] and have to satisfy an additional condition.
In case of a = 1, we obtain t-conorms and in case of a = 0, we obtain t-norms.
Nullnorms have been found to be a useful tool in many different fields, such as
the expert systems, neural networks, fuzzy logics in [21]. Moreover, they have
to be used as aggregators in fuzzy logic maintain as many logical properties as
possible.

Karaçal et al. [15] have studied nullnorms on bounded lattices. They have
proved the existence of nullnorms with the zero element a for arbitrary element
c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 4
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a ∈ L\{0, 1} with underlying t-norms and t-conorms on an arbitrary bounded
lattice L. As a by-product, existence of the smallest nullnorm and of the greatest
nullnorm has been shown. Moreover, Ince, Karaçal and Mesiar [13] have demon-
strated the presence of idempotent nullnorms on a distributive bounded lattice
L for any element a ∈ L\{0, 1} playing the role of a zero element.

In this paper, we study idempotent nullnorms on bounded lattices. We prove
that there is no idempotent nullnorm on a distributive bounded lattice L different
from the proposal in [13]. Considering an arbitrary bounded lattice L, we show
that there may not always exist an idempotent nullnorm V on L with the zero
element a ∈ L\{0, 1}. Moreover, we introduce the method of constructing idem-
potent nullnorms on a bounded lattice L with given zero element a ∈ L\{0, 1},
if there is unique element in L incomparable with a.

The paper is organized as follows. After some preliminaries concerning null-
norms on bounded lattices, in Sect. 3 we discuss the existence of idempotent null-
norms on an arbitrary bounded lattice L with fixed zero element a ∈ L\{0, 1}.
Next, it is given that the new method for constructing idempotent nullnorms on
bounded lattices under additional assumption on a ∈ L\{0, 1} which is consid-
ered as zero element. Finally, some examples and concluding remarks are added.

2 Preliminaries

In this section, some preliminaries concerning bounded lattices, t-norms, t-
conorms and nullnorms on them are recalled.

Definition 1 [3]. A lattice (L,�) is bounded if L has top and bottom elements,
which are denoted as 1 and 0, respectively, that is, there exist two elements
1, 0 ∈ L such that 0 � x � 1, for all x ∈ L.

Definition 2 [3]. A lattice (L,�) is distributive lattice if the following two
equivalent conditions hold:

(i) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all x, y, z ∈ L.
(ii) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all x, y, z ∈ L.

Definition 3 [3]. Given a bounded lattice (L,≤, 0, 1) and a, b ∈ L, if a and b
are incomparable, in this case, we use the notation a ‖ b. We denote the set of
elements which are incomparable with a by Ia. So, Ia = {x ∈ L | x ‖ a}.

Definition 4 [3]. Given a bounded lattice (L,≤, 0, 1) and a, b ∈ L, a ≤ b, the
subinterval [a, b] of L is defined as

[a, b] = {x ∈ L | a ≤ x ≤ b}.
Similarly, we define (a, b] = {x ∈ L | a < x ≤ b}, [a, b) = {x ∈ L | a ≤ x < b}

and (a, b) = {x ∈ L | a < x < b}.

Definition 5 [5,14,16]. An operation T : L2 → L
(
S : L2 → L

)
is called a

t-norm (t-conorm) if it is commutative, associative, increasing with respect to
both variables and has as neutral element e = 1 (e = 0).
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Definition 6 [15]. Let (L,≤, 0, 1) be a bounded lattice. A commutative, asso-
ciative, non-decreasing in each variable function V : L2 → L is called a nullnorm
if there is an element a ∈ L such that V (x, 0) = x for all x ≤ a and V (x, 1) = x
for all x ≥ a.

It can be easily obtained that V (x, a) = a for all x ∈ L. So a ∈ L is the zero
element for V .

Consider the set V of all nullnorms on L with the following order: For
V1, V2 ∈ V ,

V1 ≤ V2 ⇔ V1(x, y) ≤ V2(x, y) for all (x, y) ∈ L2.
It can be easily shown that V is a partially ordered set. If we denote the set

of all nullnorms on L with the zero element a ∈ L by V (a), then each V (a) is
also a partially ordered set.

We use Da to represent the following set:
Da = [0, a] × [a, 1] ∪ [a, 1] × [0, a] for a ∈ L\ {0, 1}.

Definition 7 [13]. Let (L,≤, 0, 1) be a bounded lattice. An element x ∈ L is
called an idempotent element of a function V : L × L → L if V (x, x) = x. The
function V is called idempotent on L if all elements of L are idempotent.

Proposition 1 [9,11,15]. Let (L,≤, 0, 1) be a bounded lattice, a ∈ L\{0, 1} and
V be a nullnorm on L with the zero element e. Then

(i) V |[0,a]2 : [0, a]2 → [0, a] is a t-conorm on [0, a].
(ii) V |[a,1]2 : [a, 1]2 → [a, 1] is a t-norm on [a, 1].

The next results characterizing general properties of nullnorms on a bounded
lattice L are immediate from the definition of nullnorms.

Proposition 2 [9,15]. Let (L,≤, 0, 1) be a bounded lattice, a ∈ L\{0, 1} and V
be a nullnorm on L with the zero element a. The following properties hold:

(i) V (x, y) = a for all (x, y) ∈ Da.
(ii) a ≤ V (x, y) for all (x, y) ∈ [a, 1]2 ∪ [a, 1] × Ia ∪ Ia × [a, 1].
(iii) V (x, y) ≤ a for all (x, y) ∈ [0, a]2 ∪ [0, a] × Ia ∪ Ia × [0, a].
(iv) V (x, y) ≤ y for all (x, y) ∈ L × [a, 1].
(v) V (x, y) ≤ x for all (x, y) ∈ [a, 1] × L.
(vi) x ≤ V (x, y) for all (x, y) ∈ [0, a] × L.
(vii) y ≤ V (x, y) for all (x, y) ∈ L × [0, a].
(viii) x ∨ y ≤ V (x, y) for all (x, y) ∈ [0, a]2.
(ix) V (x, y) ≤ x ∧ y for all (x, y) ∈ [a, 1]2.
(x) (x ∧ a) ∨ (y ∧ a) ≤ V (x, y) for all (x, y) ∈ [0, a] × Ia ∪ Ia × [0, a] ∪ Ia × Ia.
(xi) V (x, y) ≤ (x ∨ a) ∧ (y ∨ a) for all (x, y) ∈ [a, 1] × Ia ∪ Ia × [a, 1] ∪ Ia × Ia.

Corollary 1 [13]. Let (L,≤, 0, 1) be a distributive bounded lattice and a ∈
L\{0, 1}. Then

V∗(x, y) = (x∧ y) ∨ (x∧ a) ∨ (y ∧ a) = (x∨ y) ∧ (x∨ a) ∧ (y ∨ a) = V ∗(x, y) (1)

is an idempotent nullnorm with zero element a ∈ L\{0, 1}.



34 G.D. Çaylı and F. Karaçal

3 Characterization of Idempotent Nullnorms on Bounded
Lattices

In this section, we investigate the presence of idempotent nullnorms on bounded
lattices. From Corollary 1, we know that there exists at least one idempotent
nullnorm on distributive bounded lattices for given zero element. In the fol-
lowing theorem, we research whether there exists any idempotent nullnorm on
distributive bounded lattices different from defined in Corollary 1.

Theorem 1. Consider an arbitrary distributive bounded lattice (L,≤, 0, 1) and
a ∈ L\{0, 1}. In that case, there is no idempotent nullnorm V on L with the
zero element a ∈ L\{0, 1} different from given by the formula (1).

Note that if L is non-distributive bounded lattice, it does not need to satisfy
the equality (x∧y)∨ (x∧a)∨ (y∧a) = (x∨y)∧ (x∨a)∧ (y∨a) (that is V∗(x, y)
does not need to equal to V ∗(x, y)) in the formula (1) for all x, y ∈ L.

A natural question arises: for the bounded lattice L such that the operation
V : L2 → L defined as the formula (2) is an idempotent nullnorm with the zero
element a ∈ L\{0, 1}, does L need to be distributive?

V (x, y) = (x ∨ y) ∧ (x ∨ a) ∧ (y ∨ a) (2)

In the following, we give a negative example violating the above hypothesis.

Example 1. Given the non-distributive bounded lattice L = {0, a, t, z, 1} with
the order given in Fig. 1, define a mapping V : L2 → L by Table 1. Then V is an
idempotent nullnorm on L with the zero element a such that V is constructed
by the formula (2). But the bounded lattice L is non-distributive.

Fig. 1. The lattice L
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Table 1. The idempotent nullnorm V on L

V 0 a t z 1

0 0 a 0 a a

a a a a a a

t 0 a t z 1

z a a z z z

1 a a 1 z 1

Consider an arbitrary bounded lattice L and a ∈ L\{0, 1}. Another genuine
question arises: is there always an idempotent nullnorm V on L with the zero
element a?

Let (L,≤, 0, 1) be a bounded lattice and a ∈ L. We know that there exists
unique idempotent nullnorm V on L for a = 0, based on the fact that V is a
t-norm for a = 0 and the only idempotent t-norm (inf) T∧ : L2 → L, T∧(x, y)
= x∧ y and there exists unique idempotent nullnorm V for a = 1, based on the
fact that V is a t-conorm for a = 1 and the only idempotent t-conorm (sup) S∨ :
L2 → L, S∨(x, y) = x∨ y. One can wonder whether there exists an idempotent
nullnorm on every bounded lattice L for the zero element a ∈ L\{0, 1}. In the
following theorem, we show that there may not be existence an idempotent
nullnorm on every bounded lattice L with the zero element a ∈ L\{0, 1}.

Theorem 2. Suppose that a bounded lattice L contains a sublattice which is
isomorphic to the sublattice characterized by Hasse diagram in Fig. 2. Then there
is no idempotent nullnorm V on L for indicated zero element a.

Fig. 2. The lattice L
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Remark 1. Let (L,≤, 0, 1) be a bounded lattice, a ∈ L\{0, 1}, S be a t-conorm
on [0, a] and T be a t-norm on [a, 1]. If all elements of L is comparable with a,
then the following function V : L2 → L is a nullnorm with the zero element a.

V (x, y) =

⎧
⎨

⎩

S (x, y) if (x, y) ∈ [0, a]2 ,
T (x, y) if (x, y) ∈ [a, 1]2 ,
a if (x, y) ∈ Da.

(3)

If we put S = S∨ on [0, a] and T = T∧ on [a, 1] in the formula (3), the following
nullnorm is an idempotent nullnorm on L with the zero element a. Moreover,
this idempotent nullnorm is unique, since the only idempotent t-conorm is S∨
and the only idempotent t-norm is T∧.

V (x, y) =

⎧
⎨

⎩

x ∨ y if (x, y) ∈ [0, a]2 ,
x ∧ y if (x, y) ∈ [a, 1]2 ,
a if (x, y) ∈ Da.

(4)

By Theorem 2, we know that there is no nullnorm the bounded lattice L
contains a sublattice which is isomorphic to the sublattice characterized in Fig. 2.
So, we inverstigate that there always be in existence an idempotent nullnorm
on which bounded lattice L with the zero element a ∈ L\{0, 1}. In order that
we propose the following theorem to characterize idempotent nullnorms on the
bounded lattice L such that there is only one element in L incomparable with
the zero element a ∈ L\{0, 1}.

Theorem 3. Let (L,≤, 0, 1) be a bounded lattice, a ∈ L\{0, 1} and there be
only one element in L incomparable with a. If this element incomparable with a
denotes by k, then the following function V : L2 → L is an idempotent nullnorm
with the zero element a.

V (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∨ y if (x, y) ∈ [0, a]2 ,
x ∧ y if (x, y) ∈ [a, 1]2 ,
a if (x, y) ∈ Da,
x ∨ (k ∧ a) if x ∈ [0, a] and y = k,
y ∨ (k ∧ a) if x = k and y ∈ [0, a] ,
x ∧ (k ∨ a) if x ∈ [a, 1] and y = k,
y ∧ (k ∨ a) if x = k and y ∈ [a, 1] ,
k if x = y = k.

(5)

Remark 2. Let (L,≤, 0, 1) be a bounded lattice and a ∈ L\{0, 1}.

(i) If we take the bounded lattice L is distributive in Theorem 3, then the idem-
potent nullnorm obtained in the formula (5) coincides with the idempotent
nullnorm given in the formula (1).

(ii) In Theorem 3, if the bounded lattice L is non-distributive and there are at
least two elements incomparable with a, the formula (5) may not give an
idempotent nullnorm on L due to Theorem 2.
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Example 2. Given the bounded lattice L = {0, x, y, a, z, t, 1}, with the order
given in Fig. 3, define a mapping V : L2 → L by Table 2 such that V is con-
structed by using the formula (5). Then V is an idempotent nullnorm on L with
the zero element a from Theorem 3.

Fig. 3. The lattice L

Table 2. The idempotent nullnorm V on L

V 0 x y a z t 1

0 0 x y a 0 a a

x x x y a x a a

y y y y a y a a

a a a a a a a a

z 0 x y a z t t

t a a a a t t t

1 a a a a t t 1

4 Concluding Remarks

In this paper, we study idempotent nullnorms on the bounded lattices. In the
case of standard real unit interval L = [0, 1], each nullnorm V with a zero element
a ∈ (0, 1) forms obtained in [15, Corollary 6]. And, here nullnorm V is the unique
idempotent nullnorm with zero element a ∈ (0, 1) based on the fact that the only
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idempotent t-norm on [0, 1] is T∧ and the only idempotent t-conorm on [0, 1] is
S∨. It can be found more details about idempotent nullnorms on unit interval
in [8,12]. If we consider an arbitrary bounded lattice L, we show that there may
not always be in existence idempotent nullnorms on L and in the case of L is a
distributive, there is unique idempotent nullnorm on L. Moreover, we introduce
a method to characterize idempotent nullnorms on an arbitrary bounded lattice
L with zero element a ∈ L\{0, 1}, if there is only one element in L incomparable
with a.

Acknowledgment. The full proofs of the theorems in this paper are contained in the
paper [6]. We are grateful to the anonymous reviewers and editors for their valuable
comments which have enabled us to improve the original version of our paper.
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23. Mesiarová-Zemánková, A.: Multi-polar t-conorms and uninorms. Inf. Sci. 301, 227–
240 (2015)

24. Schweizer, B., Sklar, A.: Statistical metric spaces. Pac. J. Math. 10, 313–334 (1960)
25. Xie, A., Liu, H.: On the distributivity of uninorms over nullnorms. Fuzzy Sets Syst.

211, 62–72 (2013)



Aggregating Fuzzy Subgroups
and T -vague Groups

D. Boixader1, G. Mayor2, and J. Recasens1(B)
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Abstract. Fuzzy subgroups and T -vague groups are interesting fuzzy
algebraic structures that have been widely studied. While fuzzy sub-
groups fuzzify the concept of crisp subgroup, T -vague groups can
be identified with quotient groups of a group by a normal fuzzy
subgroup and there is a close relation between both structures and
T -indistinguishability operators (fuzzy equivalence relations).

In this paper the functions that aggregate fuzzy subgroups
and T -vague groups will be studied. The functions aggregating
T -indistinguishability operators have been characterized [9] and the main
result of this paper is that the functions aggregating T -indistinguishabil-
ity operators coincide with the ones that aggregate fuzzy subgroups and
T -vague groups. In particular, quasi-arithmetic means and some OWA
operators aggregate them if the t-norm is continuous Archimedean.

1 Introduction

T -indistinguishability operators, also called fuzzy equivalence relations or fuzzy
equalities, fuzzify the concepts of crisp equivalence relation and crisp equal-
ity. They appear naturally when studying fuzzy systems and have an exten-
sive amount of literature since its first definition by Zadeh in [18]. One impor-
tant example is the study of fuzzy algebras (see [10] for example) and the
works by Demirci [2]. In many situations more than one T -indistinguishability
operator is defined on a system and it is necessary to aggregate them into a
unique of such fuzzy relations. There are many works dealing with this problem
[6,12,13]. The last one is [9] where the aggregation operators that aggregate T -
indistinguishability operators have been completely characterized regardless of
the nature of the t-norm T (continuity, archimedianity,. . . ). This result will be
recalled and used in this work.

Fuzzy subgroups of a group (G, ◦) were introduced by Rosenfeld [16] as a
natural generalization of subgroup of G and have been widely studied [11]. They
are defined as fuzzy subsets of (G, ◦) satisfying some properties fuzzifying the
definition of crisp subgroup.

c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
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In the crisp case, if (G, ◦) is a set with an operation ◦ : G × G → G and ∼
is an equivalence relation on G, then ◦ is compatible with ∼ if and only if

a ∼ a′ and b ∼ b′ implies a ◦ b ∼ a′ ◦ b′.

In this case, an operation ◦̃ can be defined on G = G/ ∼ by

a◦̃b = a ◦ b

where a and b are the equivalence classes of a and b with respect to ∼.
If the equivalence relation is replaced by a T -indistinguishability operator we

obtain fuzzy algebras [4,5,10]. Demirci generalized this idea by introducing the
concept of vague algebra, which basically consists of a fuzzy operation on a set
G (i.e.: a mapping ◦̃ : G × G × G → [0, 1] where ◦̃(a, b, c) is interpreted as the
degree in which a ◦ b is equivalent or indistinguishable from c) compatible with
a given indistinguishability operator [2].

To every fuzzy subgroup μ of a group (G, ◦) two T -indistinguishability oper-
ators Eµ and µE can be associated, that are left and a right invariant under
translations. If the fuzzy subgroup μ is normal, then the left and right T -in-
distinguishability operators Eµ and µE coincide. The operation of the group
is compatible with the T -indistinguishability operator Eµ if and only if μ is a
normal fuzzy subgroup of G.

A group (G, ◦) with the vague operation ◦̃(a, b, c) = E(a ◦ b, c) is a T -vague
group and, reciprocally, for every T -vague group of G there exists a T -indistin-
guishability operator E that is invariant under translations such that ◦̃(a, b, c) =
E(a ◦ b, c). Moreover, there is a bijection between the fuzzy normal subgroups of
G and the T -vague groups of G. In particular, T -vague groups can be thought
of as the fuzzy counterparts of crisp quotient groups (if μ is the normal fuzzy
subgroup associated to the vague group (G, ◦̃), then (G, ◦̃) can be identified with
G/μ).

Due to the importance of fuzzy groups and T -vague groups, it seems interest-
ing to study how can they be fused or aggregated. More concrete, finding aggre-
gation functions that aggregate them. This will be done in the present work,
where the functions aggregating them will be characterized. Due to the close
relation between fuzzy subgroups, T -vague groups and T -indistinguishability
operator, it is not surprising that the aggregation functions aggregating them
coincide. This is the main result of the work. As a consequence, quasi arithmetic
means and some OWA operators aggregate fuzzy subgroups and T -vague groups
if T is a continuous Archimedean t-norm.

2 Preliminaries

In this section, the basic definitions and properties of T -indistinguishability oper-
ators, fuzzy subgroups and T -vague groups are recalled.

T -indistinguishability operators fuzzify the concepts of crisp equivalence and
crisp equality. An overview of these operators can be found in [14].
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Definition 2.1. Let T be a t-norm. A fuzzy relation E on a set X is a T -in-
distinguishability operator if and only if for all x, y, z ∈ X

1. E(x, x) = 1 (Reflexivity)
2. E(x, y) = E(y, x) (Symmetry)
3. T (E(x, y), E(y, z)) ≤ E(x, z) (T -transitivity).

E separates points if and only if

(c) E(x, y) = 1 implies x = y.

Fuzzy subgroups were introduced by Rosenfeld [16] by fuzzifying the defin-
ition of crisp subgroup. The use of the minimum to model the conjunction has
been generalized to any t-norm later on. The reader interested in the study of
fuzzy subgroups is referred to [11].

Definition 2.2. Let (G, ◦) be a group, e its identity element and μ a fuzzy subset
of G. μ is a fuzzy subgroup of G if and only if for all x, y ∈ G

• μ(e) = 1
• T (μ(x), μ(y)) ≤ μ(x ◦ y−1) ∀x, y ∈ X.

T -vague algebras were introduced by Demirci considering fuzzy operations
compatible with given T -indistinguishability operators and an extensive study
of vague operations and T -vague groups can be found in [2].

Definition 2.3. A fuzzy binary operation on a set G is a map ◦̃ : G×G×G →
[0, 1].

◦̃(x, y, z) is interpreted as the degree in which z is x ◦ y.

Definition 2.4. Let E be a T -indistinguishability operator on G. A vague binary
operation on G is a fuzzy binary operation ◦̃ satisfying for all x, x′, y, y′ ∈ G

(a) T (◦̃(x, y, z), E(x, x′), E(y, y′), E(z, z′)) ≤ ◦̃(x′, y′, z′).
(b) T (◦̃(x, y, z), ◦̃(x, y, z′)) ≤ E(z, z′).
(c) For all x, y ∈ G there exists a unique z ∈ G such that ◦̃(x, y, z) = 1.

N.B. The usual definition of vague binary operation does not require unique-
ness in the third property and the vague binary operations with this property
are called perfect.

Definition 2.5. Let ◦̃ be a T -vague binary operation on G with respect to a
T -indistinguishability operator E on G. Then (G, ◦̃) is a T -vague group if and
only if it satisfies the following properties.

1. Associativity. ∀x, y, z, t,m, q, w,∈ G

T (◦̃(y, z, t), ◦̃(x, t,m), ◦̃(x, y, q), ◦̃(q, z, w)) ≤ E(m,w)).
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2. Identity. There exists a (two sided) identity element e ∈ G such that

T (◦̃(e, x, x), ◦̃(x, e, x)) = 1

for each a ∈ G.
3. Inverse. For each x ∈ G there exists a (two-sided) inverse element x−1 ∈ G

such that

T (◦̃(x−1, x, e), ◦̃(x, x−1, e)) = 1.

A T -vague group is Abelian or commutative if and only if

∀x, y,m,w ∈ G,T ((◦̃(x, y,m), ◦̃(y, x, w))) ≤ E(m,w)).

Proposition 2.6. Let (G, ◦̃) be a T -vague group. Then (G, ◦) with ◦ defined for
all x, y ∈ G by x ◦ y = z, where z is the unique element of G with ◦̃(x, y, z) = 1,
is a group.

3 Relationship Between Indistinguishability Operators,
Fuzzy Subgroups and Vague Groups

3.1 Fuzzy Subgroups

To every fuzzy subset μ of a group (G, ◦) a pair of fuzzy relations can be associ-
ated that are indistinguishability operators if and only if μ is a fuzzy subgroup
of G. This two indistinguishability operators coincide when μ is a fuzzy nor-
mal subgroup and there is a compatibility between it and the operation ◦ of the
group. These properties and their relation with the invariance under translations
will be analyzed in this section.

In the crisp case, given a subgroup H of a group (G, ◦), the relations ∼r and
∼l on G defined by x ∼r y if and only if x ◦ y−1 ∈ H and x ∼l y if and only
if y−1 ◦ x ∈ H respectively are equivalence relations. The operation ◦ of G is
compatible with ∼r and ∼l if and only if H is a normal subgroup of G.

These results can be generalized to fuzzy subgroups and T -indistinguishabil-
ity operators.

Definition 3.1. Let ◦ be a binary operation on G and E a fuzzy relation on G.
E is invariant under translations with respect to ◦ if and only if

(a)

E(x, y) = E(z ◦ x, z ◦ y) (left invariant)

and
(b)

E(x, y) = E(x ◦ z, y ◦ z) (right invariant),

∀x, y, z ∈ G.
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To every fuzzy subset μ of a group (G, ◦) two fuzzy relations Eµ and µE
can be assigned that are right and left invariant T -indistinguishability operators
respectively if and only if μ is a fuzzy subgroup of G.

Definition 3.2. Let μ be a fuzzy subset of (G, ◦). The fuzzy relations Eµ and
µE on G defined by

Eµ(x, y) = μ(x ◦ y−1) ∀x, y ∈ G

and

µE(x, y) = μ(y−1 ◦ x) ∀x, y ∈ G

are the right and left fuzzy relations associated to μ respectively.

Proposition 3.3. Let μ be a fuzzy subgroup of a group (G, ◦). Then Eµ and µE
are right and left invariant T -indistinguishability operators on G respectively.

Lemma 3.4. If μ is a fuzzy subgroup of (G, ◦) and e is the identity element of
G, then Eµ(x, y) = Eµ(e, x ◦ y−1) and µE(x, y) =µ E(e, y ◦ x−1) ∀x, y ∈ G.

Proof. Trivial.

Reciprocally, to every right (left) T -indistinguishability operator on (G, ◦) a
fuzzy subgroup of G can be assigned.

Proposition 3.5. Let E be a T -indistinguishability operator on a group (G, ◦)
with identity element e such that E is right invariant. Then the column μe of
E (i.e., the fuzzy subset μe of G defined by μe(x) = E(e, x) ∀x ∈ G) is a fuzzy
subgroup of G and E = Eµe

.

Similarly,

Proposition 3.6. Let E be a T -indistinguishability operator on a group (G, ◦)
with identity element e such that E is left invariant. Then the column μe of E
is a fuzzy subgroup of G and E =µe

E.

Corollary 3.7. Let (G, ◦) be a group. There exist bijections between the set
FSG of fuzzy subgroups of G, the set RIG of right invariant indistinguishability
operators on G and the set LIG of left invariant indistinguishability operators on
G mapping every fuzzy subgroup μ of G into its associated T -indistinguishability
operators Eµ and µE.

The following definition fuzzifies the concept of normal subgroup.

Definition 3.8. A fuzzy subgroup μ of a group (G, ◦) is called a normal fuzzy
subgroup if and only if μ(x ◦ y) = μ(y ◦ x) ∀x, y ∈ G.

Proposition 3.9. Let (G, ◦) be a group and μ a normal fuzzy subgroup of G.
The associated T -indistinguishability operators Eµ and µE to μ coincide and are
invariant under translations.
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Reciprocally,

Proposition 3.10. Let (G, ◦) be a group, μ a fuzzy subgroup of G and Eµ and
µE its associated T -indistinguishability operators. If Eµ and µE are invariant
under translations, then they coincide and μ is a normal fuzzy subgroup of G.

Corollary 3.11. Let (G, ◦) be a group. There is a bijection between the set of
normal fuzzy subgroups of G and the set of T -indistinguishability operators on
G invariant under translations with respect to ◦.

The following proposition links normality of a fuzzy subgroup μ with com-
patibility with respect to its associated T -indistinguishability operator Eµ.

Proposition 3.12. Let (G, ◦) be a group, μ a fuzzy normal subgroup of G and
Eµ its associated T -indistinguishability operator. Then ◦ is extensional with
respect to Eµ (i.e., T (Eµ(x, x′), Eµ(y, y′)) ≤ Eµ(x ◦ y, x′ ◦ y′)).

3.2 Vague Groups

Vague groups were introduced in [2] as structures compatible with given indis-
tinguishability operators. They are also closely related to fuzzy normal sub-
groups [3].

The next two propositions relate normal fuzzy subgroups and indistinguisha-
bility operators invariant under translations with vague groups.

Proposition 3.13 [3]. Let (G, ◦) be a group, μ a normal fuzzy subgroup of (G, ◦)
and Eµ its associated T -indistinguishability operator on G. If ◦̃ : G × G × G →
[0, 1] is defined for all x, y, z ∈ G by ◦̃(x, y, z) = μ(x ◦ y ◦ z−1) = Eµ(x ◦ y, z),
then (G, ◦̃) is a T -vague group.

Proposition 3.14 [3]. Let (G, ◦̃) be a T -vague group with respect to the T -in-
distinguishability operator E. Then,

(a) ◦̃(x, y, z) = E(x ◦ y, z) ∀x, y, z ∈ G.
(b) ◦ is extensional with respect to E.
(c) E is invariant under translations with respect to ◦.
Proposition 3.15. Let (G, ◦) be a group. There exist bijective maps between its
T -vague groups, its fuzzy normal subgroups and its T -indistinguishability opera-
tors invariant under translations.

Proof. The bijections are given by

◦̃(x, y, z) = E(x ◦ y, z) = μ(x ◦ y ◦ z−1).

4 Aggregating Fuzzy Subgroups and Vague Groups

In [9] the functions preserving indistinguishability operators have been charac-
terized by means of the so called T -triangular triplets. In this section we first
recall these results and we will use them in the next two subsections to obtain
the functions preserving fuzzy subgroups and vague groups thanks to the results
of the previous Sect. 3.
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Definition 4.1. We say that a triplet (a, b, c) ∈ [0,∞]3 is triangular if and
only if

a ≤ b + c, b ≤ a + c, c ≤ a + b.

Being a, b, c ∈ [0,∞]m, m ≥ 1, we say that (a, b, c) is a (m-dimensional)
triangular triplet if (ai, bi, ci) is triangular for all i = 1, . . . ,m, where a =
(a1, . . . , am), b = (b1, . . . , bm), c = (c1, . . . , cm).

Definition 4.2. Let T be a t-norm. We say that (a, b, c) ∈ [0, 1]3 is T -triangular
if and only if

a ≥ T (b, c), b ≥ T (a, c), c ≥ T (a, b).

Being a, b, c ∈ [0, 1]m, m ≥ 1, we say that (a, b, c) is a (m-dimensional)
T -triangular triplet if (ai, bi, ci) is T -triangular for all i = 1, . . . ,m, where
a = (a1, . . . , am), b = (b1, . . . , bm), c = (c1, . . . , cm).

Proposition 4.3. Let T be a left continuous t-norm and
←→
T its bi-residuation.

A triplet (a, b, c) ∈ [0, 1]3 is T -triangular if and only if T (a, b) ≤ c ≤ ←→
T (a, b).

Example 4.4.

• A triplet is T -triangular with respect to the minimum t-norm if and only if
there exists a reordering (a, b, c) such that a = b and c ≥ a.

• A triplet is T -triangular with respect to the �Lukasiewicz t-norm if and only if
there exists a reordering (a, b, c) such that max(a+b−1, 0) ≤ c ≤ 1− | a−b |.

• A triplet is T -triangular with respect to the product t-norm if and only if
it is (0, 0, 0) or there exists a reordering (a, b, c) with a, b, c > 0, such that
ab ≤ c ≤ min(ab , b

a ).

Definition 4.5. A function F : [0, 1]m → [0, 1],m ≥ 1, aggregates T -in-
distinguishability operators if for any set X and any collection of T -indis-
tinguishability operators on X, (E1, . . . , Em), then F (E1, . . . , Em) is also a
T -indistinguishability operators on X, where F (E1, . . . , Em) is the fuzzy binary
relation F (E1, . . . , Em)(x, y) = F (E1(x, y), . . . , Em(x, y)).

The next result characterizes the functions that aggregate
T -indistinguishability operators.

Proposition 4.6 [9]. A function F : [0, 1]m → [0, 1],m ≥ 1, aggregates T -in-
distinguishability operators if and only if the following conditions hold:

(i) F (

m
︷ ︸︸ ︷

1, . . . , 1) = 1.
(ii) F transforms m-dimensional T -triangular triplets into 1-dimensional T -tri-

angular triplets.

Proposition 4.7. A function F : [0, 1]m → [0, 1], aggregates min-indistinguish-
ability operators if and only if it is increasing in each variable and F (1, . . . , 1)=1.
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When T is a continuous Archimedean t-norm, a characterization of those
functions that aggregate T -equivalence relations can be formulated in terms of
an additive generator of T as follows.

Proposition 4.8. If T is a continuous Archimedean t-norm with additive gen-
erator g, then F : [0, 1]m −→ [0, 1] aggregates T -indistinguishability operators if
and only if the function G = gF (g(−1) × . . . × g(−1)) transforms (ordinary) tri-
angular triplets of [0,∞]m (with elements in [0, g(0)]m) into (ordinary) triangle
triplets of [0,∞] (with elements in [0, g(0)]) and G(0, . . . , 0) = 0.

Example 4.9. A function F : [0, 1]m → [0, 1],m ≥ 1, aggregates T -in-
distinguishability operators with T the �Lukasiewicz t-norm if and only if
G(a1, . . . , am) = 1 − F (max(1 − a1, 0), . . . ,max(1 − am, 0)) transforms trian-
gular triplets of [0,∞]m (with elements in [0, 1]m) into triangle triplets of [0,∞]
(with elements in [0, 1]) and G(0, . . . , 0) = 0.

Under increasingness, subadditivity (G(a+ b) ≤ G(a) + G(b)) is equivalent
to the property of transforming triangular triplets into triangle triplets.

Proposition 4.10. Consider G : [0,∞]m −→ [0,∞]. Then:

(i) If G transforms triangular triplets of [0,∞]m into triangular triplets of
[0,∞] then it is subadditive.

(ii) If G is increasing and subadditive then it transforms triangular triplets of
[0,∞]m into triangular triplets of [0,∞].

Thus, from the two previous propositions, we can enunciate the following

Proposition 4.11. Let T be a continuous Archimedean t-norm with additive
generator g. An increasing function F : [0, 1]m → [0, 1], with F (1, . . . , 1) =
1, aggregates T -indistinguishability operators if and only if the function G =
gFg(−1) is subadditive.

Consequences of the previous propositions are two known results concerning
the role of weighted arithmetic means and ordered weighted arithmetic means
(OWA operators) in this approach.

Proposition 4.12. Let T be a continuous Archimedean t-norm with addi-
tive generator g. Any weighted quasi-arithmetic mean F (a1, . . . , am) =
g−1(Σwig(ai)) where (w1, . . . , wm) are non-negative real numbers satisfying
Σwi = 1 aggregates T -indistinguishability operators.

Proposition 4.13. Let T be a continuous Archimedean t-norm with addi-
tive generator g. An ordered weighted quasi-arithmetic mean F(a1, . . . , am) =
g−1(Σwig(a(m−i))) where a(k) denotes the k-largest input in the list (a1, . . . , am)
aggregates T -indistinguishability operators if wi ≥ wj for i ≤ j.
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4.1 Aggregating Fuzzy Subgroups

The relationship between fuzzy subgroups and indistinguishability operators will
be used in this subsection to characterize the functions aggregating fuzzy sub-
groups.

Definition 4.14. A function S : [0, 1]m → [0, 1],m ≥ 1, aggregates T -fuzzy
subgroups if for any group (G, ◦) and any collection of T -fuzzy subgroups of
G, μ1, . . . , μm, then S(μ1, . . . , μm) is also a T -fuzzy subgroup of G, where
S(μ1, . . . , μm) is the fuzzy subset S(μ1, . . . , μm)(x) = S(μ1(x), . . . , μm(x)).

Proposition 4.15. Let (G, ◦) be a group, E1, E2, . . . , Em left (right) invariant
T -indistinguishability operators on G and F : [0, 1]m → [0, 1] a function aggre-
gating T -indistinguishability operators. Then F (E1, E2, . . . , Em) is a left (right)
invariant T -indistinguishability operator.

Proof.

F (E1, E2, . . . , Em)(z ◦ x, z ◦ y)
= F (E1(z ◦ x, z ◦ y), E2(z ◦ x, z ◦ y), . . . , Em(z ◦ x, z ◦ y))
= F (E1(x, y), E2(x, y), . . . , Em(x, y))
= F (E1, E2, . . . , Em)(x, y).

Proposition 4.16. Let (G, ◦) be a group, F : [0, 1]m → [0, 1] a function,
μ1, . . . μm fuzzy subsets of G and µ1E, . . . ,µm

E (Eµ1 , . . . , Eµm
) their respective

left (right) invariant fuzzy relations. Then

(a) F (µ1E, . . . ,µm
E) =F (µ1,...,µm) E

(b) F (Eµ1 , . . . , Eµm
) = EF (µ1,...,µm).

Proof. We will prove (a):

F (µ1E, . . . ,µm
E)(x, y) = F (µ1E(x, y), . . . ,µm

E(x, y))
= F (μ1(y−1 ◦ x), . . . , μm(y−1 ◦ x))
= F (μ1, . . . , μm)(y−1 ◦ x)
= F (µ1,...,µm)E(x, y).

As a corollary we obtain:

Corollary 4.17. With the same notations as in the preceding Proposition 4.16,

• if F aggregates T -indistinguishability operators and μ1, . . . , μm are fuzzy sub-
groups of G, then F (μ1, . . . , μm) is a fuzzy subgroup of G.

• if F aggregates T -fuzzy subgroups and E1, . . . , Em are left (right) invariant T -
indistinguishability operators, then F (E1, . . . , Em) is a left (right) invariant
T -indistinguishability operator.

Corollary 4.18. If F ([0, 1]m → [0, 1] aggregates T -indistinguishability opera-
tors, then F aggregates T -fuzzy subgroups.
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Proposition 4.19. Let F : [0, 1]m → [0, 1] be a function that aggregates
fuzzy subgroups. Then F transforms m-dimensional T -triangular triplets into
1-dimensional triplets.

Proof. Consider the group Z/(2)×Z/(2) and put e = (0, 0), a = (0, 1), b = (1, 0),
c = (1, 1).

Let a = (a1, . . . , am),b = (b1, . . . , bm), c = (c1, . . . , cm) be m-dimensional
T -triplets. For every i = 1., ,m consider the fuzzy subgroup μi defined by

μi(e) = 1, μi(a) = ai, μi(b) = bi, μi(c) = ci.

Corollary 4.20. Let F : [0, 1] → [0, 1] be a function that aggregates left (right)
invariant T -indistinguishability operators. Then F transforms m-dimensional T -
triangular triplets into 1-dimensional triplets.

From Propositions 4.6 and 4.19 we obtain the following important result.

Proposition 4.21. A function F : [0, 1]m → [0, 1],m ≥ 1, aggregates fuzzy
subgroups if and only if it aggregates T -indistinguishability operators.

Proposition 4.22. A function F : [0, 1]m → [0, 1],m ≥ 1, aggregates fuzzy
subgroups if and only if the following conditions hold:

(i) F (

m
︷ ︸︸ ︷

1, . . . , 1) = 1.
(ii) F transforms m-dimensional T -triangular triplets into 1-dimensional T -tri-

angular triplets.

4.2 Aggregating Vague Groups

In this subsection we will obtain results on the aggregation of T -vague groups
similar to the ones in the previous subsection.

Definition 4.23. A function V : [0, 1]m → [0, 1],m ≥ 1, aggregates
T -vague groups if for any group (G, ◦) and any collection of T -vague groups
of G, (G, ◦̃1), . . . , (G, ◦̃m), then V((G, ◦̃1), . . . , (G, ◦̃m)) is also a T -vague
group G, where V((G, ◦̃1), . . . , (G, ◦̃m)) is the T -vague group of G with the
vague operation defined for all x, y, z ∈ G by V (◦̃1, . . . , ◦̃m)(x, y, z) =
V (◦̃1(x, y, z), . . . , ◦̃m(x, y, z)).

Proposition 4.24. Let (G, ◦) be a group, (G, ◦̃1), . . . , (G, ◦̃m) T -vague groups
of G, E1, . . . ,Em their respective associated T-indistinguishability operators (i.e.,
◦̃i(x, y, z)= Ei(x ◦ y, z) for i = 1, . . . ,m) and F : [0, 1]m → [0, 1] a function.
Then

F (E1, . . . , Em) = EF ((G,◦̃1),...,(G,◦̃m)).

Corollary 4.25. With the same notations as in the preceding Proposition 4.24,
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• if F aggregates T -indistinguishability operators and (G, ◦̃1), . . . , (G, ◦̃m) are
T -vague groups of G, then F ((G, ◦̃1), . . . , (G, ◦̃m)) is a T -vague group of G.

• if F aggregates T -vague groups E1, . . . , Em are invariant
T -indistinguishability operators, then F (E1, . . . , Em) is an invariant T -
indistinguishability operator.

Similarly to fuzzy subgroups we obtain the following important result.

Proposition 4.26. A function F : [0, 1]m → [0, 1],m ≥ 1, aggregates T -indis-
tinguishability operators if and only if it aggregates T -vague groups.

Proposition 4.27. A function F : [0, 1]m → [0, 1],m ≥ 1, aggregates T -vague
groups if and only if the following conditions hold:

(i) F (

m
︷ ︸︸ ︷

1, . . . , 1) = 1.
(ii) F transforms m-dimensional T -triangular triplets into 1-dimensional T -tri-

angular triplets.

5 Concluding Remarks

In this work we have dealt with the problem of aggregating fuzzy subgroups
and T -vague groups. Thanks to the close relation between these objects and T -
indistinguishability operators, it results that the functions that aggregate them
are the functions preserving T -triplets. In other words, the functions preserving
T -indistinguishability operators, fuzzy subgroups and T -vague groups coincide.
Interesting examples of these functions are

• The t-norm
• The minimum
• If the t-norm T is continuous Archimedean and g and additive of T , then

− The weighted quasi-arithmetic means mg generated by g
− The ordered quasi-arithmetic means generated by g with decreasing

weights.

We have studied the aggregation of fuzzy subgroups and T -vague groups from
a functional point of view. Nevertheless, there are other ways to fusion or aggre-
gate them that are not functional. Given a collection of T -indistinguishability
operators, fuzzy subgroups or T -vague groups, a very natural way to aggregate
them is calculating the transitive closure of their union, which is not a functional
procedure. We have pointed out in this paper that there are a bijections between
the sets of left and of right invariant T indistinguishability operators and the set
of fuzzy subgroups, and the set of T -vague groups, normal fuzzy subgroups and
invariant T -indistinguishability operators. In fact these sets are isomorphic lat-
tices [15] and the bijections preserve transitive closures (if E1, . . . , Em are the
left (right) T -indistinguishability operators associated to the fuzzy subgroups
μ1, . . . , μm respectively and E is the transitive closure of E1 ∪ . . . ∪ Em, then
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E is the left (right) T -indistinguishability operator associated to the transitive
closure of μ1 ∪ . . . ∪ μm and similarly with T -vague groups).

As an interesting consequence of the results of this work, crisp equivalence
relations subgroups and quotient groups can be aggregated obtaining fuzzy
objects.

Example 5.1. Let T a continuous Archimedean t-norm with additive genera-
tor g. Then the weighted quasi-arithmetic means with generator g of crisp equiv-
alence relations on a set X are T -indistinguishability operators on X.

Example 5.2. Let (6) and (10) be the subgroups of (Z,+) of multiples of 6 and
10, respectively, t(x) = 1 − x an additive generator of the �Lukasiewicz t-norm
and p, q ≥ 0 with p + q = 1. Then mp,q

t ((6), (10)) = p(6) + q(10) is the fuzzy
subgroup

(p(6) + q(10))(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if x is a multiple of the least common divisor lcd(6, 10) =30

p if x is a multiple of 6 and not a multiple of 10

q if x is a multiple of 10 and not a multiple of 6

0 if x is neither a multiple of 6 nor a multiple of 10.
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Abstract. In this paper we provide an extension of special parametric
class of perturbations of an arbitrary copula (given in [3]) that represent a
partial generalization of the FGM family of copulas for parameters from
the unit interval. However the FGM family is defined for parameters
from the interval [−1, 1]. We present a construction of perturbations of
an arbitrary copula also for parameters from the interval [−1, 0] so that
together with the former family of perturbations of copulas we get a
generalization of the FGM family for the whole interval [−1, 1]. We also
investigated the influence of the parameters of the introduced class of
perturbations of copulas on several measures of dependence (Spearman’s
rho, Blomqvist’s beta, Gini’s gamma, Kendall’s tau).

Keywords: Copula · Perturbation of copulas · Measures of dependence

1 Introduction

A special parametric class of perturbations of an arbitrary copula C was intro-
duced in [3] by the formula

Cα(u, v) = C(u, v) + α (u − C(u, v)) (v − C(u, v)) for α ∈ [0, 1]. (1)

It was shown that (1) provides a generalization of the Farlie–Gumbel–
Morgenstern (FGM) family

FGMα(u, v) = u v + α u (1 − u) v (1 − v), α ∈ [−1, 1] (2)

(that represent perturbations of the product copula) for parameters from the
interval [0, 1]. However the formula (2) for the FGM family is applicable for
parameters from the interval [−1, 1]. We extend the class of copulas given by (1)
by the formula

Cα(u, v) = C(u, v) + αC(u, v) [C(u, v) − (u + v − 1)] , α ∈ [−1, 0] (3)
c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 6
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and we obtain a generalization of the FGM family on the whole interval [−1, 1].
We also investigate the influence of the parameters of the introduced class
of perturbations of copulas on the values of several measures of dependence
(Spearman’s rho, Blomqvist’s beta, Gini’s gamma, Kendall’s tau). We show that
this influence is linear on both subintervals [−1, 0] and [0, 1] in case of the first
three of the above coefficients, while it is quadratic on the both mentioned subin-
tervals in case of Kendall’s tau.

The paper is organized as follows. The second section presents a brief
overview of the theory of copulas, their reflections and perturbations. In the
third section, some selected dependence measures are reviewed. In the fourth
section, some results concerning the values of selected dependence coefficients
for reflections and considered perturbations of copulas are presented. Finally,
some concluding remarks are added.

2 Copulas

Recall that for a 2–dimensional random vector (X,Y ) with a joint distribution
function FXY and continuous marginal distribution functions FX , FY a copula C
satisfying the relations FXY (x, y) = C(FX(x), FY (y)) is the distribution function
of the random vector (U, V ), where U = FX(X) and V = FY (Y ) have uniform
distributions on [0, 1]. For more details we recommend monographs Joe [2] and
Nelsen [4].

We follow the approach of Patton [5] and consider a so–called survival copula
derived from a given copula C corresponding to the couple (−X,−Y ) by

̂C(u, v) = u + v − 1 + C(1 − u, 1 − v) (4)

which is the copula corresponding to the couple (−X,−Y ).
Another natural transformations of the copula C are copulas LC and RC

corresponding to the couples (−X,Y ) and (X,−Y ), respectively.
They have the form

LC(u, v) = v − C(1 − u, v) (5)

and

RC(u, v) = u − C(u, 1 − v). (6)

We will call the copulas LC and RC the left and the right reflections of the
copula C, respectively (see e.g. [1]).

In [3], the following family of perturbations given by (1) of any copula C was
introduced as a partial generalization of the FGM class of perturbations derived
from the product copula

Π(u, v) = u v
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by

Πα(u, v)=u v + α (u − u v) (v − u v) = u v + α u v(1 − u) (1 − v) for α ∈ [−1, 1]. (7)

However, the formula (1) can not be directly extended for α ∈ [−1, 0] preserving
the resulting functions in the copula class. For example, for the minimal copula

W (u, v) = max(0, u + v − 1),

we get

W−0.5(0.5, 0.5) = 0 − 0.5 (0.5)2 = −0.53 < 0.

We find a suitable extension of the class Cα for α ∈ [−1, 0] in the form

Cα = L
(

(LC)(−α)

)

for α ∈ [−1, 0]. (8)

(Note that L ((LC)0) = L(LC) = C.)
We can obtain a more explicit form of Cα for α ∈ [−1, 0) using (5) and (1).

We have

(LC)(−α)(u, v) = [(v − C(1− u, v))]− α [(u − (v − C(1− u, v))) (v − (v − C(1− u, v)))]

= [v − C(1 − u, v)] − α [u − v + C(1 − u, v)] C(1 − u, v),

hence

L((LC)(−α))(u, v) = v − [v − C(u, v)] − α [(1 − u) − v + C(u, v)] C(u, v)

= C(u, v) + α [C(u, v) − (u + v − 1)] C(u, v) for α ∈ [−1, 0]

and thus the copulas given by (8) and (3) are identical.
Note that, defining C̃(u, v) = C(v, u), it is not difficult to check that

C̃α(u, v) = Cα(v, u). Hence an alternative expression

Cα(u, v) = R((RC)(−α))(u, v)

also holds for α ∈ [−1, 0]. Put

D1(u, v) = (u − C(u, v)) (v − C(u, v))
D2(u, v) = C(u, v) [C(u, v) − (u + v − 1)] . (9)

We can combine (1), (3) and (9) in the form

Cα(u, v) =
{

C(u, v) + α D1(u, v) for α ∈ [0, 1],
C(u, v) + α D2(u, v) for α ∈ [−1, 0]. (10)

We have

D1(u, v) = u v + C(u, v) [C(u, v)− (u + v − 1)]− C(u, v) = Π(u, v) + D2(u, v)− C(u, v),



56 J. Komorńık et al.

hence

Cα(u, v) = C(u, v) − αC(u, v) (u + v − C(u, v)) +
α + |α|

2
u v +

α − |α|
2

C(u, v)

for α ∈ [−1, 1]. Note that Cα(u, v) is a nondecreasing function of α for any
(u, v) ∈ [0, 1]2. Moreover for C = W we have D2(u, v) = 0, D1(u, v) = Π(u, v)−
W (u, v), thus for (u, v) ∈ [0, 1]2

Wα(u, v) =
{

(1 − α)W (u, v) + α Π(u, v) for α ∈ [0, 1],
W (u, v) for α ∈ [−1, 0]. (11)

yielding W1(u, v) = Π(u, v). Furthermore, for any copula C �= W and (u, v) ∈
[0, 1]2 such that C(u, v) > W (u, v) we have D2(u, v) > 0 and thus Cα(u, v) is an
increasing function of α for α ∈ [−1, 0] and its minimum is

C−1(u, v) = C(u, v) − D2(u, v) = C(u, v) [u + v − C(u, v)] = u v − D1(u, v) ≤ Π(u, v).

Similarly for M(u, v) = min(u, v) we have D1(u, v) = 0, thus D2(u, v) =
M(u, v) − Π(u, v) and

Mα(u, v) =
{

M(u, v) for α ∈ [0, 1],
(1 + α)M(u, v) − α Π(u, v) for α ∈ [−1, 0]. (12)

yielding M−1(u, v) = Π(u, v) for (u, v) ∈ [0, 1]2.
For any C �= M and (u, v) ∈ [0, 1]2 such that C(u, v) < M(u, v) we have

D1(u, v) > 0 and thus Cα(u, v) is an increasing function of α for α ∈ [0, 1] and
its maximum

C1(u, v) = C(u, v) + D1(u, v) = u v + D2(u, v) ≥ Π(u, v).

Furthermore, for C = Π, we get from (3) that for α ∈ [−1, 0]

Πα(u, v) = u v + α [u v − (u + v − 1)] u v = u v + αu v (1 − u) (1 − v). (13)

Hence the formulas (13) and (7) give the same results for α ∈ [−1, 1] and thus
(10) provide a generalization of the FGM class.

Theorem 1. Let C : [0, 1]2→ [0, 1] be a copula. The perturbation Cα, α∈ [−1, 1]
of copula C given by (9) and (10) is order preserving, i.e. for any two copulas
C(1) ≤ C(2) and α ∈ [−1, 1] we have C

(1)
α ≤ C

(2)
α .

Proof. For α ∈ [0, 1] we have

C
(2)
α (u, v) − C

(1)
α (u, v) =

(
C

(2)
(u, v) − C

(1)
(u, v)

)

+α
[(

u v − C
(2)

(u, v)(u + v) + (C
(2)

)
2
(u, v)

)
−
(

u v − C
(1)

(u, v)(u + v) + (C
(1)

)
2
(u, v)

)]

=
(

C
(2)

(u, v) − C
(1)

(u, v)
)
+α
[(

(C
(2)

)
2
(u, v) − (C

(1)
)
2
(u, v)

)
−
(

C
(2)

(u, v) − C
(1)

(u, v)
)
(u+v)

]

= (1 − α)
(

C
(2)

(u, v) − C
(1)

(u, v)
)
+ α

(
C

(2)
(u, v) − C

(1)
(u, v)

)

·
[(

C
(2)

(u, v) + C
(1)

(u, v)
)

− (u + v − 1)
]

≥ 0.
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Obviously

L(C(2))(u, v) = v − C(2)(1 − u, v) ≤ v − C(1)(1 − u, v) = L(C(1))(u, v).

For α ∈ [−1, 0] we have
(

L(C(2))
)

−α
≤

(

L(C(1))
)

−α

and thus

C(2)
α = L

(

(

L(C(2))
)

−α

)

≥ L

(

(

L(C(1))
)

−α

)

= C(1)
α .

3 Dependence measures for copulas

The dependence structure between random variables is completely described by
their joint distribution function. Apart from linear correlation, there exist several
other measures of association.

Linear correlation measures how well two random variables cluster around a
linear function. A major shortcoming is that linear correlation is not invariant
under non-linear monotonic transformations of random variables. The concor-
dance and dependence measures (e.g. Kendall’s tau, Spearman’s rho) reflect the
degree to which random variables cluster around a monotone function. This is
a consequence of these measures being defined as only dependent on the cop-
ula and copulas are invariant under monotone transformations of the random
variables (i.e., we deal with rank dependence measures only).

Two observations (x1, y1) and (x2, y2) from a pair of continuous random
variables are concordant if (xl − x2) (yl − y2) > 0; and they are discordant if
(xl − x2) (yl − y2) < 0 (see, e.g. [6]).

Spearman’s rho
Let us denote I2 = [0, 1] × [0, 1] (the unit square). Let (X,Y ) is a random

vector characterized by a copula C. It was shown in [4] that the Spearman’s rho
satisfies

ρ(C) = 12
∫ ∫

I2
C(u, v)dudv − 3. (14)

Besides the notation Cα(u, v) for the perturbation of copulas given by (10) and
(9) for parameters α ∈ [0, 1], we will also use notations Cu(u, v) = ∂

∂ uC(u, v),
Cv(u, v) = ∂

∂ v C(u, v) for the indicated partial derivatives. Recall that the func-
tions Cu(u, v), Cv(u, v) are almost everywhere defined and attain values in [0, 1]
(see Nelsen [4]).

Kendall’s tau
Nelsen in [4] shows that if X, Y is a pair of continuous random variables with

copula C, then the population version of Kendall’s tau is

τ(C) = 1 − 4
∫ ∫

I2
Cu(u, v) Cv(u, v) du dv, (15)

(see Nelsen [4] for details).
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Blomqvist’s beta
If X and Y are continuous random variables with copula C, then the pop-

ulation version of the median correlation coefficient (also known as Blomqvist’s
beta) is given by (see Nelsen [4])

β(C) = 4C
(

1
2
,
1
2

)

− 1. (16)

Gini’s gamma
Denote δC(u) = C(u, u) and ωC(u) = C(u, 1 − u).
It was shown in [4] that Gini’s gamma

γ(C) = 4

[∫ 1

0
C(u, 1− u)du −

∫ 1

0
(u − C(u, u)) du

]
= 4

[∫ 1

0
(ωC(u) + δC(u)− u) du

]
.

(17)

Remark 1. It is a direct consequence of (14), (16) and (17) that the above
dependence measures Spearman’s rho, Blomqvist’s beta and Gini’s gamma are
monotone, which means that for two copulas C(1), C(2) such that C(1)(u, v) ≤
C(2)(u, v) for (u, v) ∈ I2 we have

ρ(C(1)) ≤ ρ(C(2)), β(C(1)) ≤ β(C(2)), γ(C(1)) ≤ γ(C(2)).

4 Dependence Measures for Reflections
and Perturbations of Copulas

Remark 2. 1. Note that for any continuous function f : I → R the equality
∫ 1

0

f(x) dx =
∫ 1

0

f(1 − x) dx (18)

holds.
2. The product copula Π(u, v) is invariant under the reflections, i.e.

LΠ = R Π = S Π = Π. (19)

3. For any binary copulas C1, C2 we have
∫ ∫

I2
| LC1 (u, v) − LC2 (u, v) |du dv =

∫ ∫
I2

| RC1 (u, v) − RC2 (u, v) |du dv =

∫ ∫
I2

|C1 (u, v) − C2 (u, v) |du dv.

Hint

|LC1 (u, v) − LC2 (u, v) | = | [u − C1 (1 − u, v)] − [u − C2 (1 − u, v)] |

= | C2 (1 − u, v) − C1 (1 − u, v) | .
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Theorem 2. The following equality holds:

γ (LC) = γ (RC) = γ (SC) = γ (C) . (20)

Proof. According to (17) we have

γ (C) = 4
∣

∣

∣

∣

∫ 1

0

[δC (u) + ωC (u) − u] du

∣

∣

∣

∣

.

δRC (u) = u−C (u, 1 − u) = u−ωC (u) , ωRC (u) = u−C (u, u) = u− δC (u) ,

δRC (u) + ωRC (u) − u = u − ωC (u) − δC (u) ,

δLC (u) = u − C (1 − u, u) = u − ωC (1 − u) ,

ωLC (u) = (1 − u) − C (1 − u, 1 − u) = (1 − u) − δC (1 − u) ,

δLC (u) + ωLC (u) − u = u − ωC (1 − u) + (1 − u) − δC (1 − u) − u

= (1 − u) − δC (1 − u) − ωC (1 − u) .

∫ 1

0

[δLC (u) + ωLC (u) − u] du = −
∫ 1

0

[δC (1 − u) + ωC (1 − u) − (1 − u)] du

= −
∫ 1

0

[δC (u) + ωC (u) − u] du.

Hence γ(LC) = γ(C). Similarly γ(RC) = γ(C).

Theorem 3. The following equalities hold:

ρ (LC) = ρ (RC) = −ρ (C) , ρ (SC) = ρ (C)) (21)

for Spearman’s rho,

τ (LC) = τ (RC) = −τ (C) , τ (SC) = τ (C)) (22)

for Kendall’s tau, and

β (LC) = β (RC) = −β (C) , β (SC) = β (C)) (23)

for Blomqvist’s beta.

Proof. The validity of (21) and (22) follow directly from the fact that the couples
of observations (x1, y1) and (x2, y2) are concordant when the couples (−x1, y1)
and (−x2, y2) as well as the couples (x1,−y1) and (x2,−y2) are discordant (and
vice versa). Moreover, if C corresponds to the couple (X,Y ) of random vari-
ables then LC, RC and SC correspond to the couples (−X,Y ), (X,−Y ) and
(−X,−Y ).

The above arguments yield validity of (23).
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Theorem 4. Let C : [0, 1]2 → [0, 1] be a copula with Spearman’s rho given by
(14). For the perturbation Cα of copula C given by (9) and (10) is the Spearman’s
rho a function of α that is linear on both intervals [−1, 0], [0, 1] and can be
expressed in the form

ρ(Cα) =
{

ρ(C) + 12α a1 for α ∈ [0, 1],
ρ(C) + 12α a2 for α ∈ [−1, 0], (24)

where the coefficients a1, a2 are given by

ai =
∫ ∫

I2
Di(u, v) du dv (25)

for i = 1, 2 and D1,D2 given by (9).

Proof. The relation (24) follows directly from (14), (10) and (9).

Theorem 5. Let C : [0, 1]2 → [0, 1] be a copula with Kendall’s tau given by
(15). For the perturbation Cα of copula C given by (9) and (10) is the Kendall’s
tau given by

τ(Cα)=

{
τ(C) + 4α

∫ ∫
I2 a1,1(u, v) du dv + 4α2

∫ ∫
I2 a2,1(u, v) du dv for α ∈ [0, 1],

τ(C) + 4α
∫ ∫

I2 a1,2(u, v) du dv + 4α2
∫ ∫

I2 a2,2(u, v) du dv for α∈ [−1, 0],

(26)

where the coefficients a1,i, a2,i are given by

a1,i(u, v) = − [Cu(u, v) (Di)v(u, v) + (Di)u(u, v)Cv(u, v)] ,

a2,i(u, v) = −(Di)u(u, v) (Di)v(u, v)

for i = 1, 2 and D1,D2 given by (9).

Proof. The relation (26) follows directly from (15). Note that the partial
derivative

(D1)u(u, v) = (1 − Cu(u, v)) (v − C(u, v)) − (u − C(u, v)) Cu(u, v)

exists almost everywhere and is a difference of products of bounded integrable
functions, thus it is bounded and integrable. The same holds for (D1)v(u, v),
(D2)u(u, v), (D2)v(u, v).

Theorem 6. Let C : [0, 1]2 → [0, 1] be a copula with Blomqvist’s beta given by
(16). For the perturbation Cα of copula C given by (9) and (10) is the Blomqvist’s
beta given by

β(Cα) =

{

β(C) + 4αD1( 12 , 1
2 ) for α ∈ [0, 1],

β(C) + 4αD2( 12 , 1
2 ) for α ∈ [−1, 0].

(27)
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Proof. The relation (27) follows directly from (16), (10) and (9).

Theorem 7. Let C : [0, 1]2 → [0, 1] be a copula with Gini’s gamma given by
(17). For the perturbation Cα of copula C given by (9) and (10) is Gini’s gamma
given by

γ(Cα) =

{

γ(C) + 4α
∫ 1

0
[D1(u, u) + D1(u, 1 − u)] du for α ∈ [0, 1],

γ(C) + 4α
∫ 1

0
[D2(u, u) + D2(u, 1 − u)] du, for α ∈ [−1, 0].

(28)

Proof. The relation (28) follows directly from (17), (10) and (9).

Remark 3. The fact that the functions D1(u, v) and D2(u, v) are nonnegative,
together with (24), (25), (27) and (28) imply that the following functions of α:
ρ(Cα), β(Cα) and γ(Cα) are linear and nondecreasing on both interval [−1, 0]
and [0, 1].

Remark 4. Computationally more feasible alternative to (27) is

β(Cα) =

⎧

⎪

⎨

⎪

⎩

β(C) + α
(

1−β(C)
2

)2

for α ∈ [0, 1],

β(C) + α
(

1+β(C)
2

)2

for α ∈ [−1, 0]
(29)

or

β(Cα) = β(C) + α

(

(1 + sign(α))β(C)
2

)2

.

The relation (29) follows directly from (16) and (27).

Remark 5. (a) From (16) and (29) we get the lower and upper bounds
for β(Cα).

β(C−1) = −
(

1 − β(C)
2

)2

, β(C1) =
(

1 + β(C)
2

)2

.

(b) For α ∈ [−1, 1] we have

β(Πα) =
α

4
, ρ(Πα) =

α

3
, γ(Πα) =

4α

15
.

For α ∈ [−1, 0] we get from (11) and (12)

Wα = W, Mα = (1 + α)M − α Π.

(c) Since

ρ(W ) = γ(W ) = β(W ) = −1 and ρ(M) = γ(M) = β(M) = 1,

we have

ρ(Wα) = γ(Wα) = β(Wα) = 0 and ρ(Mα) = γ(Mα) = β(Mα) = 1 + α.
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Therefore, for any copula C the inequalities

ρ(Cα) ≤ 1 + α, γ(Cα) ≤ 1 + α, β(Cα) ≤ 1 + α, for α ∈ [−1, 0]

hold. Hence

ρ(C−1) ≤ 0, γ(C−1) ≤ 0, β(C−1) ≤ 0.

For α ∈ [0, 1] we have

Mα = M, Wα = (1 − α)W + α Π.

Hence

ρ(Wα) = γ(Wα) = β(Wα) = α − 1 and ρ(Mα) = γ(Mα) = β(Mα) = 1.

Therefore, for any copula C the inequalities

ρ(Cα) ≥ α − 1, γ(Cα) ≥ α − 1, β(Cα) ≥ α − 1, hold for α ∈ [0, 1].

Hence

ρ(C1) ≥ 0, γ(C1) ≥ 0, β(C1) ≥ 0.

If we put

wα = ρ(Wα) = γ(Wα) = β(Wα) = max(−1, α − 1)

and

mα = ρ(Mα) = γ(Mα) = β(Mα) = min(1, 1 + α)

for α ∈ [−1, 1], we can synthetize the above inequalities in the form

wα ≤ ρ(Cα) ≤ mα, wα ≤ γ(Cα) ≤ mα, wα ≤ β(Cα) ≤ mα

for α ∈ [−1, 1] and any copula C.

5 Concluding Remarks

We extended the definition of a special class of perturbations of copulas gener-
alizing the FGM family of copulas for parameters from the unit interval to the
whole interval [−1, 1]. We proved that the class of perturbations of copulas is
order preserving. We showed that the values of Spearman’s rho, Blomqvist’s beta
and Gini’s gamma are nondecreasing piecewise linear functions of perturbation
parameters (while Kendall’s tau is a piecewise quadratic function of them). We
also found lower and upper bands for first three of the above parameters. We
expact applications of our results especially when fitting copulas to real data.
There are several methods for fitting copulas from particular classes, such as
Archimedean or Extreme Value copulas. When obtaining a copula C as the best
fitting one from the considered class of copulas, our approach allows to improve
this result, by considering copulas (Cα)α∈[−1,1] for a secondary fitting.

Acknowledgement. This work was supported by Slovak Research and Development
Agency under contracts No. APVV–14–0013 and by VEGA 1/0420/15.
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Abstract. The concept of k-maxitivity for order-preserving homomor-
phisms between bounded lattices is introduced and discussed. As partic-
ular cases, k-maxitive capacities and aggregation functions are studied
and exemplified.

1 Introduction

Given any two latices L1, L2, we can consider a maxitive mapping between them.
Recall that a mapping ϕ : L1 → L2 is maxitive if for any x, y ∈ L1 we have
ϕ(x∨1 y) = ϕ(x)∨2 ϕ(y), where ∨i is the corresponding join in Li, i = 1, 2. As a
particular case, consider a finite space X = {1, . . . , n} and its power set 2X = L1

with ∨1 = ∪ (union of sets), and the unit interval [0, 1] = L2 with ∨2 = ∨ (the
standard maximum of reals). Then an order-preserving homomorphism (for the
definition see Sect. 2) m : 2X → [0, 1] is called a capacity [8]. The maxitivity of
m means that m(A ∪ B) = m(A) ∨ m(B) for all A,B ⊂ X, and in that case
m is called a possibility measure [18]. Obviously, m(A) =

∨

i∈A

m({i}). For more

details see, e.g., [6,17,18]. From now on, for simplicity of notation we will use
the same symbol ∨ for the join in both lattices L1 and L2, if it is clear from the
context on which one the operation ∨ is applied. Another distinguished example
we obtain if, for any n ∈ N, we consider L1 = [0, 1]n and L2 = [0, 1]. In this
case, an order-preserving homomorphism H : [0, 1]n → [0, 1] is called an (n-ary)
aggregation function on [0, 1], see, e.g., [1,3,8]. The maxitivity of H means that
H(x∨y) = H(x)∨H(y) for all x,y ∈ [0, 1]n (∨ stands for the standard maximum
of reals or maximum of real n-tuples). For maxitive aggregation functions we have

H(x) =
n∨

i=1

fi(xi),

c© Springer International Publishing AG 2018
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where fi : [0, 1] → [0, 1], fi(xi) = H(0, . . . , xi, . . . , 0), i ∈ {1, . . . , n}. Clearly,
all functions fi are monotone non-decreasing and satisfy the properties

f1(0) = · · · = fn(0) = 0,
n∨

i=1

fi(1) = 1 (i.e., fi0(1) = 1 for some i0 ∈ {1, . . . , n}).

Twenty years ago, the concept of k-maxitive capacities on X = {1, . . . , n},
k ≤ n, was introduced [10–12]. The k-maxitivity of a capacity m : 2X → [0, 1]
was characterized by the condition m(A) = m(B) satisfied for any subset A ⊂ X,
where B is some subset of A with card(B) ≤ k. Clearly, each capacity m on X
is n-maxitive and the 1-maxitivity of capacities is just the standard maxitivity.
Inspired by this fact, we have proposed the concept of k-maxitivity for aggre-
gation functions [13]. The aim of this paper is to generalize the concept of k-
maxitivity for all order-preserving homomorphisms between (bounded) lattices
L1, L2, and also to study some basic properties and construction methods of k-
maxitive order-preserving homomorphisms. The paper is organized as follows. In
the next section, k-maxitivity of order-preserving homomorphisms is introduced,
exemplified and studied. In Sect. 3, we discuss k-maxitive capacities as well as
k-maxitive aggregation functions, especially in connection with some integrals
when particular cases L1 = Ln, L2 = L are considered.

2 k-maxitive Order-Preserving Homomorphisms

In what follows, we will consider any two bounded lattices (L1,≤1,01,11) and
(L2,≤2,02,12).

Definition 1. A mapping ϕ : L1 → L2 is called an order-preserving homomor-
phism whenever it preserves the order and bounds, i.e., if ϕ(x) ≤2 ϕ(y) for all
x, y ∈ L1 satisfying x ≤1 y, and ϕ(01) = 02, ϕ(11) = 12.

Remark 1. Recall that a lattice homomorphism from L1 to L2 is a mapping pre-
serving join and meet of any two elements, and also the top and bottom elements.
Observe that an order-preserving homomorphism ϕ : L1 → L2 need not be a lat-
tice homomorphism; it need not preserve the join and meet. Neither a maxitive
order-preserving homomorphism need not preserve the meet, and thus need not
be a lattice homomorphism. On the other hand, each lattice homomorphism is
a maxitive order-preserving homomorphism.

As already mentioned, an order-preserving homomorphism is maxitive when-
ever ϕ(x ∨ y) = ϕ(x) ∨ ϕ(y) for all x, y ∈ L1. Clearly, if L1 is a bounded chain
then each order-preserving homomorphism ϕ is maxitive. If L1 = Ln (Cartesian
product lattice) and L2 = L for some bounded chain L, then an order-preserving
homomorphism ϕ : Ln → L is an n-ary aggregation function on L [5] and its
maxitivity implies the following structure of ϕ.

Proposition 1. Let (L,≤L,0L,1L) be a bounded chain and ϕ : Ln → L be
an aggregation function on L. Then ϕ is maxitive if and only if there are
monotone non-decreasing functions f1, . . . , fn : Ln → L satisfying f1(0L) =
· · · = fn(0L) = 0L and fi(1L) = 1L for some i ∈ {1, . . . , n}, such that

ϕ(x1, . . . , xn) =
n∨

i=1

fi(xi).
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Inspired by the k-maxitivity of capacities [10,11] we extend the concept of
k-maxitivity to order-preserving homomorphisms of bounded lattices.

Definition 2. Let (L1,≤1,01,11) and (L2,≤2,02,12) be bounded lattices and
let k ∈ N. An order-preserving homomorphism ϕ : L1 → L2 is called k-maxitive
whenever for any r ∈ N and x1, . . . , xr ∈ L1 there is a subset I ⊂ {1, . . . , r} with
card(I) ≤ k such that

ϕ

(
r∨

i=1

xi

)

= ϕ

(
∨

i∈I

xi

)

. (1)

For k ≥ 2, ϕ is called proper k-maxitive if it is k-maxitive but not (k − 1)-
maxitive.

Observe that, in general, maxitivity and 1-maxitivity differ. Consider, for
example, the diamond lattice L = {0, a, b, 1} with incomparable elements a, b
and 0 < a < 1, 0 < b < 1. Then ϕ : L → L, ϕ(x) = x, is a maxitive order-
preserving homomorphism that is not 1-maxitive. Note that in this case, ϕ is
2-maxitive.

Proposition 2. Let ϕ : L1 → L2 be an order-preserving homomorphism. The
maxitivity and 1-maxitivity of ϕ coincide whenever L2 is a bounded chain.

In general, for any pair (L1, L2) of bounded lattices, the greatest order-

preserving homomorphism ϕ∗ : L1 → L2 given by ϕ∗(x) =
{
02 if x = 01,
12 otherwise,

is simultaneously maxitive and 1-maxitive.
Depending on the structure of lattices L1 and/or L2, one can determine

possible values k for the proper k-maxitivity of order-preserving homomorphisms
ϕ : L1 → L2. So, for example, if L2 is a chain with card(L2) = n then each
order-preserving homomorphism ϕ is n-maxitive (i.e., proper k-maxitive for some
k ∈ {1, . . . , n}). Similarly, if L1 satisfies the property (P): for any x1, . . . , xr ∈ L1

there is an I ⊂ {1, . . . , r}, card(I) ≤ n, such that
r∨

i=1

xi =
∨

i∈I

xi, then ϕ is

proper k-maxitive for some k ∈ {1, . . . , n}. So, for example, the diamond lattice
L = {0, a, b, 1} satisfies the property (P) with n = 2. For any fixed n ∈ N ,
if X = {1, . . . , n} and L1 = 2X , then L1 satisfies the property (P) with the
considered n, and, consequently, each capacity m : 2X → [0, 1] is n-maxitive and
hence proper k-maxitive for some k ∈ {1, . . . , n}. Similarly, for a bounded chain
L, if L1 = Ln then L1 satisfies the property (P) with the considered n, and
any order-preserving homomorphism ϕ : Ln → L2 is proper k-maxitive for some
k ∈ {1, . . . , n}. Putting L2 = L, we see that this claim is valid for any n-ary
aggregation function H on a bounded chain L (i.e., if an aggregation function
H : Ln → L is considered).

The degree of maxitivity of compositions can be estimated as follows.

Proposition 3. Let L1, L2, L3 be bounded lattices and ϕ1 : L1 → L2, ϕ2 : L2 →
L3 order-preserving homomorphisms. Then the composed mapping ϕ : L1 → L3,
ϕ(x) = ϕ2(ϕ1(x)), is also an order-preserving homomorphism. Moreover, if ϕ1

is k-maxitive, then so is ϕ.
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We can also consider more general compositions.

Proposition 4. Let n ∈ N. If L1, L2, L3 are bounded lattices, ϕ1, . . . , ϕn : L1 →
L2 and ϕ : Ln

2 → L3 order-preserving homomorphisms, then the composed map-
ping η : L1 → L3 given by

η(x1, . . . , xn) = ϕ(ϕ1(x1), . . . , ϕn(xn))

is also an order-preserving homomorphism. Moreover, if ϕi, i = 1, . . . , n, are
ki-maxitive and ϕ is r-maxitive then η is k-maxitive, where k = k(1) + · · · +
k(min(n,r)) and (·) : {1, . . . , n} → {1, . . . , n} is any permutation such that k(1) ≥
· · · ≥ k(n).

Note that the previous proposition determines the upper bound of the order
k of maxitivity only.

Example 1. Let L1 = [0, 1]3, L2 = L3 = [0, 1] and n = 3. Consider
ϕ1, ϕ2, ϕ3 : [0, 1]3 → [0, 1], ϕ1 = Med, ϕ2 = Max and ϕ3 = Min, where
Med,Max and Min are the standard ternary median, maximum and minimum.
Let ϕ : [0, 1]3 → [0, 1], ϕ = Med. Then ϕ1 and ϕ are proper 2-maxitive, ϕ2 is
1-maxitive and ϕ3 is proper 3-maxitive, i.e., k1 = r = 2, k2 = 1 and k3 = 3.
Based on Proposition 4, the composed mapping η : [0, 1]3 → [0, 1] given by

η(x1, x2, x2) = Med(Med(x1, x2, x2),Max(x1, x2, x2),Min(x1, x2, x2))

is k-maxitive where k = k(1) + k(2) = k3 + k1 = 5. However η is (proper)
2-maxitive.

As already mentioned, 1-maxitivity and maxitivity of order-preserving homo-
morphisms ϕ : L1 → L2 coincide whenever L2 is a chain. We have the following
characterization of the 1-maxitivity of order-preserving homomorphisms.

Proposition 5. Let L1, L2 be bounded lattices and ϕ : L1 → L2 an order-
preserving homomorphism. Then ϕ is 1-maxitive if and only if the range Ranϕ
is a chain in L2 and ϕ is maxitive.

Note that a 1-maxitive order-preserving homomorphism ϕ : L1 → L2 allows
to introduce k-maxitive order-preserving homomorphisms ϕk : Lk

1 → Lk
2 given by

ϕk(x1, . . . , xk) = (ϕ(x1), . . . , ϕ(xk)).

For some particular lattices we also have other methods for construction of
k-maxitive order-preserving homomorphisms. Some of them are discussed in the
next section.

3 k-maxitive Capacities and k-maxitive Aggregation
Functions

The notion of k-maxitive capacities m : 2X → [0, 1], where X = {1, . . . , n}, was
introduced in [11] (and independently in [10]) and further discussed in [12]. The
k-maxitivity of m was characterized by the following axiom:

for any A ⊂ X there exists B ⊂ A, card(B) ≤ k such that m(A) = m(B). (2)
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It is not difficult to check that for capacities on a finite universe, k-maxitivity
as introduced in Definition 2 is equivalent to (2). Note that Definition 2 allows to
introduce the k-maxitivity of capacities on any measurable space (X,A ). Based
on Proposition 4, we have the following result.

Proposition 6. Let (X,A ) be a measurable space and let m1, . . . ,mn : A →
[0, 1] be capacities which are k1-, . . . , kn-maxitive, respectively. Then for any
aggregation function H : [0, 1]n → [0, 1], the mapping m : A → [0, 1] given by

m(A) = H(m1(A), . . . , mn(A))

is a k-maxitive capacity with k = k1 + · · · + kn.

So, for example, the product of two 1-maxitive capacities (i.e., possibility
measures) is a 2-maxitive capacity.

Example 2. Let X = N, A = 2N, and let m1,m2 : 2N → [0, 1] be given by

m1(A) =
{

0 if A is finite,
1 if A is infinite,

m2(A) =
1

min{n ∈ A} , A 	= ∅.

Then both m1,m2 are 1-maxitive (maxitive) capacities and their product m =
m1m2 is a 2-maxitive capacity. Indeed, consider r subsets A1, . . . , Ar of N, r > 2.

If all of them are finite then A =
r⋃

i=1

Ai is also finite and thus m(A) = m(A1). If

at least one of the sets A1, . . . , Ar is infinite, say, e.g., A1, then A is also infinite.
Let n0 = min{n ∈ A}. Then necessarily n0 ∈ Aj for some j ∈ {1, . . . , r}. Clearly,
m(A) = 1

n0
= m(A1 ∪ Aj), which proves the 2-maxitivity of m.

Our approach to k-maxitivity introduced in Definition 2 also covers the
k-maxitivity of aggregation functions proposed in [13]. There is a close connec-
tion between k-maxitive capacities and k-maxitive aggregation functions, com-
pare also [2].

Proposition 7. Let H : [0, 1]n → [0, 1] be a k-maxitive aggregation function.
Then the mapping m : 2{1,...,n} → [0, 1] given by m(A) = H(1A) is a k-maxitive
capacity.

Note that 1A : {1, . . . , n} → {0, 1}, 1A(i) = 1 if i ∈ A, and 1A(i) = 0
otherwise, is the characteristic function of A.

Due to the above result, when the sets are represented by the related char-
acteristic functions, each k-maxitive aggregation function H can be seen as a
monotone extension of some k-maxitive capacity. Some of such possible exten-
sions are based on universal integrals [9] linked to semicopulas [7]. Recall that
a semicopula ⊗ : [0, 1]2 → [0, 1] is a binary aggregation function with neutral
element e = 1 (x ⊗ 1 = 1 ⊗ x = x for each x ∈ [0, 1]).

Recall that for any fixed semicopula ⊗ and capacity m : 2{1,...,n} → [0, 1],
the mapping I⊗,m : [0, 1]n → [0, 1] given by

I⊗,m(x) =
n∨

i=1

xi ⊗ m({j ∈ {1, . . . , n} | xj ≥ xi}), (3)

is the smallest universal integral based on ⊗, see [9].
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Proposition 8. Let n ≥ 2 and let m : 2{1,...,n} → [0, 1] be a k-maxitive capacity.
Then for any semicopula ⊗ the smallest universal integral I⊗,m : [0, 1]n → [0, 1]
defined by (3) is a k-maxitive aggregation function.

Observe that if ⊗ = ∧ (minimum), I∧,m is just the Sugeno integral [16]. The
Sugeno integral with respect to k-maxitive capacities was studied, e.g., in [4]. If
⊗ = · (the standard product), I·,m is the Shilkret integral [15].

There are also other methods for constructing k-maxitive aggregation func-
tions, see [13]. We introduce here a representation of k-maxitive symmetric aggre-
gation functions only.

Proposition 9. Let H : [0, 1]n → [0, 1] be an aggregation function. Then H is
symmetric and k-maxitive for some k ∈ {1, . . . , n} if and only if there is an
aggregation function G : [0, 1]k → [0, 1] such that

H(x1, . . . , xn) = G(x(1), . . . , x(k)), (4)

where (·) : {1, . . . , n} → {1, . . . , n} is a permutation satisfying x(1) ≥ · · · ≥ x(n).

Observe that H given by (4) is proper k-maxitive if and only if the values of
the aggregation function G depend on the last coordinate.

Example 3. Let H : [0, 1]2k−1 → [0, 1] be the median,

H(x) = Med(x1, . . . , x2k−1).

Then H(x) = x(k), i.e., H(x) = G(x(1), . . . , x(k)), where G is the projection
into the last coordinate. Thus H is a proper k-maxitive symmetric aggregation
function.

4 Concluding Remarks

We have introduced and discussed the concept of k-maxitivity of order-preserving
homomorphisms ϕ : L1 → L2 between bounded lattices. Our approach gener-
alizes the k-maxitivity of capacities as well as the k-maxitivity of aggregation
functions. The main reason for introducing k-maxitivity is the reduction of com-
putational complexity. This issue in the case of maxitive capacities was dis-
cussed, e.g., in [14]. Similarly, for any lattice L1 generated by atoms a1, . . . , ar,
i.e., L1 =

∨

i∈I
I⊂{1,...,r}

ai, an order-preserving homomorphism ϕ : L1 → L2 requires

the knowledge of 2r − 2 values (as two values are known from the boundary
conditions) while if ϕ is 1-maxitive then it is enough to know r values, namely
ϕ(a1), . . . , ϕ(ar). If ϕ is 2-maxitive, it is enough to know r · (r+1)/2 values of ϕ,
etc. We expect several interesting results concerning k-maxitivity, in particular
for product lattices and some other special lattices.
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Abstract. The Modus Ponens property for fuzzy implication functions
is essential in the inference process in approximate reasoning. It is usually
considered with respect to a continuous t-norm T but it can be general-
ized to any conjunctor and, in particular, to a conjunctive uninorm U .
In this paper, it is investigated when RU -implications derived from uni-
norms satisfy the Modus Ponens with respect to a conjunctive uninorm
U . The new property, called here U -Modus Ponens, is studied in detail
for RU -implications derived from uninorms lying in the classes of repre-
sentable uninorms and uninorms continuous in the open unit square.

Keywords: Fuzzy implication · Uninorm · RU-implication · Modus
Ponens

1 Introduction

Fuzzy implication functions are used in fuzzy logic not only to modelize fuzzy
conditionals, but also to make inferences. Thus, when the Zadeh’s composi-
tional rule of inference is used to manage forward inferences, the Modus Ponens
becomes essential in the process and this rule of inference is guaranteed when the
fuzzy operators used, that is, the conjunction and the fuzzy conditional, satisfy
the following inequality:

T (x, I(x, y)) ≤ y for all x, y ∈ [0, 1], (1)

where T is usually considered a (continuous) t-norm and I a fuzzy implication
function. The previous inequality is also known as the Modus Ponens property
or T -conditionality.

Due to its importance in the inference process, those t-norms T and fuzzy
implication functions I that satisfy Eq. (1) have been investigated by many
researchers for decades (see for instance, [2,3,18–20,27–30]). The main stud-
ies are related to implications derived from t-norms and t-conorms, like residual
implications and (S,N)-implications investigated in detail in [2,27,28], and QL
and D-implications in [29]. Moreover, these results were collected and completed
later in [3] (see Sect. 7.4).

c© Springer International Publishing AG 2018
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However, there are other studies involving different kinds of implication func-
tions, specially those derived from more general aggregation functions than t-
norms and t-conorms (see for instance [22]). In particular, implication functions
derived from uninorms have been extensively investigated (see [1,4,6,17,23–25])
and recently, the Modus Ponens with respect to a continuous t-norm T has been
already studied for these kinds of implication functions, that is, for the so-called
RU -implications and (U,N)-implications (see [14,15]).

Recently, the authors have proposed a generalization of the Modus Ponens
based on the idea of considering a conjunctive uninorm U as the conjunction,
instead of a continuous t-norm, that will be called the U -Modus Ponens or U -
conditionality (see [16]). In the mentioned paper, it is proved that this new
property is never satisfied by the usual kinds of implications, that only implica-
tions derived from uninorms are available in this framework and the investigation
involving RU -implications derived from some kinds of uninorms was initialized.
In particular, RU -implications derived from uninorms in Umin and from idem-
potent uninorms were considered leading to many new solutions of the U -Modus
Ponens.

The idea of this paper is to extend such study to RU -implications derived
from uninorms lying in other well known families of uninorms, that is, to rep-
resentable uninorms and to uninorms continuous in the open unit square. We
will see that many new solutions appear when these classes of uninorms are
considered.

The paper is organized as follows. After this introduction, Sect. 2 is devoted
to some preliminaries in order to make the paper as self-contained as possible.
Section 3 deals with the Modus Ponens with respect to a uninorm U , including
some general results for any kind of implication functions as well as some par-
ticular ones for the case of RU -implications. This last part is divided then into
two subsections, one for each class of uninorms considered. Finally, the paper
ends with Sect. 4 devoted to some conclusions and future work.

2 Preliminaries

We will suppose the reader to be familiar with the theory of t-norms, t-conorms
and fuzzy negations (all necessary results and notations can be found in [11]).
We also suppose that some basic facts on uninorms are known (see for instance
[9] and the recent survey [13]). We recall here only some facts on implication
functions and uninorms in order to stablish the necessary notation that we will
use along the paper.

Definition 1. A binary operator I : [0, 1] × [0, 1] → [0, 1] is said to be a fuzzy
implication function, or an implication, if it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈ [0, 1].
(I2) I(x, y) ≤ I(x, z) when y ≤ z, for all x ∈ [0, 1].
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.
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Note that, from the definition, it follows that I(0, x) = 1 and I(x, 1) = 1 for
all x ∈ [0, 1] whereas the symmetrical values I(x, 0) and I(1, x) are not derived
from the definition.

Lemma 1. Given a fuzzy implication function I, the function NI(x) = I(x, 0)
for all x ∈ [0, 1] is always a fuzzy negation, known as the natural negation of I.

Definition 2. A uninorm is a two-place function U : [0, 1]2 → [0, 1] which
is associative, commutative, increasing in each place and such that there exists
some element e ∈ [0, 1], called neutral element, such that U(e, x) = x for all
x ∈ [0, 1].

Evidently, a uninorm with neutral element e = 1 is a t-norm and a uninorm
with neutral element e = 0 is a t-conorm. For any other value e ∈]0, 1[ the
operation works as a t-norm in the [0, e]2 square, as a t-conorm in [e, 1]2 and its
values are between minimum and maximum in the set of points A(e) given by

A(e) = [0, e[× ]e, 1] ∪ ]e, 1] × [0, e[.

We will usually denote a uninorm with neutral element e and underlying
t-norm and t-conorm, TU and SU , by U ≡ 〈TU , e, SU 〉. For any uninorm it is
satisfied that U(0, 1) ∈ {0, 1} and a uninorm U is called conjunctive if U(1, 0) = 0
and disjunctive when U(1, 0) = 1. On the other hand, let us recall two of the
most studied classes of uninorms in the literature (more details can be found for
instance in the recent survey [13]).

Definition 3. A uninorm U , with neutral element e ∈ ]0, 1[ , is called repre-
sentable if there exists a strictly increasing function h : [0, 1] → [−∞,+∞]
(called an additive generator of U , which is unique up to a multiplicative con-
stant k > 0), with h(0) = −∞, h(e) = 0 and h(1) = +∞, such that U is given by

U(x, y) = h−1(h(x) + h(y))

for all (x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)}. We have either U(0, 1) = U(1, 0) = 0 or
U(0, 1) = U(1, 0) = 1.

A representable uninorm with neutral element e ∈]0, 1[ and additive genera-
tor h will be denoted by U ≡ 〈e, h〉rep and the class of all representable uninorms
by Urep.

This class is clearly contained in the class of uninorms continuous in ]0, 1[2

which was characterized in [10] as follows (see again [13] for more details):

Theorem 1. Suppose U is a uninorm continuous in ]0, 1[2 with neutral element
e ∈]0, 1[. Then either one of the following cases is satisfied:

(a) There exist u ∈ [0, e[, λ ∈ [0, u], a continuous t-norm T and a representable
uninorm R such that U can be represented as

U(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

uT
(
x
u

, y
u

)
if x, y ∈ [0, u],

u + (1 − u)R
(

x−u
1−u

, y−u
1−u

)
if x, y ∈ ]u, 1[,

1 if min(x, y) ∈ ]λ, 1] and max(x, y) = 1,

λ or 1 if (x, y) = (λ, 1) or (x, y) = (1, λ),

min(x, y) elsewhere.

(2)
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(b) There exist v ∈ ]e, 1], ω ∈ [v, 1], a continuous t-conorm S and a representable
uninorm R such that U can be represented as

U(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

vR
(
x
v
, y
v

)
if x, y ∈ ]0, v[,

v + (1 − v)S
(

x−v
1−v

, y−v
1−v

)
if x, y ∈ [v, 1],

0 if max(x, y) ∈ [0, ω[ and min(x, y) = 0,

ω or 0 if (x, y) = (0, ω) or (x, y) = (ω, 0),

max(x, y) elsewhere.

(3)

The class of uninorms continuous in ]0, 1[2 will be denoted by Ucos. A uninorm
as in (2) will be denoted by U ≡ 〈λ, T, u, (R, e)〉cos,min and the class of all uni-
norms continuous in the open unit square of this form will be denoted by Ucos,min.
Analogously, a uninorm as in (3) will be denoted by U ≡ 〈(R, e), v, S, ω〉cos,max

and the class of all uninorms of this form will be denoted by Ucos,max.
We do not recall here other classes of uninorms, like uninorms in Umin and

Umax [9] or idempotent uninorms [5,12,26], because they will be scarcely used in
this work. In any case, the structure and characterization of all the classes men-
tioned here can be found in [13]. On the other hand, different classes of implica-
tions derived from uninorms have been studied. We recall here RU -implications.

Definition 4. Let U be a uninorm. The residual operation derived from U is
the binary operation given by

IU (x, y) = sup{z ∈ [0, 1] | U(x, z) ≤ y} for all x, y ∈ [0, 1].

The residual operator derived from U is a fuzzy implication in many cases.

Proposition 1. Let U be a uninorm and IU its residual operation. hen IU is
an implication if and only if the following condition holds

U(x, 0) = 0 for all x < 1. (4)

In this case IU is called an RU -implication.

Uninorms satisfying Eq. (4) include all conjunctive uninorms but also many
disjunctive ones, like for instance disjunctive representable uninorms and some
disjunctive uninorms in Ucos,max. Some properties of RU -implications have been
studied involving the main classes of uninorms including those previously stated.
Recently, the Modus Ponens property with respect to a t-norm T has been
studied in detail also for implications derived from uninorms (not only for RU ,
but also for (U,N)-implications) in [14,15].

3 U -Modus Ponens

In this section we want to deal with the generalization of the Modus Ponens with
respect to a t-norm T by substituting the t-norm T by a conjunctive uninorm
U , leading to the so-called U -Modus Ponens or also U -conditionality:
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Definition 5. Let I be an implication function and U a uninorm. It is said
that I satisfies the Modus Ponens property with respect to U , or that I is an
U -conditional if

U(x, I(x, y)) ≤ y for all x, y ∈ [0, 1]. (5)

The purpose of this paper is to study which conditions must satisfy a fuzzy
implication I and a uninorm U in order to be I a U -conditional, when the
implication I is an RU -implication derived from a uninorm lying in some of the
three classes recalled in the preliminaries. The same study was already done for
RU -implications derived from uninorms in Umin and from idempotent uninorms
in [16]. In that paper the following general result was already stated.

Proposition 2. Let U be a conjunctive uninorm with neutral element e ∈]0, 1[
and let I be an implication satisfying U -Modus Ponens. The following properties
hold:

1. I(e, y) ≤ y for all y ∈ [0, 1].
2. The natural negation NI must satisfy

NI(x) = 0 for all x ≥ e, and NI(x) < e for all 0 < x < e.

In particular, NI can not be continuous.
3. It must be U(x,NI(x)) = 0 for all x ∈ [0, 1].
4. I(x, y) < e for all x > y ≥ e. In particular, I(1, y) < e for all y < 1.

The previous proposition gives some necessary conditions on the uninorm
U as well as on the implication I in order they satisfy U -conditionality. From
Property 4 in the previous proposition it is clear that the usual classes of fuzzy
implication functions, that is, R, (S,N), QL and D-implications derived from
t-norms and t-conorms, as well as f and g-generated Yager’s implications, can
not be U -conditionals (note that all of them satisfy I(1, y) = y for all y ∈
[0, 1]). However, this is not the case of RU and (U,N)-implications derived from
uninorms.

For instance, RU -implications (see Definition 4) satisfy IU (e, y) = y for all
y ∈ [0, 1] and so they are good candidates to be U -conditionals. In fact, the
following two partial results were also presented in [16].

Proposition 3. Let U,U0 be two uninorms with neutral elements e, e0 ∈]0, 1[
respectively, such that one of them is left-continuous and let IU0 be the residual
implication derived from U0. If U ≤ U0 then IU0 is an U -conditional.

Proposition 4. Let U,U0 be two uninorms with neutral elements e, e0 ∈]0, 1[
respectively and let IU0 be the residual implication derived from U0. If IU0 is a
U -conditional then it must be e0 ≤ e.

In what follows we will deal with U -Modus Ponens for RU -implications
derived from uninorms in one of the classes recalled in the preliminaries, that is,
when U0 is in Urep, or in Ucos. We will divide our study in two subsections, one
for each class of uninorms.
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3.1 The Case When U0 Is In Urep

In this section we want to deal with residual implications derived from repre-
sentable uninorms. Let us recall first how are this kind of implications that can
be found in [6] (see also [3]). Suppose that U0 is a conjunctive representable
uninorm with neutral element e0 ∈]0, 1[ and additive generator h. Denote by U∗

0

the disjunctive representable uninorm with the same additive generator h. Then
both, the residuated RU -implication derived from U0 and the one derived from
U∗
0 , coincide and they are given as follows.

Proposition 5. Let U0 ∈ Urep be a representable uninorm with neutral element
e0 ∈]0, 1[ and additive generator h. Then the RU -implication derived from U0 is
given by:

IU0(x, y) =

{
h−1(h(y) − h(x)) if (x, y) �∈ {(0, 0), (1, 1)},

1 if (x, y) ∈ {(0, 0), (1, 1)}.

For this kind of implications the characterization can be easily stated. In
fact, the sufficient condition given in Proposition 3 is also necessary in this case
as we can see in the next theorem.

Theorem 2. Let U be a uninorm with neutral element e ∈]0, 1[ and let U0 ≡
〈e0, h〉rep be a representable uninorm with neutral element e0 ≤ e and additive
generator h. If IU0 is the residual implication derived from U0 then

IU0 is aU − conditional ⇐⇒ U(x, y) ≤ U0(x, y) for all x, y ∈]0, 1[.

Example 1. Let U0 ≡ 〈e, h〉rep be a representable uninorm with neutral element
e ∈]0, 1[. It is well known that the underlying t-norm TU and the underlying
t-conorms SU are then strict. Consider the uninorms in Umin given by

U ≡ 〈TU , e, SU 〉min and U ′ ≡ 〈min, e, SU 〉min.

Then it is clear that U ≤ U0 but U ′ �≤ U0 and consequently in this case, from
the theorem above, we have that IU0 is a U -conditional but it is not and U ′-
conditional.

3.2 The Case When U0 Is In Ucos

Let us deal in this section with residual implications derived from uninorms
continuous in the open unit square ]0, 1[2. However, since there are two different
classes of these uninorms, we will divide our study into two subsections, one
devoted to uninorms in Ucos,min and the other to uninorms in Ucos,max.

Case in Ucos,min Recall first how are the residual implications derived from
uninorms in this case, that can be found in [25].
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Proposition 6. Let U0 ≡ 〈λ, T, u, (R, e0)〉cos,min be a uninorm lying in Ucos,min.
Then the RU -implication derived from U0 is given by:

IU0(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uITU

(
x
u , y

u

)
if x ∈ [0, u] and y < x,

1 if x ∈ [0, u] and y ≥ x,

y if (x, y) ∈ ]u, 1[×[0, u],

u + (1 − u)IR
(

x−u
1−u , y−u

1−u

)
if (x, y) ∈ ]u, 1[2,

1 if y = 1,

y if x = 1 and y ≤ λ,

λ if x = 1 and y > λ.

(6)

For this kind of implications we give first some partial results before to be
able to give the characterization those that are U -conditionals.

Proposition 7. Let U be a uninorm with neutral element e ∈]0, 1[ and let U0

be a uninorm in Ucos,min given by U0 ≡ 〈λ, T, u, (R, e0)〉cos,min, with e0 ≤ e. Let
IU0 the residual implication derived from U0. If IU0 is a U -conditional then

U(x, y) = min(x, y) for all min(x, y) ≤ u < e0 ≤ e < max(x, y). (7)

Now, we are able to characterize all residual implications from uninorms in
Ucos,min that are U -conditionals, in the case when U has continuous underly-
ing t-norm and U(u, u) = u. Note that in this case there exists a continuous
t-norm T1 and a uninorm U1 with neutral element e−u

1−u such that U can be
written as

U(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

uT1

(
x
u , y

u

)
if x, y ∈ [0, u],

u + (1 − u)U1

(
x−u
1−u , y−u

1−u

)
if x, y ∈ [u, 1],

U(x, y) otherwise.

(8)

Theorem 3. Let U be a uninorm with neutral element e ∈]0, 1[ and let U0 be a
uninorm in Ucos,min given by U0 ≡ 〈λ, T, u, (R, e0)〉cos,min, with e0 ≤ e, and IU0

its residual implication. Suppose that U(u, u) = u and TU is continuous. Then
there exist a continuous t-norm T1 and a uninorm U1 with neutral element e−u

1−u
such that U can be written as in (8) and IU0 is a U -conditional if and only if
the following conditions hold:

(i) U satisfies Eq. (7),
(ii) IT is a T1-conditional,
(iii) U1(x, y) ≤ R(x, y) for all x, y ∈]0, 1[.

For instance, we have the following example showing residual implications
IU0 derived from uninorms U0 in Ucos,min that are U -conditionals.
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Example 2. Let U be the conjunctive uninorm with neutral element e ∈]0, 1[
given by

U(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

uT
(
x
u , y

u

)
if x, y ∈ [0, u],

u + (1 − u)R
(

x−u
1−u , y−u

1−u

)
if x, y ∈ [u, 1],

min(x, y) otherwise,

where T is any continuous t-norm and R any representable uninorm with
neutral element e−u

1−u . Consider U0 the uninorm in Ucos,min given by U0 ≡
〈λ,min, u, (R, e)〉cos,min. Then we have that IU0 is given by

IU0(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if x ∈ [0, u] and y ≥ x,

y if y ∈ [0, u] and y < x < 1,

u + (1 − u)IR
(

x−u
1−u , y−u

1−u

)
if (x, y) ∈ ]u, 1[2,

1 if y = 1,

y if x = 1 and y ≤ λ,

λ if x = 1 and y > λ.

(9)

and that IU0 is a U -conditional by Theorem3. The structures of U , U0 and IU0

are depicted in Fig. 1.

Case in Ucos,max In this case the residual operator derived from a uninorm
U0 ≡ 〈(R, e0), v, S, ω〉cos,max in Ucos,max is not always a fuzzy implication. Since
it is necessary that U0(x, 0) = 0 for all x < 1 by Proposition 1, it must be ω = 1
and so this condition will be assumed from now on. Let us recall also how are
the residual implications derived from this kind of uninorms.

Proposition 8. Let U0 ≡ 〈(R, e0), v, S, ω〉cos,max be a uninorm lying in Ucos,max

with ω = 1. Then the RU -implication derived from U0 is given by:

IU0(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vIR
(
x
v , y

v

)
if (x, y) ∈ ]0, v]2,

v + (1 − v)RS

(
x−v
1−v , y−v

1−v

)
if (x, y) ∈ ]v, 1[2 and y ≥ x,

0 if x ∈ ]v, 1[ and y < x,

y if (x, y) ∈ ]0, v] × [v, 1[,
1 if y = 1 or x = 0,

0 if y = 0 andx �= 0.

(10)

For this kind of implications the characterization of those that are U -
conditionals can be easily derived when U(v, v) = v and has underlying t-conorm
continuous. In this case there exist a continuous t-conorm S1 and a uninorm U1

with neutral element e
v such that U can be written as

U(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

vU1

(
x
v , y

v

)
if x, y ∈ [0, v],

v + (1 − v)S1

(
x−v
1−v , y−v

1−v

)
if x, y ∈ [v, 1],

U(x, y) otherwise.

(11)
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T

min

min

R

0

λ

u

e

1

λ u e 1

min

R

0

λ

u

e

1

λ u e 1

1

1

1

y

IR

0

λ

u

e

1

α u e 1

y

λ

1

Fig. 1. Structure of U (top, left), U0 (top, right) and IU0 (bottom), with U0 ∈ Ucos,min

from Example 2.

Given a t-conorm S we denote by RS the residual operator RS(x, y) = sup{z ∈
[0, 1] | S(x, z) ≤ y}. Then we have the following result.

Theorem 4. Let U be a uninorm with neutral element e ∈]0, 1[ and let U0

be a uninorm in Ucos,max given by U0 ≡ 〈(R, e0), v, S, ω〉cos,max with ω = 1
and e0 ≤ e. Let IU0 be the residual implication derived from U0 and suppose
that U(v, v) = v and its underlying t-conorm is continuous. Then there exist a
continuous t-conorm S1 and a uninorm U1 with neutral element e

v such that U
can be written as in (11) and IU0 is a U -conditional if and only if the following
conditions hold:

(i) U1(x, y) ≤ R(x, y) for all x, y ∈]0, 1[.
(ii) S1(x,RS(x, y)) ≤ y for all x ≤ y.

For instance, we have the following example showing residual implications
IU0 derived from uninorms U0 in Ucos,max that are U -conditionals.
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R

max

e

v

1

0 e v 1

0

0

R

max

max

S

e

v

1

0 e v 1

0

0

IR

y

0
e

v

1

0 e v 1

RS

1

Fig. 2. Structure of U (top, left), U0 (top, right) and IU0 (bottom), with U0 ∈ Ucos,max

from Example 3.

Example 3. Let U be the conjunctive uninorm with neutral element e ∈]0, 1[
given by

U(x, y) =

⎧⎪⎨
⎪⎩

vR
(
x
v , y

v

)
if x, y ∈ [0, v],

min(x, y) if x = 0 and y > v,

max(x, y) otherwise,

where R is any representable uninorm with neutral element e
v . Consider U0 the

uninorm in Ucos,max given by U0 ≡ 〈(R, e), v, S, ω〉cos,max with ω = 1 and S any
continuous t-conorm. Then we have that IU0 is given by

IU0(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vIR
(
x
v , y

v

)
if (x, y) ∈ ]0, v]2,

v + (1 − v)RS

(
x−v
1−v , y−v

1−v

)
if (x, y) ∈ ]v, 1[2 and y ≥ x,

y if y ∈ ]v, 1[ and x < v,

1 if y = 1 or x = 0,

0 otherwise.

(12)

and that IU0 is a U -conditional by the previous theorem. The structures of U ,
U0 and IU0 are depicted in Fig. 2.
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4 Conclusions and Future Work

Forward inferences schemes in approximate reasoning are based on the Modus
Ponens property, also called T -conditionality and given by Eq. (1). In this
paper we have enlarged such property to the so-called U -Modus Ponens or U -
conditionality, just by substituting the t-norm T by a conjunctive uninorm U .
Fixed a uninorm U we have investigated in this paper which RU -implications
satisfy U -conditionality. We have given a detailed study in the cases when the
uninorm used to derive the RU -implication lies in the class of representable uni-
norms and when it lies in the class of uninorms continuous in the open unit
square, in a similar way as it was done in [16] for the class of uninorms in Umin

and the class of idempotent uninorms.
As a future work, we want to extend this study to RU -implications derived

from uninorms in the class of locally internal uninorms (see [7,8]). In fact, we are
currently working in this direction but we have not included the results because of
the restriction of space. Moreover, we want to deal also in next future with other
kind of implications like (U,N)-implications derived from disjunctive uninorms
(see [3]) or h and (h, e)-implications recently introduced in [21]. Finally, a similar
generalization through uninorms of the Modus Tollens property would be also
worth of study.
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Abstract. This paper studies the concept of Choquet-like copula-based
aggregation function (CC-integral), introduced by Lucca et al. [1], when
one considers the Minimum t-norm, showing an application in fuzzy rule-
based classification systems. The CC-integral is built from the standard
Choquet integral, which is expanded by distributing the product opera-
tion, and, then, the product operation is generalized by a copula. In this
paper, we study the behavior of this aggregation function in fuzzy rule-
based classification systems, when one considers the Minimum t-norm as
de copula of the CC-integral, which we call the CMin-integral. We show
that the CMin-integral obtains a performance that is, with a high level
of confidence, better than the approach that adopts the winning rule
(maximum). Moreover, its behaviour is similar to the best Choquet-like
pre-aggregation functions, introduced by Lucca et al. [10], with excel-
lent performance. Consequently, the CMin-integral enlarge the scope of
the applications by offering new possibilities for defining fuzzy reasoning
methods with a similar gain in performance.

1 Introduction

In [1], a new promising concept in the field of aggregation functions [2,3], namely,
the concept of pre-aggregation function, was introduced by Lucca et al. This type
of functions fulfills the basic propriety of boundary conditions of any aggregation
c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 9
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function, but, however, the monotonicity is considered just along some fixed
direction (i.e., it is directionally increasing [4]). The authors proposed three
different methods to build pre-aggregation functions, one of them consists in
replace the product of the Choquet integral [5] by t-norms [6]. An application
to fuzzy rule-based classification systems (FRBCS) [7,8] was presented, and
it was shown that when the minimum or the Hamacher product t-norms are
considered for such construction and applied in the fuzzy reasoning method
(FRM), the obtained results were better than two classical averaging operators,
namely, the Maximum and the standard Choquet integral, the latter in the
approach proposed by Barrenechea et al. [9], which was the winner method at
that time. Properties of pre-aggregation functions as well as other constructions
methods were studied by Dimuro et al. [10] and Lucca et al. [11]

In a similar line of research, Lucca et al. [12] introduced the concept of CC-
integrals, which are Choquet-like Copula-based aggregation functions obtaining
by expanding the standard Choquet integral by distributing the product opera-
tion, and then replacing the product by a copula [13]. These functions were used
in the FRM of FRBCS, presenting a behavior similar to the best Choquet-like
pre-aggregation function.

The aim of this paper is to study the concept of CC-integral when one consid-
ers the Minimum t-norm, which we call CMin-integral, in order to compare the
performance of the FRBCS adopting this aggregation function in its FRM with
the approaches that adopts the winning rule (Maximum) and, also, the one that
considers the best Choquet-like pre-aggregation functions. For this analysis, we
have selected 30 datasets that are accessible in KEEL1database repository [14].
Our conclusions are supported by the well-known Wilcoxon signed-rank test [15].

The paper is organized as follows. Section 2 presents some preliminary con-
cepts that are necessary to develop the paper. Section 3 contains the method for
the construction of the CMin-integral. In Sect. 4, the FRM used in this study
is presented. We describe the experimental framework, the results achieved in
testing by the application of the CMin-integral in FRBCSs besides the analysis
of these results in Sect. 5. The main conclusions are drawn in Sect. 6.

2 Preliminaries

This section aims at introducing the background necessary to understand the
paper. One important class of fuzzy operators are the aggregation operators [2,3].

Definition 1. A function A : [0, 1]n → [0, 1] is said to be an n-ary aggregation
function whenever the following conditions are satisfied:

(A1) A is increasing2 in each argument: for each i ∈ {1, . . . , n}, if xi ≤ y, then
A(x1, . . . , xn) ≤ A(x1, . . . , xi−1, y, xi+1, . . . , xn);

1 http://www.keel.es.
2 For an increasing (decreasing) function we do not mean a strictly increasing (decreas-

ing) function.

http://www.keel.es
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(A2) A satisfies the boundary conditions: A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.

Definition 2. Let r = (r1, . . . , rn) be a real n-dimensional vector, r �= 0.
A function F : [0, 1]n → [0, 1] is directionally increasing [4] with respect to r
(r-increasing, for short) if for all (x1, . . . , xn) ∈ [0, 1]n and c > 0 such that
(x1 + cr1, . . . , xn + crn) ∈ [0, 1]n it holds that

F (x1 + cr1, . . . , xn + crn) ≥ F (x1, . . . , xn). (1)

Similarly, one defines an r-decreasing function.

Definition 3 [1]. Let r = (r1, . . . , rn) be a real n-dimensional vector, r �= 0.
A function F : [0, 1]n → [0, 1] is is said to be an n-ary r-pre-aggregation function
if the following conditions hold:

(PA1) F is r-increasing;
(PA2) F satisfies the boundary conditions: F (0, . . . , 0) = 0 and F (1, . . . , 1) = 1.

Definition 4. An aggregation function T : [0, 1]2 → [0, 1] is a t-norm if, for all
x, y, z ∈ [0, 1], it satisfies the following properties:

(T1) Commutativity: T (x, y) = T (y, x);
(T2) Associativity: T (x, T (y, z)) = T (T (x, y), z);
(T3) Boundary condition: T (x, 1) = x.

If T satisfies just (T3) (and also T (1, x) = x), then it is called a semi-copula.

Examples of t-norms are the minimum t-norm TM : [0, 1]2 → [0, 1], defined,
for all x, y ∈ [0, 1], by

TM (x, y) = min{x, y}, (2)

the Hamacher product Ham : [0, 1]2 → [0, 1], defined, for all x, y ∈ [0, 1], by

Ham(x, y) =
{

0 if x = y = 0
xy

x+y−xy otherwise (3)

and the �Lukasiewicz t-norm T�L : [0, 1]2 → [0, 1], defined, for all x, y ∈ [0, 1], by

T�L(x, y) = max{0, x + y − 1}. (4)

Definition 5. A bivariate function C : [0, 1]2 → [0, 1] is a copula if it satisfies
the following conditions, for all x, x′, y, y′ ∈ [0, 1] with x ≤ x′ and y ≤ y′:

(C1) C(x, y) + C(x′, y′) ≥ C(x, y′) + C(x′, y);
(C2) C(x, 0) = C(0, x) = 0;
(C3) C(x, 1) = C(1, x) = x.

Proposition 1 [6, Proposition 9.8] [16, Lemma 6.1.8, Lemma 6.3.1]. Consider
the Lukasiewicz and Minimum T-norms TL, TM : [0, 1]2 → [0, 1], defined by
Eqs. (4) and (2), respectively. For each copula C : [0, 1]2 → [0, 1], it holds that:
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(i) TL ≤ C ≤ TM ;
(ii) C is increasing;
(iii) C satisfies the Lipschitz property with constant 1, that is, for all

x1, x2, y1, y2 ∈ [0, 1], one has that:

| C(x1, y1) − C(x2, y2) |≤| x1 − x2 | + | y1 − y2 | .
An immediate consequence of Proposition 1 is that any copula is continuous.

Then, each associative copula is a continuous t-norm [6, Corollary 9.9].
Observe that the minimum t-norm TM and the Hamacher product t-norm

Ham, given in Eqs. (2) and (3), are both copulas.
Now, we recall the concept of fuzzy measure [5,17], which is a central tool

for defining the Choquet integral. In what follows, denote N = {1, . . . , n}, for
an arbitrary n > 0.

Definition 6. A function m : 2N → [0, 1] is said to be a fuzzy measure if, for
all X,Y ⊆ N , it satisfies the following properties:

(m1) Increasing: if X ⊆ Y , then m(X) ≤ m(Y );
(m2) Boundary conditions: m(∅) = 0 and m(N) = 1.

In this paper, we adopt the power measure mPM : 2N → [0, 1], which is
defined, for all X ⊆ N , by

mPM (X) =
( |X|

n

)q

, with q > 0. (5)

The choice for this fuzzy measure was based on the results obtained by Bar-
renechea et al. [9], who introduced an evolutionary algorithm to define the most
suitable q to be used in the definition of the measure for each class. We point
out that we consider the same approach to learn the parameter q as adopted
in [1,9,11,12,18].

Definition 7 [5]. Let m : 2N → [0, 1] be a fuzzy measure. The discrete Choquet
integral is the function Cm : [0, 1]n → [0, 1], defined, for all of x = (x1, . . . , xn) ∈
[0, 1]n, by:

Cm(x) =
n∑

i=1

(
x(i) − x(i−1)

) · m (
A(i)

)
, (6)

where
(
x(1), . . . , x(n)

)
is an increasing permutation on the input x, that is, 0 ≤

x(1) ≤ . . . ≤ x(n), where x(0) = 0 and A(i) = {(i), . . . , (n)} is the subset of
indices corresponding to the n − i + 1 largest components of x.

Observe that the Eq. (6) can be also written as:

Cm(x) =
n∑

i=1

(
x(i) · m (

A(i)

) − x(i−1) · m (
A(i)

))
, (7)

which we call the Choquet Integral in its expanded form [18].
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Definition 8 [12, Definition 7]. Let m : 2N → [0, 1] be a fuzzy measure and
C : [0, 1]2 → [0, 1] be a bivariate copula. The Choquet-like copula-based integral
(CC-integral) with respect to m is defined as a function CC

m : [0, 1]n → [0, 1],
given, for all x ∈ [0, 1]n, by

CC
m(x) =

n∑
i=1

C
(
x(i),m

(
A(i)

)) − C
(
x(i−1),m

(
A(i)

))
, (8)

where (x(1), . . . , x(n)) is an increasing permutation on the input x, that is, 0 ≤
x(1) ≤ . . . ≤ x(n), with the convention that x(0) = 0, and A(i) = {(i), . . . , (n)} is
the subset of indices of n − i + 1 largest components of x.

3 Constructing the CMin-Integral

In this section, we construct the CMin-integral, the aggregation function obt-
ained by considering the minimum t-norm as the copula C in Eq. (8).

In the following, consider N = {1, . . . , n}.

Definition 9. Let m : 2N → [0, 1] be a fuzzy measure and TM : [0, 1]2 →
[0, 1] be the minimum t-norm given in Eq. (2). The Choquet-like Minimum-
based integral with respect to m (CMin-integral) is defined as a function Cmin

m :
[0, 1]n → [0, 1], given, for all x ∈ [0, 1]n, by

Cmin
m (x) =

n∑
i=1

min
{
x(i),m

(
A(i)

)} − min
{
x(i−1),m

(
A(i)

)}
, (9)

where (x(1), . . . , x(n)) is an increasing permutation on the input x, that is, 0 ≤
x(1) ≤ . . . ≤ x(n), with the convention that x(0) = 0, and A(i) = {(i), . . . , (n)} is
the subset of indices of n − i + 1 largest components of x.

Proposition 2. For any fuzzy measure m : 2N → [0, 1], Cmin
m is idempotent.

Proof. Considering x = (x, . . . , x) ∈ [0, 1]n, one has that:

Cmin
m (x) = min{x,m(A(1))} − min{0,m(A(1))}

+
n∑

i=2

min{x,m(A(i))} − min{x,m(A(i))}

= min{x, 1} − min{0, 1} + 0
= x.

Proposition 3. For any copula fuzzy measure m : 2N → [0, 1], Cmin
m satisfies

the boundary conditions (A2).

Proof. Considering 0 = (0, . . . , 0) ∈ [0, 1]n and 1 = (1, . . . , 1) ∈ [0, 1]n, by
Proposition 2, one has that Cmin

m (0) = 0 and Cmin
m (1) = 1.
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Proposition 4. For any fuzzy measure m : 2N → [0, 1], Cmin
m is increasing (A1).

Proof. Since Cmin
m is trivially commutative, then it is sufficient to consider the

case when the input x is ordered, that is, xi = x(i), for each i = 1, . . . , n. Also,
by the transitivity, is it is sufficient to consider the following cases:

(i) Consider x(j) ≤ y ≤ x(j+1), for some j = 1, . . . , n − 1. Observe that:

min{x(j),m(A(j))} − min{x(j−1),m(A(j))} + min{x(j+1),m(A(j+1))}
−min{x(j),m(A(j+1))}

≤ min{y,m(A(j))} − min{x(j−1),m(A(j))} + min{x(j+1),m(A(j+1))}
−min{y,m(A(j+1))},

and, then, it follows that

Cmin
m (x1, . . . , xj , . . . , xn)

=
n∑

i=1

min{x(i),m(A(i))} − min{x(i−1),m(A(i))}

≤
(

j−1∑
i=1

min{x(i),m(A(i))} − min{x(i−1),m(A(i))}
)

+
(
min{y,m(A(j))} − min{x(j−1),m(A(j))}

)
+

(
min{x(j+1),m(A(j+1))} − min{y,m(A(j+1))}

)

+

⎛
⎝ n∑

i=j+2

min{x(i),m(A(i))} − min{x(i−1),m(A(i))}
⎞
⎠

= Cmin
m (x1, . . . , xj−1, y, xj+1, . . . , xn).

(ii) Consider x(n) ≤ y. Observe that:

min{x(n),m(A(n))} − min{x(n−1),m(A(n))}
≤ min{y,m(A(n))} − min{x(n−1),m(A(n))},

and, then, it follows that:

Cmin
m (x1, . . . , xn)

=
n∑

i=1

min{x(i),m(A(i))} − min{x(i−1),m(A(i))}

≤
(

n−1∑
i=1

min{x(i),m(A(i))} − min{x(i−1),m(A(i))}
)

+
(
min{y,m(A(n))} − min{x(n−1),m(A(n))}

)
= Cmin

m (x1, . . . , xn−1, y).
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Corollary 1. For any fuzzy measure m : 2N → [0, 1], it holds that min ≤ Cmin
m ≤

max.

Theorem 1. For any fuzzy measure m : 2N → [0, 1], Cmin
m is an average aggre-

gation function.

Proof. It follows from Propositions 3 and 4, and Corollary 1.

4 The Fuzzy Reasoning Method with the CMin-Integral

In this section, we present the new FRM generalized by the CMin-integral Cmin
m ,

as presented in Eq. (9).
In the following, consider that a classification problem, consists of m training

examples xp = (xp1, . . . , xpn, yp), with p = 1, . . . ,m, where xpi, with i = 1, . . . , n,
is the value of the i-th attribute and yp ∈ C = {C1, C2, . . . , CM} is the label of
the class of the p-th training example.

In this work, we use a FRBCS to deal with classification problems. Specif-
ically, we have selected FARC-HD [19] to accomplish the learning process and
the form of the fuzzy rules used by this algorithm is:

Rule Rj : If xp1 is Aj1 and . . . and xpn is Ajn then Class is Cj with RWj ,
(10)

where xp = (xp1, . . . , xpn) is the n-dimensional vector of attribute values corre-
sponding to an example xp, Rj is the label of the jth rule, Aji is an antecedent
fuzzy set modeling a linguistic term, Cj is the class of the j-th rule, and
RWj ∈ [0, 1] is the rule weight [20], which, in this case, is computed using
the certainty factor.

Our proposal is a modification of the third step of the FRM in the FARC-HD
fuzzy classifier [19]. More precisely, we propose the usage of the CMin-integral
in order to obtain the information associated with each class of the problem.
Specifically, the new classification soundness degree in the FRM is the following:

• Example classification soundness degree for all classes. In this step,
we apply our CMin-integral to combine the positive association degrees (fired
fuzzy rules) obtained in the previous steps of the FRM, bki (xp) > 0, as follows:

Yk(xp) = Cmin
m

(
bk1(xp), . . . , bkL(xp)

)
, with k = 1, . . . ,M, (11)

where Cmin
m is the CMin-integral defined in Eq. (9), xp is the example to be

classified, M is the number of classes of the problem and L is the number of
fuzzy rules in the system.

5 Experimental Results

In this section, we firstly describe the 30 real world classification problems
selected from the KEEL dataset repository [14]. After that, we present the
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achieved results in testing, using the FRM generalized by our CMin-integral
(denoted, for sake of simplicity, by CMin), along with an analysis of these
obtained results (Sect. 5.1).

The properties of the datasets, containing for each dataset, the identifier (Id.),
along with the name (Dataset), the number of instances (#Inst), the number
of attributes (#Att) and the number of classes (#Class) are summarized in
Table 1. The magic, page-blocks, penbased, ring, shuttle, satimage and twonorm
datasets have been stratified sampled at 10% in order to reduce their size for
training. Examples with missing values have been removed, e.g., in the wisconsin
dataset.

Table 1. Summary of the datasets used in this study

Id. Dataset #Inst #Att #Class Id. Dataset #Inst #Att #Class

App Appendiciticis 106 7 2 Pho Phoneme 5, 404 5 2

Bal Balance 625 4 3 Pim Pima 768 8 2

Ban Banana 5300 2 2 Rin Ring 740 20 2

Bnd Bands 365 19 2 Sah Saheart 462 9 2

Bup Bupa 345 6 2 Sat Satimage 6, 435 36 7

Cle Cleveland 297 13 5 Seg Segment 2, 310 19 7

Eco Ecoli 336 7 8 Shu Shuttle 5, 800 9 7

Gla Glass 214 9 6 Spe Spectfheart 267 44 2

Hab Haberman 306 3 2 Tit Titanic 2, 201 3 2

Hay Hayes-Roth 160 4 3 Two Twonorm 740 20 2

Iri Iris 150 4 3 Veh Vehicle 846 18 4

Mag Magic 1, 902 10 2 Vow Vowel 990 13 11

New Newthyroid 215 5 3 Win Wine 178 13 3

Pag Pageblocks 5, 472 10 5 Wis Wisconsin 683 11 2

Pen Penbased 1, 099 16 10 Yea Yeast 1, 484 8 10

As proposed in [1,9,21], we adopt the 5-fold cross-validation model, in other
words, a dataset is splitted in five random partitions, where each partition have
20% of the examples, and a combination of four of them is used for training
and the remainder one is used for testing. This process is repeated five times
by using a different partition to test the created system each time. In order to
measure the quality of each partition, the accuracy rate is calculated, that is, we
divide the number of correctly classified examples divided by the total number
of examples for each partition. Then, as the final result of the algorithm we
consider the average of the achieved accuracy in this five partitions.
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5.1 Experimental Results

This subsection present the results achieved in testing by the FRM considering
the CMin-integral, with the power measure where the exponent q is learned
genetically, as in [1,9].

Table 2. Accuracy results achieved in test by the CMin-Integral and the other
considered operators

Dataset CMin Choquet Ham WR

App 85.84 80.13 82.99 83.03

Bal 81.60 82.40 82.72 81.92

Ban 84.30 86.32 85.96 83.94

Bnd 71.06 68.56 72.13 69.40

Bup 61.45 66.96 65.80 62.03

Cle 54.88 55.58 55.58 56.91

Eco 77.09 76.51 80.07 75.62

Gla 69.17 64.02 63.10 64.99

Hab 74.17 72.52 72.21 70.89

Hay 81.74 79.49 79.49 78.69

Iri 92.67 91.33 93.33 94.00

Mag 79.81 78.86 79.76 78.60

New 93.95 94.88 95.35 94.88

Pag 93.97 94.16 94.34 94.16

Pen 91.27 90.55 90.82 91.45

Pho 82.94 82.98 83.83 82.29

Pim 75.78 74.60 73.44 74.60

Rin 87.97 90.95 88.78 90.00

Sah 70.78 69.69 70.77 68.61

Sat 79.01 79.47 80.40 79.63

Seg 92.25 93.46 93.33 93.03

Shu 98.16 97.61 97.20 96.00

Spe 78.99 77.88 76.02 77.90

Tit 78.87 78.87 78.87 78.87

Two 85.14 84.46 85.27 86.49

Veh 69.86 68.44 68.20 66.67

Vow 68.89 67.58 68.18 67.98

Win 93.83 93.79 96.63 96.60

Wis 95.90 97.22 96.78 96.34

Yea 57.01 55.73 56.53 55.32

Mean 80.28 79.83 80.26 79.70
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In order to determine the quality of the our proposal, considering the same
approach for the fuzzy measure, we also present the results achieved by the best
pre-aggregation functions proposed by Lucca et al. in [1] (the one that generalizes
the standard Choquet integral using the Hamacher product t-norm, denoted here
by Ham), the standard Choquet Integral (as it was studied in [9], denoted here
by Choquet) and the classical FRM of the Winning Rule (WR) (the FRM that
uses the Maximum as the aggregation function instead of the CMin-integral in
Eq. (11)).

The results achieved in testing by these approaches are presented in Table 2
by columns, where the best result achieved among the different datasets if high-
lighted in boldface.

Looking at the results of these four approaches, it is noticeable that CMin-
integral obtained the best global mean accuracy result, being similar with Ham
and it is superior to those of WR and the standard Choquet integral. In a
closer look we can observe that the CMin-integral obtains the best result in
13 datasets, whereas Ham achieves the best mean accuracy in 9 datasets, the
standard Choquet integral achieves the best mean accuracy in 6 datasets, and,
finally, the WR achieves the best mean accuracy in 5 datasets.

However, analyzing exclusively the achieved mean accuracy is not enough to
draw any conclusion. For this reason, in order to support our previous results, we
have carried out a set of pairwise statistical comparisons using the well-known
Wilcoxon signed-rank test [15]. Specifically, we have compared the the CMin-
integral, versus WR, Ham and Choquet integral. Table 3 shows the results of
these comparisons, where R+ indicates the ranks obtained by the CMin and R−

represents the ranks achieved by the method used in each comparison.

Table 3. Wilcoxon test to compare the best CC-integral versus the HamPA, the
winning rule and the standard Choquet integral

Comparison R+ R− p-value

CMin vs. HamPA 215 250 0.72

CMin vs. WR 311.5 153.5 0.09

CMin vs. Choquet 303.5 161.5 0.14

According to the obtained statistical results presented in Table 3, we can
affirm, with a high level of confidence, that the CMin-integral is better than
WR. Regarding the standard Choquet integral, we can observe that, although
there are not statistical differences, the obtained p-value is low. Furthermore, the
CMin-integral improves the results of the Choquet integral in 18 out of the 30
datasets considered in this study. These two facts, show that the CMin-integral
is enhancing the results provided by the standard Choquet integral. Finally,
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we point out that, when comparing the CMin-integral with Ham, the obtained
p-value is high, which implies that the behavior of these two approaches is
similar.

6 Conclusion

In this paper, we consider the notion of Choquet-like copula-based aggregation
function (CC-integral), considering the minimum t-norm in the place of the
copula, obtaining the CMin-Integral. We applied the CMin-integral in FRBCSs,
showing that this function allows to enhance the results of the classical FRM of
the winning rule as well as those of the standard Choquet integral, and provides
results that are competitive with those obtained by the best pre-aggregation
function presented in [1], offering new possibilities in defining FRMs with similar
gain in performance.

In future works, we intend to study the properties satisfied by the CMin-
integral. We will also consider the CMin-integral in a fuzzy interval approach [22–
25], as, e.g., in [26,27].
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Abstract. In this contribution, we discuss the concepts of so-called
fusion functions, pre-aggregation functions and their directional and
ordered directional monotonicity in the context of mixture functions.
Mixture functions represent a special class of weighted averaging func-
tions whose weights are determined by continuous weighting functions
which depend on the input values. They need not be monotone, in gen-
eral. If they are monotone increasing, they also belong to the important
class of aggregation functions. If the are directionally monotone, they
belong to the class of pre-aggregation functions.

Currently there is increased interest in studying generalized forms of
monotonicity such as weak, directional or ordered directional monotonic-
ity due to their possible application in fields such classification or image
processing.

This paper discusses properties of selected mixture functions with
special emphasis on their directional and ordered directional monotonic-
ity. The concept of directional and ordered directional monotonicity of
mixture functions is investigated with respect to linear and quadratic
weighting functions.

1 Introduction

According to [1,8], aggregation functions play a very important role in many
computational problems. Very interesting approaches can be found, for example,
in [3,9].

Boundary conditions and standard monotonicity are the basic properties
of aggregation functions. In general, mixture functions are not aggregation
functions, but under certain (sufficient) conditions, mixture functions can be
c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 10
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aggregation functions. In [1,11–16] and [17] the authors provided several suffi-
cient conditions for standard monotonicity of mixture functions.

Wilkin and Beliakov [19] introduced the concept of so-called weak monotonic-
ity. The property of weak monotonicity is very useful for calculating represen-
tative values of clusters of data in the presence of outliers. Recently, authors
in [2] proposed weak monotonicity as a relaxation of the monotonicity condi-
tion for averaging functions and discussed the concept of directional and cone
monotonicity, and monotonicity with respect to majority of inputs and coalitions
of inputs. In [4], the authors investigated weak monotonicity of the Lehmer and
Gini means.

Regarding the generalization of the concept of aggregation functions, in [5],
the authors introduced and discussed so-called fusion functions and their direc-
tional monotonicity, considering monotonicity along arbitrary rays. Their results
generalize the results of [19] concerning weak monotonicity.

In [10], the authors introduce the concept of so-called pre-aggregation func-
tions, their construction and its applications. An investigation of directional and
ordered directional monotonicity is in the focus of attention of the authors in [6].

Our paper builds on the research of the last two papers mentioned above.
The paper consists of five sections. Section 2 contains the basic definitions

related to standard, weak, directional and ordered directional monotonicity.
Moreover, this section contains basic definitions of aggregation, pre-aggregation,
fusion and mixture functions. Section 3 presents the latest sufficient conditions
of directional monotonicity of mixture functions and relevant results concern-
ing this topic. The attention is mainly focused on directional monotonicity of
the mixture functions generated by linear and quadratic weighting functions.
Section 4 discusses ordered directional monotonicity of the mentioned mixture
functions. Section 5 summarizes the presented results and brings some ideas for
the future research.

2 Preliminaries

Throughout the paper, we investigate directional monotonicity of mixture func-
tions on the interval [0, 1]. The choice of the unit interval is not restrictive. In
general, we could study our functions on arbitrary any closed non-empty interval
[a, b] ⊂ [−∞,∞].

In this part, we offer basic definitions of different types of monotonicity
recently investigated in an aggregation.

Definition 1 (Standard Monotonicity). A function F : [0, 1]n → [0, 1] is
monotone increasing if for every (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n such that
xi ≥ yi for every i = 1, . . . , n, the inequality F (x1, . . . , xn) ≥ F (y1, . . . , yn)
holds.1

1 The term “increasing” is understood in a non-strict sense.
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With respect to application, it is not always necessary that processing func-
tions are monotone but it is sufficient if functions are so-called weakly monotone,
see [18,19].

Definition 2 (Weak Monotonicity). A function F : [0, 1]n → [0, 1] is
weakly increasing if F (x1 + k, x2 + k, . . . , xn + k) ≥ F (x1, x2, . . . , xn) for all
(x1, x2, . . . , xn), for any k>0 such that (x1, x2, . . . , xn), (x1+k, x2+k, . . . , xn+k)
∈ [0, 1]n.

It is clear that each standard increasing function is also weakly increasing.
Inspired by the notion of weak monotonicity the researchers have recently opened
investigation of the so-called directional monotonicity which is defined as follows.

Definition 3 ([5] Directional Monotonicity). Let r = (r1, r2, . . . , rn) be a
real n-dimensional vector, r �= 0. A function F : [0, 1]n → [0, 1] is r-increasing
if for all points (x1, x2, . . . , xn) ∈ [0, 1]n and all k > 0 such that (x1 + kr1, x2 +
kr2, . . . , xn + krn) ∈ [0, 1]n, it holds that F (x1 + kr1, x2 + kr2, . . . , xn + krn) ≥
F (x1, x2, . . . , xn).

Vectors r �= 0 are called directions. It is clear, that weakly increasing func-
tions are r-increasing in the direction of vector r = (1, 1, . . . , 1).

Teams of authors in [6,7,10] investigated not only directional monotonicity
but also so-called ordered directional monotonicity which has significant appli-
cation in image processing.

For ordered directionally monotone functions, on the contrary, the direction
along which monotonicity is required varies depending on the ordinal size of the
coordinates of the considered input.

Definition 4 ([7] Ordered Directional Monotonicity). Let r = (r1, r2, . . . ,
rn) be a real n-dimensional vector, r �= 0. A function F : [0, 1]n → [0, 1] is
r-ordered increasing if for all x = (x1, x2, . . . , xn) ∈ [0, 1]n and for any per-
mutation σ : {1, 2, . . . , n} → {1, 2, . . . , n} with xσ(1) ≥ . . . ≥ xσ(n) and any
k > 0 such that 1 ≥ xσ(1) + kr1 ≥ . . . ≥ xσ(n) + krn ≥ 0 ∈ [0, 1]n we have
F (x + krσ−1) ≥ F (x); rσ−1 = (rσ−1(1), . . . , rσ−1(n)).

Standard monotonicity belongs to the basic properties of aggregation func-
tions both in the real setting and when dealing with extensions of fuzzy sets,
[6]. Apart from monotonicity, the definition of an aggregation function includes
boundary conditions, too.

Definition 5. A function F : [0, 1]n → [0, 1] is called an n-ary aggregation
function if the following conditions hold:

(A1) F satisfies the boundary conditions F (0, 0, . . . , 0)=0 and F (1, 1, . . . , 1)=1;
(A2) F is (standard) increasing.

Pre-aggregation functions relax the monotonicity condition, as follows.
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Definition 6 [10]. A function F : [0, 1]n → [0, 1] is called an n-ary pre-
aggregation function if the following conditions hold:

(PA1) There exists a real vector r ∈ [0, 1]n, r �= 0 such that F is r-increasing.
(PA2) F satisfies the boudary conditions F (0, 0, . . . , 0)=0 and F (1, 1, . . . , 1)=1.

Because in our paper we examine directional and ordered directional
monotonicity of mixture functions, we present their definition as follows.

Definition 7 [11]. A function Mg : [0, 1]n → [0, 1] given by

Mg(x1, . . . , xn) =

n∑

i=1

g(xi) · xi

n∑

i=1

g(xi)
, (1)

where g : [0, 1] → [0,∞[ is a continuous weighting function, is called a mixture
function.

Definition 8 [11]. A continuous differentiable function g(x) : [0, 1] → [0,∞[ is
called a weighting function.

3 Directional Monotonicity

In this section, we present our result regarding to directional monotonicity of
mixture function (1) with linear and quadratic weighting functions.

In the case of determination of sufficient conditions for r-increasingness for
vector r = (r, 1 − r), r ≥ 0, mixture functions represent a special class of pre-
aggregation functions.

3.1 Mixture Function with Linear Weighting Function

In this part, we introduce two sufficient conditions for r-increasingness of mixture
function with linear weighting function. The first condition is stronger than the
second one.

Proposition 1. Let Mg : [0, 1]2 → [0, 1] be a mixture function defined by (1)
with the weighting function g(x) = x + l, l ≥ 0 and let r = (r, 1 − r), r ≥ 0. If
Mg is r-increasing, then the coefficient l must satisfy the condition

l ≥ 1. (2)

Proof. Let r = (r, 1 − r), r ≥ 0. Let x = (x, y) ∈ [0, 1]2 and k > 0 such that
x + kr ∈ [0, 1]2.

From Definition 3, we get

(x+ kr)(x+ kr + l) + (y + k(1 − r))(y + k(1 − r) + l)

x+ y + 2l + k
≥ x(x+ l) + y(y + l)

x+ y + 2l
, (3)
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whence

2(rx + (1 − r)y) + k(r2 + (1 − r)2) + l ≥ x(x + l) + y(y + l)
(x + y + 2l)

. (4)

Since the right-hand side of the previous inequality can be maximal 1, we get

2(rx + (1 − r)y) + k(r2 + (1 − r)2) + l ≥ 1. (5)

Without loss of generality, for k → 0, we obtain inequality

2(rx + (1 − r)y) + l ≥ 1. (6)

For x → 0, y → 0, we obtain condition (2). �	
Now, we introduce weaker sufficient condition for r-increasingness of mixture

function which gives us a greater range of the coefficients l.

Proposition 2. Let Mg : [0, 1]2 → [0, 1] be a mixture function defined by (1)
with the weighting function g(x) = x + l, l ≥ 0 and let r = (r, 1 − r), r ≥ 0. If
Mg is r-increasing, then the coefficient l must satisfy the conditions

l ≥ −r +

√(

r − 1
2

)2

+
1
4

for 0 ≤ r ≤ 1
2

or (7)

l ≥ r − 1 +

√(

r − 1
2

)2

+
1
4

for
1
2

≤ r ≤ 1.

Proof. Let r = (r, 1 − r), r ≥ 0. Let x = (x, y) ∈ [0, 1]2 and k > 0 such that
x + kr ∈ [0, 1]2.

From Definition 3, we get

(x+ kr)(x+ kr + l) + (y + k(1 − r))(y + k(1 − r) + l)

x+ y + 2l + k
≥ x(x+ l) + y(y + l)

x+ y + 2l
, (8)

whence

(x + y + 2l)
[
2(rx + (1 − r)y) + k(r2 + (1 − r)2) + l

] ≥ x2 + y2 + xl + yl. (9)

Without loss of generality, for k → 0 and after some modification, we obtain
inequality

2l2 + 4l (r(x − y) + y) + 2xy + (x2 − y2)(2r − 1) ≥ 0. (10)

For x → 0, y → 1 or x → 1, y → 0, we obtain conditions (7). See Fig. 1. �	

Remark 1. From Proposition 1, we can state that the Lehmer mean LeM(x, y) =
x2+y2

x+y is r-increasing only for vector r = (12 , 1
2 ), that means it is only weakly

monotone increasing.
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r

l

0.5 10

√
2
2

Fig. 1. The set of directional monotonicity of Mg : [0, 1]2 → [0, 1] with g(x) = x+ l.

Remark 2. Let Mg : [0, 1]2 → [0, 1] be a mixture function defined by (1). If Mg

is r-increasing, then MB·g, with B > 0 is also r-increasing.

On the basis of Remark 2, we present the next sufficient condition.

Proposition 3. Let Mg : [0, 1]2 → [0, 1] be a mixture function defined by (1)
with the weighting function g(x) = cx + 1 − c, c ∈ [0, 1] and let r = (r, 1 − r),
r ≥ 0. If Mg is r-increasing, then the coefficient c must satisfy the condition

0 ≤ c ≤ 1
2
. (11)

Proof. Using the same procedure as in proof of Proposition 1 or Remark 2 and
substitution l = 1

c − 1, we obtain condition (11). �	
Corollary 1. Let Mg : [0, 1]2 → [0, 1] be a mixture function defined by (1) with
the weighting function g(x) = cx + 1 − c, c ∈ [0, 1] and let r = (r, 1 − r), r ≥ 0.
If Mg is r-increasing, then the coefficient c must satisfy the conditions

0 ≤ c ≤
1 − r −

√
(r − 1

2 )2 + 1
4

1
2 − r

for 0 ≤ r ≤ 1
2

or (12)

0 ≤ c ≤
r −

√
(r − 1

2 )2 + 1
4

r − 1
2

for 1 ≥ r ≥ 1
2
.

Proof. Using the same procedure as in proof of Proposition 2, Remark 2 and
substitution l = 1

c − 1, we obtain conditions (12) with the convention 0
0 = 1. See

Fig. 2. �	
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Fig. 2. The set of directional monotonicity ofMg : [0, 1]2 → [0, 1] with g(x) = cx+1−c.

Proposition 4. Let Mg : [0, 1]2 → [0, 1] be a mixture function defined by (1)
with the weighting function g(x) = kx + q, k ≥ 0, q ≥ 0 and let r = (r, 1 − r),
r ≥ 0. If Mg is r-increasing, then the coefficients q and k must satisfy the
condition

q ≥ k.

Proof. Direct on the basis of proofs of Proposition 1 and Remark 2. �	
Corollary 2. Let Mg : [0, 1]2 → [0, 1] be a mixture function defined by (1) with
the weighting function g(x) = kx + q, k ≥ 0, q ≥ 0 and let r = (r, 1 − r), r ≥ 0.
If Mg is r-increasing, then the coefficients q and k must satisfy the conditions

q ≥ k ·
⎛

⎝−r +

√(

r − 1
2

)2

+
1
4

⎞

⎠ for 0 ≤ r ≤ 1
2

or (13)

q ≥ k ·
⎛

⎝r − 1 +

√(

r − 1
2

)2

+
1
4

⎞

⎠ for
1
2

≤ r ≤ 1.

Proof. Direct on the basis of proofs of Proposition 2 and Remark 2. �	

3.2 Mixture Function with Quadratic Weighting Function

Proposition 5. Let Mg : [0, 1]2 → [0, 1] be a mixture function defined by (1)
with the weighting function g(x) = x2 + p, p ≥ 0 and let r = (r, 1 − r), r ≥ 0.
Then Mg is r-increasing for all coefficients p.
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Proof. Using Definition 3, we can put down

(x + kr)((x + kr)2 + p) + (y + k(1 − r))((y + k(1 − r))2 + p)
(x + kr)2 + (y + k(1 − r))2 + 2p

(14)

≥ x(x2 + p) + y(y2 + p)
x2 + y2 + 2p

,

whence

(x2 + y2 + 2p)
[
(x2 + p)r + (y2 + p)(1 − r) + 2x2r + 2y2(1 − r)

]
(15)

≥ [
(x2 + p)x + (y2 + p)y

] · [2xr + 2y(1 − r)] .

Without loss of generality, for x → 0 and y → 0, we obtain condition p ≥ 0. �	

4 Ordered Directional Monotonicity

Proposition 6. Let Mg : [0, 1]2 → [0, 1] be a mixture function defined by (1)
with the weighting function g(x) = x + l, l ≥ 0 and let r = (r, 1 − r), r ≥ 0. If
Mg is r-ordered increasing, then the coefficient l must satisfy the condition

l ≥ −r +

√(

r − 1
2

)2

+
1
4

for 0 ≤ r ≤ 1
2
. (16)

Proof. Let r = (r, 1 − r), r ≥ 0. Let x = (x, y) ∈ [0, 1]2 and k > 0 such that
x + kr ∈ [0, 1]2.

Using Definition 4, if x > y, we get gradually (8), (9), (10).
For x → 1, y → 0, we obtain condition (16).
If x < y, it is enough to replace x and y in inequality (10) and use bound-

ary input vector (0, 1), from where we obtain condition (16), again. The set of
r-ordered directional increasing Mg represents the left part of Fig. 1 which is
highlighted by dashed lines. This result follows directly from a symmetry of the
mixture function. �	

From a symmetry of mixture functions, it is obvious that if we consider vector
r = (1 − r, r), we obtain the second part of condition (7), i.e.,

l ≥ r − 1 +

√(

r − 1
2

)2

+
1
4

for
1
2

≤ r ≤ 1. (17)

and graphically, the right part of Fig. 1.

5 Conclusion

In this paper, we introduced sufficient conditions for r-increasingness and r-
ordered increasnigness of mixture functions with selected weighting functions.
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If r = (r, 1 − r), r ≥ 0, r �= 0, under our sufficient conditions, mixture
functions create a special class of pre-aggregation functions. Because mixture
functions are symmetric, regarding to its r-ordered increasnigness, we obtained
the same sufficient conditions.

Our future investigation will focus on statement of sufficient conditions of
r-increasingness and r-ordered increasnigness of n-ary mixture functions with
different types of weighting functions not only on the unit interval and n = 2
but on a general interval [a, b] ⊂ [−∞,∞] and n > 2.
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16. Špirková, J.: Weighted operators based on dissimilarity function. Inf. Sci. 281,
172–181 (2014)
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Abstract. In this comunication, some construction methods of fuzzy
implication functions based on uninorms, nullnorms and fuzzy negations
are presented. The main idea is to use these methods in order to obtain
new implication functions from old ones in such a way that the obtained
implication satisfies a desired property even if the old implication does
not satisfy it. In this line, the paper focuses in the following three prop-
erties: the control of the decreasingness with respect to the first variable,
the strong negation property and the property: I(x, N(x)) = N(x). How-
ever, other properties could be also considered in the same way through
the proposed methods.

Keywords: Fuzzy implication · Uninorm · Nullnorm · Construction
method

1 Introduction

Among fuzzy logic operators, implication functions are one of the most recently
studied because they generalize crisp conditional and consequently, they are used
to model fuzzy conditionals and also in the inference process. Thus, implication
functions become essential in fuzzy logic and approximate reasoning [11,13],
but they are proved to be useful also in many other applications like fuzzy
control, fuzzy subsethood measures, fuzzy indices, mathematical morphology,
image processing, and so on, see [3–5,17] and the references therein.

Due to this great quantity of applications, many researchers have focused
their efforts in the study of fuzzy implication functions from a pure theoretical
point of view. In this topic, it is pointed out in [23] the necessity of having as
many models and implication functions as possible in order to be able to mod-
elize all possibilities, depending on the exact meaning of the fuzzy conditional to
be modeled. In this sense, one of the main topics in the theoretic study of impli-
cation functions is the research of construction methods of new fuzzy implication
functions from given ones. A lot of these methods have appeared in last years
and many researchers have devoted their efforts to this topic. When they are
constructed from a given implication function I, the interest of these methods
lies in one or both of the following facts:
c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 11
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(i) It is important that the new implication function preserves as much prop-
erties as possible. This is the case for instance of the minimum and the
maximum of two implications, any convex linear combination of them, the
ϕ-conjugate or the N -reciprocal of an implication, see [4]. Other recent con-
structions in this direction are the threshold and vertical threshold genera-
tion methods [18,19], some algebraic operations between implications [24,25]
and some others, see the recent survey [20].

(ii) Another possibility is that the construction method can modify a given
implication I that do not satisfy some particular property, in order to obtain
a new implication satisfying it. This is the case for instance of the contra-
positivisation methods looking for implications satisfying the contraposition
law, the classical ones that can be found in [4], and also some new contrapos-
itivisations introduced in [1]. Other construction methods working in this
direction were recently introduced in [26] looking for implication functions
satisfying the ordering property.

The method presented in [21] (see also [22]) allows to construct fuzzy impli-
cation functions from a fuzzy negation N , but the method is in fact a particular
case of a more general method involving a t-conorm S, a fuzzy negation N
and a fuzzy implication function I. This last method was retrieved in [2] and
generalized leading to the so-called FNI-implications constructed from a given
implication I and using a disjunctive aggregation function F and a fuzzy nega-
tion N . Such implications were used in [2] to obtain new implications satisfying
continuity and also the strong negation property.

The idea of this paper is to develop the FNI-method to obtain new impli-
cation functions satisfying some other properties like the control of the decreas-
ingness with respect to the first variable, the strong negation property or the
property: I(x,N(x)) = N(x). Since the aggregation function used in the FNI-
method must verify that F (0, 1) = 1, we will do it by using some concrete
aggregation functions with this property. In particular, we will use disjunctive
uninorms and also nullnorms slightly modified in order to satisfy F (0, 1) = 1.
However, many other kinds of aggregation functions could be used and thus, we
are dealing with a field of study with many possibilities and we simply highlight
some of them in the current paper.

The paper is organized as follows. After this introduction, Sect. 2 is devoted
to some preliminaries in order to make the paper as self-contained as possible.
Section 3 presents the main results of the paper. In such section the construc-
tion method is investigated, and it is used to obtain new implication functions
satisfying the three mentioned properties by dividing the reasoning in three sub-
sections devoted to each one of these properties. Finally, the paper ends with
Sect. 4 devoted to some conclusions and future work.

2 Preliminaries

We will suppose the reader to be familiar with the theory of t-norms, t-conorms
and fuzzy negations (all necessary results and notations can be found in [14] and
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[4]), and also with some basic facts about aggregation functions (that can be
found in any of the excellent books [6,9,12]). We recall here only some facts on
aggregation functions and fuzzy implications in order to establish the necessary
notation that we will use along the paper and to make it as self-contained as
possible.

Definition 1. A binary operator F : [0, 1] × [0, 1] → [0, 1] is said to be an
aggregation function if it is increasing in each variable and it satisfies F (0, 0) = 0
and F (1, 1) = 1.

There are many kinds of aggregation functions and more details on them, their
classes and their properties can be found in [6]. Let us recall here two well known
families that will be used along the paper and that are specially important
because they are generalizations of t-norms and t-conorms.

Definition 2. A uninorm is an aggregation function which is associative, com-
mutative and such that there exists an element e ∈ [0, 1], called neutral element,
such that U(e, x) = x for all x ∈ [0, 1].

Evidently, a uninorm with neutral element e = 1 is a t-norm and a uninorm with
neutral element e = 0 is a t-conorm. For any other value e ∈]0, 1[ the operation
works as a t-norm in the [0, e]2 square, as a t-conorm in [e, 1]2 and its values are
between minimum and maximum in the set of points A(e) given by

A(e) = [0, e[× ]e, 1] ∪ ]e, 1] × [0, e[.

We will usually denote by U ≡ 〈TU , e, SU 〉 a uninorm U with neutral ele-
ment e and underlying t-norm and t-conorm, TU and SU . Any uninorm satisfies
that U(1, 0) ∈ {0, 1} and a uninorm U is called conjunctive if U(1, 0) = 0 and
disjunctive when U(1, 0) = 1 (more details can be found for instance in [10] and
also in the recent survey [15]).

Very related to uninorms are the so-called nullnorms [8] (also called t-
operators in [16]).

Definition 3. A function G : [0, 1]2 → [0, 1] is called a nullnorm if it is an
aggregation function which is associative, commutative and such that there exists
k ∈ [0, 1] called absorbing element that verifies G(k, x) = k for all x ∈ [0, 1] and

G(0, x) = x for all x ≤ k and G(1, x) = x for all x ≥ k.

When k = 0 we obtain a t-norm and when k = 1 we obtain a t-conorm. In
general, the absorbing element is always given by k = G(1, 0) = G(0, 1). The
structure of nullnorms can be found in [16] and it is given as follows.

Theorem 1. Let G : [0, 1]×[0, 1] −→ [0, 1] be a nullnorm with absorbing element
G(1, 0) = k 
= 0, 1. Then

G(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

kS
(

x
k , y

k

)
if (x, y) ∈ [0, k]2,

(1 − k)T
(

x−k
1−k , y−k

1−k

)
+ k if (x, y) ∈ [k, 1]2

k otherwise,

where S is a t-conorm and T is a t-norm.
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We will usually denote by G ≡ 〈SG, k, TG〉 a nullnorm G with absorbing
element k and underlying t-norm and t-conorm, TG and SG.

Definition 4. A decreasing function N : [0, 1] → [0, 1] is called a fuzzy negation
if N(0) = 1 and N(1) = 0. A fuzzy negation N is called

(i) strict, if it is strictly decreasing and continuous,
(ii) strong, if it is an involution, i.e., N(N(x)) = x for all x ∈ [0, 1].
(iii) non-filling, if it satisfies N(x) = 1 if and only if x = 0.

Among fuzzy negations, we can highlight the classical fuzzy negation Nc given
by Nc(x) = 1 − x for all x ∈ [0, 1] which is a strong fuzzy negation.

Definition 5. A binary operator I : [0, 1] × [0, 1] → [0, 1] is said to be a fuzzy
implication function, or an implication, if it satisfies:

(I1) I(x, z) ≥ I(y, z) when x ≤ y, for all z ∈ [0, 1].
(I2) I(x, y) ≤ I(x, z) when y ≤ z, for all x ∈ [0, 1].
(I3) I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

Note that, from the definition, it follows that I(0, x) = 1 and I(x, 1) = 1 for
all x ∈ [0, 1] whereas the symmetrical values I(x, 0) and I(1, x) are not derived
from the definition.

Definition 6. Given a fuzzy implication function I, the function NI(x) =
I(x, 0) for all x ∈ [0, 1] is always a fuzzy negation, known as the natural negation
of I.

Among many other properties usually required for fuzzy implications we
recall here some of the most important ones.

– The (Left) Neutrality Property:

I(1, y) = y for all y ∈ [0, 1]. (NP )

– The Consequent Boundary:

I(x, y) ≥ y for all y ∈ [0, 1]. (CB)

– The Ordering Property:

I(x, y) = 1 ⇐⇒ x ≤ y for all x, y ∈ [0, 1]. (OP )

– The Identity Principle:

I(x, x) = 1 for all x ∈ [0, 1]. (IP )

– The Strong Negation Principle:

I(x, 0) is a strong negation for all x ∈ [0, 1]. (SNP )
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– The Continuity condition:

I is a continuous mapping (CO)

– The Law of Contraposition with respect to a fuzzy negation N :

I(x, y) = I(N(y), N(x)) for all x, y ∈ [0, 1]. CP (N)

In [22] the following method to construct implication functions from t-
conorms and fuzzy negations was presented.

ISNI(x, y) = S(N(x), I(x, y)) for all x, y ∈ [0, 1].

This method was recalled in [2] where it was also extended to general aggregation
functions as follows.

Proposition 1. Let F be an aggregation function such that F (0, 1) = 1, N a
fuzzy negation, and I an implication function. The function IFNI given by:

IFNI(x, y) = F (N(x), I(x, y)) for all x, y ∈ [0, 1], (1)

is always an implication function.

Definition 7. A fuzzy implication function IFNI constructed through Eq. (1)
will be called an FNI-implication. Whenever the aggregation function F is in
fact a t-conorm S, IFNI will be called a SNI-implication.

According to Proposition 1, Eq. (1) gives a new method to construct implica-
tion functions that preserves some of the properties recalled before. Moreover,
this method was also used in [2] to construct implication functions that satisfy
continuity and (SNP ) from implications not satisfying them.

Proposition 2. Let F be a continuous disjunctive aggregation function and N
a continuous fuzzy negation. Let I be an implication function which is continuous
except at point (0, 0).

(i) Then IFNI satisfies (CO).
(ii) Moreover, if F has 0 as neutral element, N is strong, and I has ND1 as

natural negation, then IFNI satisfies (SNP ).

3 FNI-implications Derived from Uninorms
and Nullnorms

In this section we want to follow in the line of Proposition 2 and we want to use
FNI-implications to obtain new implication functions satisfying desired prop-
erties. We will do it by using uninorms and nullnorms as aggregation functions.
Since from Proposition 1 the aggregation function should satisfy F (0, 1) = 1,
nullnorms are not adequate to generate FNI-implications. For this reason we
introduce a slight modification of this kind of aggregations in order to satisfy
the mentioned property.
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Definition 8. Let G ≡ 〈SG, k, TG〉 be a nullnorm. The following function

Gd(x, y) =

{
1 if y = 1
G(x, y) otherwise.

will be called a d-nullnorm.

Similarly as for nullnorms, a d-nullnorm with Gd(1, 0) = k and underlying oper-
ators SU and TU will be denoted by Gd ≡ 〈SU , k, TU 〉d. It is clear from the def-
inition that d-nullnorms, Gd, are aggregation functions such that Gd(0, 1) = 1
and consequently they are suitable to be used in the construction method of
FNI-implications. Thus, we will use the following notation from now on.

Definition 9. An implication function derived from a disjunctive uninorm U ,
a fuzzy negation N and a given implication function I will be called a UNI-
implication and will be denoted by IUNI . Similarly, if the implication function
is derived from N, I and a d-nullnorm Gd, it will be called a GdNI-implication
and will be denoted by IGdNI .

From general results presented in [2] the following results can be easily
proved.

Proposition 3. Let N be a fuzzy negation, I an implication function, U a dis-
junctive uninorm, Gd a d-nullnorm and IUNI , IGdNI the corresponding UNI
and GdNI-implications. The following items hold:

(i) Both IUNI and IGdNI preserve (IP ).
(ii) IGdNI preserves (OP ). If N is non-filling and U has trivial 1-region then

IUNI also preserves (OP ).

On the contrary, note that UNI and GdNI-implications never satisfy (NP )
nor (CB) even when the initial implication I satisfies them. However the impor-
tance of these constructions does not fall in the properties that they preserve,
but in the possibility to modify the given implication in order to obtain a new
one satisfying a concrete desired property. In this direction we will devote our
study to the control of the decreasingness with respect to the first variable, the
strong negation property and the property: I(x,N(x)) = N(x) and we will do
it in a different section for each property.

Let us first present an example of how the UNI-implication method can
slightly modify a given implication I.

Example 1. Let U be a disjunctive uninorm with neutral element e ∈]0, 1[ and
consider the fuzzy negation N given by:

N(x) =

⎧
⎪⎨

⎪⎩

1 if x = 0
e if 0 < x ≤ α

e
1−α (1 − x) if x > α,
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where α < 1 is a value near to 1. For any implication function I, the resulting
IUNI is an implication only modified in the region when x > α. Thus, if for
instance e = 1/2 and α = 3/4, taking an implication function such that I(x, y) ≤
1/2 whenever x > 3/4 we obtain

IUNI(x, y) =

{
I(x, y) if x ≤ 3/4
1
2TU (4 − 4x, 2I(x, y)) if x > 3/4.

Note that the modification of I in the region x > 3/4 can be done even preserving
continuity if the underlying t-norm TU is continuous.

3.1 The Control of the Decreasingness with Respect to the First
Variable

The control of the decreasingness with respect to the first variable (as well as
the increasingness with respect to the second variable) of a fuzzy implication
function I was already studied in [19] (respectively, in [18]), where the vertical
threshold generation method of fuzzy implications was introduced and studied
(respectively, the horizontal threshold generation method). This kind of implica-
tions are constructed from two given implications by rescaling their first variable
depending on the vertical threshold e ∈]0, 1[ (see [19]). In the same paper they
were characterized as those implications satisfying I(e, y) = e for all y < 1.

Thus, this kind of implications take values over e when x < e and below e
when x > e. We want to see in this case that UNI and GdNI-implications can
be used to control the decreasingness of I in the regions where x < e and x > e.
Specifically we have the following results.

Proposition 4. Let U ≡ 〈TU , e, SU 〉 be a disjunctive uninorm with neutral ele-
ment e ∈]0, 1[ and N a fuzzy negation with fixed point e. If I is an implica-
tion function satisfying I(e, y) = e for all y < 1 then the corresponding UNI-
implication also satisfies IUNI(e, y) = e for all y < 1 and it is given by

IUNI(x, y) =

⎧
⎨

⎩

e + (1 − e)SU

(
N(x)−e
1−e , I(x,y)−e

1−e

)
if x ≤ e

eTU

(
N(x)

e , I(x,y)
e

)
if x > e.

(2)

Remark 1. Note that from the proposition above, IUNI takes values over I(x, y)
in all points where x < e and takes values below I(x, y) in all points where x > e
allowing then a control of the decreasingness of the implication.

Moreover, since the values of IUNI(x, y) depend only of the underlying oper-
ators TU and SU , the above mentioned control can be done in a continuous way
(at least in all points where I is continuous) taking TU and SU continuous.

Similarly, the control can be allowed by using d-nullnorms, but obtaining in
this way the contrary effect (see Remark 2).
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Proposition 5. Let Gd ≡ 〈SU , k, TU 〉 be a d-nullnorm with Gd(1, 0) = k ∈
]0, 1[ and N a fuzzy negation with fixed point k. If I is an implication function
satisfying I(k, y) = k for all y < 1 then the corresponding GdNI-implication
also satisfies IGdNI(k, y) = k for all y < 1 and it is given by

IGdNI(x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if y = 1

k + (1 − k)TU

(
N(x)−k
1−k , I(x,y)−k

1−k

)
if y < 1 and x ≤ k

kSU

(
N(x)

k , I(x,y)
k

)
if y < 1 and x > k.

(3)

Remark 2. Note that from the proposition above, contrary to what happens with
UNI-implications, the obtained GdNI-implication, IGdNI , takes values below
I(x, y) in all points where x < k and takes values over I(x, y) in all points where
x > k allowing then the opposed effect to the one obtained by UNI-implications
in the control of the decreasingness of the initial implication.

Example 2. Since the modified implications depend only on the underlying oper-
ators, any uninorm with the same associated TU and SU will get the same result.
Thus given a fuzzy implication I satisfying I(1/2, y) = 1/2 for all y < 1 (many
examples can be found in [19]), we can consider any uninorm with neutral ele-
ment 1/2 and with underlying operators TU the product t-norm and SU the prob-
abilistic sum t-conorm. Consider also the classical fuzzy negation N(x) = 1 − x
(with fixed point 1/2). Then the derived UNI-implication is given by:

IUNI(x, y) =

{
1 − 2x + 2xI(x, y) if x ≤ 1/2
2I(x, y) − 2xI(x, y) if x > 1/2,

which is a new implication satisfying IUNI(1/2, y) = 1/2.

3.2 The Strong Negation Property

We want to deal in this section with the strong negation property (SNP ). In
this case UNI-implications can also be used to modify a given implication I
obtaining a new implication satisfying this property. Specifically, we have the
following result.

Proposition 6. Consider e ∈]0, 1[ and let I be an implication function such
that its natural negation NI has fixed point e but it is not strong.

(i) Suppose that NI is strictly decreasing in [0, e] and that N2
I (x) ≤ x for all

x ≤ e. Take any disjunctive uninorm U ≡ 〈TU , e, SU 〉 with neutral element
e and underlying t-conorm SU = max, and the fuzzy negation N given by:

N(x) =

⎧
⎪⎨

⎪⎩

1 if x = 0
e if 0 < x < e,

N−1
I (x) if x ≥ e.

(4)
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Then the natural negation of the corresponding UNI-implication is given by

NIUNI
(x) = IUNI(x, 0) = U(N(x), NI(x)) for all x ∈ [0, 1], (5)

which is a strong negation and consequently IUNI satisfies the (SNP )
property.

(ii) Similarly, suppose that NI is strictly decreasing in [e, 1] and that N2
I (x) ≥ x

for all x ≥ e. Take any disjunctive uninorm U ≡ 〈TU , e, SU 〉 with neutral
element e and underlying t-norm TU = min, and the fuzzy negation N
given by

N(x) =

⎧
⎪⎨

⎪⎩

N−1
I (x) if x ≤ e

e if e < x < 1,

0 if x = 1.

(6)

Then the natural negation of the corresponding UNI-implication is given
by Eq. (5), which is a strong negation and consequently IUNI satisfies the
(SNP ) property.

Example 3. Let us consider the fuzzy negation given by

NI(x) =

{
1 − 2x if x ≤ 1/2
0 if x > 1/2.

It is clear that NI has fixed point e = 1/3 and that satisfies N2
I (x) ≤ x for all

x ≤ 1/3. Note that there are many implication functions with NI as natural
negation like all (S,N)-implications derived from NI and any t-conorm S and
thus the previous proposition can be applied to any of these implication functions
to obtain new ones satisfying (SNP ).

Take for instance the (S,N)-implication given by I(x, y) = max(NI(x), y)
for all x, y ∈ [0, 1]. Take N the negation given by Eq. (4) with e = 1/3 and U
any disjunctive idempotent uninorm with neutral element e = 1/3. Then the
corresponding UNI-implication has natural negation given by

NIUNI
(x) =

{
1 − 2x if x ≤ 1/3
1/2(1 − x) if x > 1/3.

which is clearly a strong negation. The three negations NI , N and NIUNI
are

depicted in Fig. 1.

3.3 The Property: I(x,N(x)) = N(x)

We devote this section to the property I(x,N(x)) = N(x) introduced in [7] and
lately studied due to its importance in the definition of fuzzy indices.

We will see that in this case an implication I can not be modified through
UNI-implications to obtain a new implication satisfying this property, but
GdNI-implications can. On the contrary, we will see that UNI-implications
in fact preserve this property. Specifically, we have the following results.
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Fig. 1. The three fuzzy negations NI , N and NIUNI considered in Example 3.

Proposition 7. Let U ≡ 〈TU , e, SU 〉 be a disjunctive uninorm with neutral ele-
ment e ∈]0, 1[ and underlying operators TU = min and SU = max. Let N be
a fuzzy negation with fixed point e and I an implication function satisfying
I(e, y) = y for all y ∈ [0, 1]. If I satisfies the property I(x,N(x)) = N(x)
for all x ∈ [0, 1], the corresponding UNI-implication also satisfies this property.

Proposition 8. Let Gd ≡ 〈SU , k, TU 〉 be a d-nullnorm with absorbent element
k ∈]0, 1[ and underlying operators TU = min and SU = max. Let N be a fuzzy
negation with fixed point k and I an implication function satisfying I(k, y) = y
for all y ∈ [0, 1] and I(x,N(x)) 
= 1 for all x such that N(x) < 1. Then the
corresponding GdNI-implication satisfies the property IGdNI(x,N(x)) = N(x)
for all x ∈ [0, 1].

Example 4. There are again many implication functions satsfying I(e, y) = y for
all y ∈ [0, 1] like all RU and (U,N)-implications derived from uninorms with
neutral element e. Take for instance any non-filling fuzzy negation N and any
disjunctive representable uninorm with neutral element e and additive generator
h. Then the (U,N)-implication I derived from U and N is given by

I(x, y) =

{
h−1(h(y) − h(x)) if (x, y) 
∈ {(1, 0), (0, 1)}
1 otherwise.

It is clear that I satisfies I(e, y) = y for all y ∈ [0, 1] and also satisfies
I(x,N(x)) 
= 1 for all x ∈]0, 1]. By Proposition 7, if we take any idempotent
d-nullnorm Gd with Gd(0, 1) = e, then the corresponding GdNI-implication
satisfies IGdNI(x,N(x)) = N(x) for all x ∈ [0, 1].

4 Conclusions

FNI-implications allow a way of constructing new implication functions from a
given one using a disjunctive aggregation function F and a fuzzy negation N .
This construction gives many possibilities to modify a given implication func-
tion in such a way that the resulting implication satisfies a desired property. In
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this paper, some of these possibilities have been highlighted by using uninorms
and nullnorms (in fact a disjunctive modification of nullnorms) as disjunctive
aggregation functions. Specifically, given a fuzzy implication function I, we have
constructed new implication functions with good desired properties, like a con-
trol of the decreasingness in the first variable, the strong negation property
(SNP ), or the property I(x,N(x)) = N(x) for all x ∈ [0, 1]. In all these cases,
an adequate uninorm or disjunctively modified nullnorm is used jointly with an
adequate fuzzy negation N to obtain implications satisfying each one of these
properties.
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fuzzy logic. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) Proceedings of
IPMU 2010. CCIS, vol. 80, pp. 525–534. Springer, Heidelberg (2010)

22. Shi, Y., Van Gasse, B., Ruan, D., Kerre, E.: Fuzzy implications: classification and
a new class. In: [3], pp. 31–53 (2013)

23. Trillas, E., Mas, M., Monserrat, M., Torrens, J.: On the representation of fuzzy
rules. Int. J. Approx. Reason. 48, 583–597 (2008)

24. Vemuri, N.R., Jayaram, B.: Representations through a monoid on the set of fuzzy
implications. Fuzzy Sets Syst. 247, 51–67 (2014)

25. Vemuri, N.R., Jayaram, B.: The �-composition of fuzzy implications: closures with
respect to properties, powers and families. Fuzzy Sets Syst. 275, 58–87 (2015)

26. Zhang, W., Pei, D.: Two kinds of modifications of implications. In: Fan, T.-H.,
et al. (eds.) Quantitative Logic and Soft Computing 2016. Advances in Intelligent
Systems and Computing, vol. 510, pp. 301–310. Springer, Cham (2017)



On the Aggregation of Zadeh’s Z-Numbers
Based on Discrete Fuzzy Numbers

Sebastia Massanet(B), Juan Vicente Riera, and Joan Torrens

SCOPIA Research Group, Department of Mathematics and Computer Science,
University of the Balearic Islands, Crta. Valldemossa, Km. 7.5, 07122 Palma, Spain

{s.massanet,jvicente.riera,jts224}@uib.es

Abstract. The accurate modelling of natural language is one of the
main goals in the theory of computing with words. Based on this idea,
Zadeh in 2011, introduced the concept of Z-number which has a great
potential not only from the theoretical point of view but also for many
possible applications such as in economics, decision analysis, risk assess-
ment, etc. Recently, the authors proposed a new vision of Zadeh’s
Z-numbers based on discrete fuzzy numbers that simplifies the com-
putations and maintains the flexibility of the original model from the
linguistic point of view. Following with this novel interpretation, in this
paper, algebraic structures in the set of Zadeh’s Z-numbers are stud-
ied. In this framework, we propose a method to construct aggregation
functions from couples of discrete aggregation functions. In particular,
t-norms and t-conorms are built. Finally, an application to reach a final
decision on a decision making problem is given.

Keywords: Zadeh’s Z-numbers · Discrete fuzzy numbers · Aggregation
functions

1 Introduction

Lattice theory is both a theoretical and applied field which has been widely
developed since the publication of the seminal papers of Birkhoff [5], notably
collected then into the book of Grätzer [13]. One of the most important char-
acteristics of lattices is the possibility to interpret them on the one hand, as an
algebraic structure with two underlying operations or on the other hand, as a
set equipped with a partial order satisfying some conditions [12]. From a Fuzzy
Logic point of view, both intepretations are quite interesting. If a lattice is inter-
preted as an algebraic structure, this structure can be understood as a possible
semantics of a substructural logic [12,25]. Otherwise, if a lattice is interpreted as
a partial ordered set, it can be used as a definition or valuation set of aggregation
functions [1,11,18,20,37] or fuzzy connectives [8–10].

On the other hand, it is well-known that uncertainty is a common factor in a
wide range of real life situations. Indeed, uncertainty appears in many decision
making problems based on partial data or opinions expressed in natural lan-
guage. It was from this fact that Zadeh introduced the idea of Computing With
c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 12
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Words (CWW) [35], as a computation based on words, or perceptions, or even
sentences of the natural language, instead of the traditional computation based
on numbers. This has motivated that computation with words have turned into
a usual resource in the field of decision making. For this reason, several differ-
ent linguistic models have been presented in the literature with the purpose of
modelling experts’ opinions. In [24] it is presented a systematic review process
about multi-granular fuzzy linguistic model approaches (FLM) considering six
different categories: Traditional multi-granular FLM based on fuzzy member-
ship functions [19], Ordinal multi-granular FLM based on a basic Linguistic
Term Set [14], Ordinal multi-granular FLM based on 2-tuple FLM [15], Ordi-
nal multi-granular FLM based on hierarchical trees [17], Multi-granular FLM
based on qualitative description spaces [32], and Ordinal multi-granular FLM
based on discrete fuzzy numbers, or dfn for short [23,28,29]. All these linguistic
frameworks are characterized by a robust algebraic background which allows the
construction of aggregation functions and other logical operators. These opera-
tors are adapted to the framework where they have been defined and therefore,
they can be successfully applied in decision making problems. Consequently,
the proposal of linguistic models which fits as better as possible to the experts’
opinions as well as the construction of the aggregation functions within these
frameworks are always interesting challenges for researchers.

Following with the previous ideas, that is, the accurate modelling of nat-
ural language, Zadeh [36] in 2011, introduced the concept of Z-number as an
ordered pair of fuzzy numbers (A,B). Thus, when a Z-number is associated
with a real-valued uncertain variable X, the ordered triple (X,A,B) is referred
to as a Z-valuation, where the first component A is interpreted not as a value
of X, but as a restriction on the values which X can take; and the second one,
B is referred to as certainty (sureness, confidence, reliability, probability, pos-
sibility. . . ) about the value of A. For instance, the opinion it is very likely that
the investment risk is very low can be modelled as the Z-valuation (investment
risk, very low, very likely). Since then, many researchers have focused their
studies on Z-numbers from different aspects (theoretical knowledge or practical
applications) [2–4,26,34].

However, Zadeh [36] pointed out “Problems involving computation with Z-
numbers are easy to state but far from easy to solve”. This complexity has led to
the proposal of many approaches in the literature (see [2,26,34]). One of these
approaches was presented in [22]. Similarly to [2], in this new vision of Zadeh’s
Z-numbers, Z-information is expressed as couples of discrete fuzzy numbers.
However, the second component is not regarded from a probabilistic point of
view but as a dfn-evaluation [23,28] that represents the sureness or confidence
of the first component. This new approach not only increases the flexibility
of the expert opinions, but it also eases the management and the operations
between Z-valuations by using aggregation operators in the set of dfns [7,29–31].
In accordance with the above discussion and using the classical lattice theory [13],
in this paper some lattice operators for this novel interpretation of Z-numbers
will be defined allowing to construct a bounded distributive lattice in the set of
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Z-numbers based on discrete fuzzy numbers. Moreover, using as definition and
valuation set this new bounded lattice, several different aggregation functions
useful for decision making problems where experts use this kind of linguistic
valuations to express their opinions are presented.

2 Preliminaries

In this section we will present the main concepts related to discrete fuzzy num-
bers that will be used later.

By a fuzzy subset of R, we mean a function A : R → [0, 1]. For each fuzzy
subset A, let Aα = {x ∈ R : A(x) ≥ α} for any α ∈ (0, 1] be its α-level set (or
α-cut). By supp(A), we mean the support of A, i.e., the set {x ∈ R : A(x) > 0}.
By A0, we will denote the closure of supp(A).

Definition 1 [33]. A fuzzy subset A of R with membership mapping A : R →
[0, 1] is called a discrete fuzzy number, or dfn for short, if its support is finite,
i.e., there exist x1, . . . , xn ∈ R with x1 < x2 < · · · < xn such that supp(A) =
{x1, . . . , xn}, and there are natural numbers s, t with 1 ≤ s ≤ t ≤ n such that:

1. A(xi) = 1 for all i with s ≤ i ≤ t. ( core)
2. A(xi) ≤ A(xj) for all i, j with 1 ≤ i ≤ j ≤ s.
3. A(xi) ≥ A(xj) for all i, j with t ≤ i ≤ j ≤ n.

From now on, we will denote by Ln the finite chain Ln = {0, 1, . . . , n} and by
ALn

1 the set of discrete fuzzy numbers whose support is a subinterval of the finite
chain Ln. Note that in this case, any α-cut is also a subinterval of Ln that will
be denoted by Aα as well as the support of A which coincides with its closure,
i.e., supp(A) = A0. Moreover, given any k ∈ Ln, we will denote by 1k the dfn in
ALn

1 whose support is the singleton {k}.
The following result holds for ALn

1 , but it is not true for the set of discrete
fuzzy numbers in general (see [6]).

Theorem 1 [6]. The triplet (ALn
1 ,MIN,MAX) is a bounded distributive lattice

where 1n ∈ ALn
1 and 10 ∈ ALn

1 are the maximum and the minimum, respectively,
and where MIN(A,B) and MAX(A,B) are the discrete fuzzy numbers belonging
to the set ALn

1 such that they have the sets

MIN(A,B)α ={z ∈ Ln | min(xα
1 , yα

1 ) ≤ z ≤ min(xα
p , yα

k )} and

MAX(A,B)α ={z ∈ Ln | max(xα
1 , yα

1 ) ≤ z ≤ max(xα
p , yα

k )} (1)

as α-cuts (and support) respectively, where A,B ∈ ALn
1 , with α cuts given by

[xα
1 , xα

p ] and [yα
1 , yα

p ], respectively, for each α ∈ [0, 1].

Remark 1 [6]. Using these operations, we can define a partial order on ALn
1 in

the usual way:
A � B if and only if MIN(A,B) = A,

or equivalently,
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A � B if and only if MAX(A,B) = B
for any A,B ∈ AL

1 . Equivalently, we can also define the partial ordering in terms
of α-cuts:

A � B if and only if min(Aα, Bα) = Aα

A � B if and only if max(Aα, Bα) = Bα

for all α ∈ [0, 1].

Aggregation functions defined on Ln have been extended to ALn
1 (see for

instance [7,29]) according to the next result.

Theorem 2 [7,29]. Consider a binary aggregation function F on the finite chain
Ln. The binary operation F : ALn

1 × ALn
1 −→ ALn

1 which returns F(A,B), the
discrete fuzzy number whose α-cuts are the sets

{z ∈ Ln | F (min Aα,min Bα) ≤ z ≤ F (max Aα,max Bα)}
for each α ∈ [0, 1], is an aggregation function on ALn

1 .
Moreover, if F is a t-norm, a t-conorm, a uninorm or a nullnorm then so is

its extension F .

2.1 Linguistic Model Based on Discrete Fuzzy Numbers

The study of the lattice ALn
1 as well as the construction of the aggregation func-

tions we have already commented in the previous section were not only interest-
ing from the algebraic point of view but also they have constituted the theoretical
foundations for the multigranular computational linguistic model based on dis-
crete fuzzy numbers [23]. Among the main advantages of this model, we want to
highlight the following ones (see [16,28] for more details):

(i) It allows to describe more accurately the experts’ opinions when they express
their valuations in decision making problems.

(ii) It eases the aggregation process of the linguistic information without need
of any kind of previous transformation.

From the above discussion, we introduce the following definition.

Definition 2 [23]. Let Ln = {0, . . . , n} be a finite chain. We call a dfn-
evaluation to each discrete fuzzy number A belonging to ALn

1 .

In Fig. 1, we have considered the lattice AL6
1 with L6{N,V L,L,M,H,

V H, T} where the letters refer to the linguistic terms None, V ery Low, Low,
Medium, High, V ery High and Total. In this way, we can represent the
expression High modelled by A = {0.5/2, 0.75/3, 1/4, 0.75/5} and the expres-
sion “between Low and High” modelled by B = {0.5/1, 1/2, 1/3, 1/4, 0.25/5}.
Note that this approach as we have previously mentioned is very flexible
because another expert can give the same expressions High or “between
Low and High” but now using other dfn-evaluations. For instance, A′ =
{0.8/2, 0.85/3, 1/4, 0.25/5} and B′ = {0.2/1, 1/2, 1/3, 1/4, 0.75/5} represent the
same linguistic expressions displayed in Fig. 1 but using other dfn-evaluations
which can fit better the criterion of the second expert.
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(a) A possible flexibilization of H
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(b) A possible flexibilization of “between
Low and High”

Fig. 1. Different types of experts’ evaluations using dfn-evaluations

2.2 A Review on Zadeh’s Z-Numbers

In this section we recall the main concepts about this topic and we also analyse
some of the most interesting ideas published in this framework.

Definition 3 [36]. An ordered pair of fuzzy numbers (A,B) is a Z-number. A
Z-number is associated with a real-valued uncertain variable, X, with the first
component, A, playing the role of fuzzy restriction on X, while the fuzzy number,
B is an imprecise estimation of reliability of A. The ordered triple (X,A,B) is
referred as a Z-valuation and it is equivalent to an assignment statement, X
is (A,B).

Remark 2. When X is a random variable, X is (A,B) can be interpreted as
Prob(X is A) is B where Prob(X is A) is the probability measure of the fuzzy
event A in the sense of [36].

Operations with Z-Numbers: Let Z1 = (A1, B1) and Z2 = (A2, B2) be
Z-numbers describing values of uncertain real-valued variables X1 and X2

respectively. The inference rule is represented as follows:

Z1 is (A1,B1)
Z2 is (A2,B2)

Z1 ∗ Z2 is (A1 ∗ A2, B1 ◦ B2)
(2)

where ∗ represents an arithmetical operation and A1 ∗A2 is computed according
to Zadeh’s extension principle and B1 ◦ B2 is computed applying the version
of the extension principle which relates to probabilistic restrictions (for more
details see [36]).

Note that the complexity of this operation is well known and usually yields
a very complex non-linear variational problem (see [2,27]). To avoid or relax
this complexity some different perspectives in the field of Z-numbers have been
proposed to simplify the operations as well as the computational cost of their
implementation [2,26,27,34].
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Moreover, we highlight the following:

(i) Z-numbers can be conceptualized as a formidable tool in the design of
discourse-oriented decision-making systems, risk assessments, etc.

(ii) It is necessary to find new linguistic models based on fuzzy sets to collect the
main ideas established by Zadeh [36] in order to reduce the computational
cost of the inference process.

It is clear that this second point is the central idea that generates all the
above mentioned papers. Following this same line, we will recall in next section
the recent interpretation of Z-numbers based on dfn in ALn

1 stablished by the
authors in [22] and we will propose a new algebraic framework that will allow
us to construct formally aggregation functions whose values are this new kind of
Z-numbers.

3 Zadeh’s Z-Numbers Based on Dfn-Evaluations

In the previous section we have recalled that Zadeh’s original concept can be a
very appropriate tool to model the reasoning with words. However this idea
presents some problems when we want to compute with Z-valuations. The
different proposals previously presented in the literature consider the second
component from a probabilistic point of view according to the original idea of
Z-numbers. However, in the seminal paper [36], Zadeh also states that the second
component, B, is a measure of reliability (certainty) of the first component, and
closely related to certainty there are many concepts as: sureness, confidence,
reliability, probability. That is, B can be interpreted from different points of
view.

From this idea we introduced in [22] a new approach to Z-numbers based on
couples of discrete fuzzy numbers in ALn

1 × ALm
1 , where the second component

represents the sureness or confidence of the first component avoiding in this way
the probabilistic aspect considered in the previous approaches. Formally,

Definition 4 [22]. Let us consider Ln and Lm two finite scales. An ordered pair
of discrete fuzzy numbers (A,B) with A ∈ ALn

1 , B ∈ ALm
1 is a (Ln, Lm)-discrete

Z-number. An (Ln, Lm)-discrete Z-number is associated with an uncertain vari-
able, X, with the first component, A, playing the role of fuzzy restriction on X,
while the discrete fuzzy number B is an imprecise estimation of reliability of A.
The ordered triple (X,A,B) is referred as a Z-valuation and it is equivalent to
an assignment statement, X is (A,B).

Example 1. Likely, the investment profit of this business will be very high can
be interpreted as the Z-valuation Z = (investment profit, V ery High, Likely).
For instance if we consider the linguistic term sets

S = {V ery Low(V L), Low(L), Neutral(N),High(H), V ery High(V H)},

S′ = {Impossible(I), V ery Unlikely(V U), Unlikely(U),Maybe or

Maybe Not(MN), Likely(Li), V ery Likely(V Li), Sure(S)}
(3)
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to express the first and second components of Z respectively, the Z-valuation
can be expressed by the couple Z = (A,B) where

A = {0.5/L, 0.6/N, 0.8/H, 1/V H} = {0.5/1, 0.6/2, 0.8/3, 1/4} ∈ AL4
1 ,

B = {0.7/MN, 1/Li, 0.6/V Li, 0.3/S} = {0.7/3, 1/4, 0.6/5, 0.3/6} ∈ AL6
1 .

Let us consider the set ALn
1 × ALm

1 = {Z = (A,B) | A ∈ ALn
1 , B ∈ ALm

1 } of
(Ln, Lm)-discrete Z-numbers. According to Theorem 1, the set ALn

1 is a bounded
distributive lattice for any finite chain Ln. Thus, using the well-known product
lattice structure [13], we easily obtain the following result.

Proposition 1. The triplet (ALn
1 × ALm

1 ,MIN,MAX) is a bounded distributive
lattice where 1(n,m) = (1n, 1m) ∈ ALn

1 × ALm
1 and 0(n,m) = (10, 10) ∈ ALn

1 ×
ALm

1 are the maximum and the minimum, respectively, and where MIN(Z1, Z2)
and MAX(Z1, Z2) denote the (Ln, Lm)-discrete Z-numbers belonging to the set
ALn

1 × ALm
1 defined as follows

MIN(Z1, Z2) =(MIN(A1, B1),MIN(A2, B2)) and

MAX(Z1, Z2) =(MAX(A1, B1),MAX(A2, B2))
(4)

where MIN and MAX stand for the operations defined in Theorem 1.

From the product lattice structure stated in Proposition 1, we can easily con-
struct aggregation functions on ALn

1 ×ALm
1 in the usual way (see [11]) as follows.

Proposition 2. Consider G1 and G2 two aggregation functions on ALn
1 and

ALm
1 respectively constructed according to Theorem 2. The binary operation on

ALn
1 × ALm

1 defined as follows

F : (ALn
1 × ALm

1 ) × (ALn
1 × ALm

1 ) −→ ALn
1 × ALm

1

(Z1 = (A1, A2), Z2 = (B1, B2)) 	−→ F(Z1, Z2)

being F(Z1, Z2) the (Ln, Lm)-discrete Z-number

F(Z1, Z2) = (G1(A1, B1),G2(A2, B2))

is an aggregation function on the poset (ALn
1 × ALm

1 ,≤, 0(n,m), 1(n,m)).

In particular, next result proves that many of the most usual properties of aggre-
gation functions are preserved by the previous construction.

Proposition 3. Let F : (ALn
1 ×ALm

1 )×(ALn
1 ×ALm

1 )−→ALn
1 ×ALm

1 be an aggre-
gation function constructed according to Proposition 2 from G1 and G2 aggrega-
tion functions on ALn

1 and ALm
1 respectively. Then the following properties hold:

1. F is a commutative aggregation function if and only if G1 and G2 are commu-
tative as well.

2. F is a associative aggregation function if and only if G1 and G2 are associative
as well.
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3. F is an idempotent aggregation function if and only if G1 and G2 are idempo-
tent as well.

4. F is a t-norm (t-conorm) if and only if G1 and G2 are t-norms (t-conorms)
as well.

Example 2. Following with the Z-valuation Z = (A,B) given in Example 1, if
we consider another valuation Z ′=(Investment profit, Low, UnLikely) modelled
by the pair Z ′ = (C,D) where

C = {0.2/V L, 1/L, 0.8/N, 0.6/H} ∈ AL4
1 ,

D = {0.3/V U, 1/U, 0.9/MN, 0.7/Li} ∈ AL6
1 ,

respectively, these two Z-valuations can be aggregated using for instance the
extensions of the kernel aggregation functions [21] with parameter k = 2 in L4

and L6, respectively, obtaining

Investment Profit is (V ery High, Likely)
Investment Profit is (Low, UnLikely)

Z = (High, Unlikely)
(5)

where

High = {0.2/V L, 0.6/L, 0.8/N, 1/H}, Unlikely = {0.3/V U, 1/U, 0.9/MN, 0.7/Li}.
In the above computations we have considered the same parameter k = 2 for

both aggregation functions. However, it is possible to consider different parame-
ters for each linguistic scale. This parameter adjusts the degree of optimism of
the aggregation process. Values of k close to 0 would lead to more optimistic
aggregated opinions, while greater values would rise on less optimistic aggre-
gated opinions. Thus, if we consider a more pessimistic parameter k = 4 for L4

and a more optimistic parameter k = 1 for L6 we obtain

Investment Profit is (V ery High, Likely)
Investment Profit is (Low, UnLikely)

Z = (Low,Likely)
(6)

where

Low = {0.2/V L, 1/L, 0.8/N, 0.6/H}, Likely = {0.7/MN, 1/Li, 0.6/V Li, 0.7/S}.
Remark 3. We wish to point out that it is possible to consider another vision of
Zadeh’s Z-numbers where the first component, similarly to the classical defini-
tion, is a fuzzy number but the second one, that expresses the sureness of this
component, is represented as a dfn-evaluation. From this point of view, the com-
plexity of the operations is also greatly reduced. In this way, the first components
will be operated using the fuzzy arithmetic and the second components will be
computed using an aggregation function constructed according to Proposition 2.

Concretely, let Z1 = (A1, B1) and Z2 = (A2, B2) be Z-numbers. The infer-
ence rule will be represented as follows:
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Z1 is (A1, B1)
Z2 is (A2, B2)

Z1 ∗ Z2 is (A1 ∗ A2,F(B1, B2))

where ∗ represents a fuzzy arithmetical operation and F is an aggregation func-
tion on the set of discrete fuzzy numbers. For instance, the sentence Next year,
it is likely that the investment profit will be about 4 millions can be interpreted
as the Z-valuation Z = (Investment profit, about 4 millions, Likely).

3.1 Application

In the previous section we have proposed a method to construct aggregation
functions on (ALn

1 × ALm
1 ,MIN,MAX) from couples of aggregation functions

(G1,G2) defined on ALn
1 and ALm

1 respectively. Now, we propose to use this new
kind of aggregation operators in order to obtain the final decision of a group
of experts when their opinions are expressed through Z-valuations based on
(Ln, Lm)-discrete Z-numbers.

Example 3. Let us suppose that the department of public works of a town hall
analyses the feasibility of a work project. To this end, if the initial economic bud-
get is accepted, the following two variables X1 = time of delay in works already
executed by this company and X2 = quality of the works previously executed are
taken in account.

The department will take a final decision using the global variable X =
{Project risk}, that will be obtained by merging the opinions given by three
experts on the above two variables. To simplify the example we will suppose
that all valuations have already been reduced to the linguistic scale (L1, L2)
given by

L1 = {V L, L, M, H, V H}, L2 = {V U, U, O, Li, V Li},

where items in L1 stand for Very Low, Low, Moderate, High, Very High and
items in L2 stand for Very Unlikely, Unlikely, Occasional, Likely, Very Likely
respectively.

Thus, all the Z-valuations given by the experts in both components can be
interpreted as discrete fuzzy numbers in AL4

1 . Let us suppose that they are given
by

Z11 = (H = {0.5/L, 0.8/M, 1/H, 0.1/V H}, Li = {0.2/U, 0.6/O, 1/Li, 0.8/V Li})
Z21 = (M = {0.8/V L, 0.9/L, 1/M, 0.2/H}, U = {0.4/V U, 1/U, 0.2/O})
Z31 = (H = {0.6/L, 0.8/M, 1/H, 0.4/V H}, V Li = {0.2/O, 0.4/Li, 1/V Li})

for the variable X1 and

Z12 = (H = {0.3/L, 0.7/M, 1/H, 0.6/V H}, V Li = {0.3/O, 0.6/Li, 1/V Li})
Z22 = (V H = {0.3/L, 0.4/M, 0.5/H, 1/V H}, O={0.4/V U, 0.7/U, 1/O, 0.6/Li})
Z32 = (L = {0.3/V L, 1/L, 0.4/M, 0.3/H}, U = {0.4/V U, 1/U, 0.7/O, 0.6/Li})

for the variable X2. These valuations are collected in Table 1.
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Table 1. Z-valuations expressed by the three experts on L = (L1, L2).

Variables

X1 = Time of delay X2 = Quality

E1 Z11 = (High, Likely) Z12 = (High, V ery Likely)

E2 Z21 = (Moderate, UnLikely) Z22 = (V ery High,Occasional)

E3 Z31 = (High, V ery Likely) Z32 = (Low,UnLikely)

Once we have obtained the valuations of each variable, we compute for each
one a representative final valuation obtained by the aggregation of the opinions
given by the experts on that variable. In this way, to symplify the operations,
let us choose the same aggregation function in all cases. In particular, we will
consider G the extension to AL4

1 of the kernel aggregation function on L4 with
parameter k = 2 (see [21]). Thus, we get the global evaluations for the variables
X1 and X2

G1(Z11, Z21, Z31) = ({0.8/V L, 0.9/L, 1/M, 0.1/V H}, {0.2/V U, 0.4/U, 1/O}),
G2(Z12, Z22, A32) = ({0.2/V L, 0.4/L, 1/M}, {0.3/V U, 0.6/U, 1/O, 0.6/Li}),

respectively. Finally, the global valuation is obtained aggregating the two previ-
ous Z-valuations by using the same aggregation function:

G(G1(Z11, Z21, Z31),G2(Z12, Z22, A32)) =
({0.8/V L, 0.9/L, 1/M}, {0.3/V U, 0.6/U, 1/O}) = (Moderate,Occasional).

Then it is occasional that the risk is moderate.

4 Conclusions and Future Work

In [22], the authors presented a new approach on Z-numbers based on discrete
fuzzy numbers with support in a finite chain Ln. Following with this investiga-
tion, in this article we have studied algebraic structures in the set of Z-numbers.
Concretely, a bounded distributive lattice is constructed. We have proposed a
method to build aggregation functions on this lattice from couples of discrete
aggregation functions. Moreover, we have shown that these new aggregation
functions preserve similar properties than the initials ones. In particular, we
have proved that if we consider a couple of discrete t-norms or t-conorms this
new aggregation function so is. Finally, we have proposed an application to reach
a final decision on a decision making problem.

As a future work, we want to use these aggregations functions in the solution
of group decision making problems.
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Abstract. We provide an axiomatic characterization of preorders that
are defined with respect to a set of properties. Moreover, it is proven that
property-based posets are in natural correspondence with topological
spaces. This paper propose also a characterization and a generalization
of a Sugeno-type integral in our framework.

1 Introduction

Decision problems are characterized by a plurality of points of view. We have to
consider the different dimensions from which the alternatives can be viewed in
a multi-attribute decision model or the preferences of voters in a social choice
problem. In order to solve a decision problem we have to compare and rank
a set of alternatives and each alternative is often defined by its attributes or
properties.

We consider the model of abstract Arrowian aggregation introduced in [17]
that represents a decision problem in terms of a set of Boolean properties spec-
ifying for every alternative a list of properties that are satisfied.

A property space is a pair (X;H ) where X is a non-empty set and H is a
collection of non-empty subsets of X that is closed under complementation and
that separates points(i.e. if x, y ∈ X and x �= y there exists H ∈ H such that
x ∈ H and y /∈ H). The elements of H are referred to as properties and if x ∈ H
we say that x has property represented by the subset H.

The “property space” model has received attention in the literature on judge-
ment aggregation for studying the problem of aggregating sets of logically inter-
connected propositions. Moreover, it provides a general framework for represent-
ing preferences and then aggregation of preferences (see [17]).

The structure of a state property systems was introduced in the context of
the foundations of quantum mechanics. In [1] a physical entity is represented by
a mathematical model that considers its set of states, its set of properties, and
a relation of “actuality of a certain property for a certain state”. This model
contains a complete lattice of properties of the physical entity. In [2] it is shown
that the lattice can be viewed as the lattice of closed sets of a closure space.

We have two goals in this paper. Our principal goal is to introduce a gen-
eral framework to study property spaces. We do not consider a finite property
space and we consider also “non classical” properties. In Sect. 3 the categorical
c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 13
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equivalence between the description of a partially ordered set by means of objects
and properties and the representation of the corresponding topological space is
studied while in Sect. 4 an algebraic characterization is considered.

We then focus on aggregation operators over property-based domains and
our second goal is to characterize some important class of aggregation function-
als. Section 5 contains such results. Finally in Sect. 6 we briefly address some
conclusions and future work.

2 The Model

First we recall some basic notions in lattice and ordered set theory. More detailed
introduction to this subject can be found in e.g., Caspard, Leclerc and Monjardet
[5], Davey and Priestley or Grätzer [14].

A partially ordered set (poset for short) (P,≤) is a set P with a reflexive,
antisymmetric and transitive binary relation ≤. We will write (x, y) ∈ R as x ≤ y
(or equivalently, y ≥ x) and we will use x > y to mean that x ≤ y and x �= y.

The word “partial” indicates that there’s no guarantee that all elements can
be compared to each other i.e. we don’t know that for all x, y ∈ P , at least one
of x ≤ y and x ≥ y holds. A poset in which this is guaranteed is a totally ordered
set.

A relation that is reflexive and transitive is said to be a preorder. This is a
rather general concept, as every partial order and every equivalence order is a
preorder. Given a poset P and a set S ⊆ P , when S has a supremum p with
respect to ≤ we say that p is the join of S and write

∨
S =

∨
x∈S x = p. Similarly

when S has an infimum q with respect to ≤ and we say q is the meet of S and
write

∧
S =

∧
x∈S x = q.

A lattice is a poset in which every pair of elements (and thus every finite
subset) has both a meet and a join. Every lattice L constitutes a partially ordered
set endowed with the partial order ≤ such that for every x, y ∈ L, write x � y
if x ∧ y = x or, equivalently, if x ∨ y = y. If for every x, y ∈ L, we have x ≤ b or
y ≤ x, then L is said to be a chain. A lattice L is said to be bounded if it has a
least and a greatest element, denoted by 0 and 1, respectively.

A lattice L is said to be distributive, if for every x, y, z ∈ L,

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) or, equivalently, x ∧ (y ∨ z)=(x ∧ y) ∨ (x ∧ z).

Clearly, every chain is distributive. A lattice L is said to be complete if∧
I =

∧
x∈I x and

∨
I =

∨
x∈I x exist for every I ⊆ L. Clearly, every complete

lattice is also bounded.
In this paper we adopt the following property space formulation which focuses

on a partially ordered set.
A poset (X,≤) is a property-based poset if there exists a complete lattice L

and a function f : X → P(L) such that we have:

(i) 0 /∈ f(x) for every element x ∈ X
(ii) if for every i ∈ I, ai ∈ f(x) then

∧
i∈I ai ∈ f(x)
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(iii) if x, y ∈ X then x ≤ y if and only if f(x) ⊆ f(y)
(iv) if xi ∈ X for every i ∈ I and there exists ∧i∈Ixi then f(∧i∈Ixi) = ∩i∈If(xi)
(v) if x ∈ X and a, b ∈ L and a ≤ b, if a ∈ f(x) then b ∈ f(x)
(vi) if a, b ∈ L and x ∈ X if a ∨ b ∈ f(x) then a ∈ f(x) or b ∈ f(x).

The set X is the set of alternatives while the lattice L consists of properties of
elements in X. The statement “the element x satisfies the property a” is formally
expressed by the formula a ∈ f(x). We demand that the set of properties is
a complete lattice. So the set of properties is a partially ordered set with the
meaning of the partial order relation is the following. If a, b ∈ L then a ≤ b means
that whenever a is satisfied for an element x then also property b is satisfied for
x. Moreover, it is easy to prove that the function f is injective. Requirement
(ii) expresses that if for an alternative x all the properties ai are satisfied, this
implies that for x also the infimum property

∧
i∈I ai is satisfied. The property∧

i∈I ai is the property that is satisfied if and only if all of the properties ai are
satisfied. Hence the infimum represents the logical “and”.

We say that a property a ∈ L is a classical property if there exists a property
b such that a∨ b = 1 and a∧ b = 0. Note that a classical property a is such that
a ∈ f(x) if and only if b /∈ f(x) and so classical properties are “yes” or “no”
properties.

The concept of property space studied in [17] consider only a finite set of
elements and only classical properties. In [1–3] it is considered the definition of
property state system where if a, b ∈ L, a ≤ b if and only if for every x ∈ X
when a ∈ f(x) then b ∈ f(x).

3 A Topological Characterization of Property-Based
Posets

In this section we will prove that a property-based poset can be seen as a topo-
logical space and that conversely every topological space is a property-based
poset. With this equivalence a concept which can be defined using closed set on
a topological space can be translated in a concept for a property-based poset.

If (X,≤) is a property-based poset we introduce the following map

c : L → P(X), a �→ c(a) = {x ∈ X | a ∈ f(x)}.

Proposition 1. If (X,≤) is a property-based poset the set c(L) is the family of
closed sets of a T0-topology defined on the set X.

Proof. Since 1 ∈ f(x) for every x ∈ X, we have c(1) = X. As 0 /∈ f(x) for every
x ∈ X, we have c(0) = ∅ and then X and ∅ are elements of c(L). If we consider
the sets c(ai) ∈ c(L) such that i ∈ I then we get ∩i∈Ic(ai) = c(∧i∈Iai) ∈ c(L).
Then the intersection of arbitrary elements in c(L) is an element in c(L).

If a, b ∈ L and x ∈ c(a ∨ b) then a ∨ b ∈ f(x). By requirement [(vi)] in the
definition of a property-based poset we have that a ∈ f(x) or b ∈ f(x). So we
get that x ∈ c(a) or x ∈ c(b) which shows that x ∈ c(a) ∪ c(b). We can conclude
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that c(a) ∪ c(b) ⊆ c(a ∨ b) and this shows that c(a) ∪ c(b) = c(a ∨ b) since the
other inclusion is obvious hence c(a) ∪ c(b) ∈ c(L).

The topology defined above satisfies the T0 separation axiom since if x �= y
then there exists a ∈ L such that a ∈ f(x) and a /∈ f(y) (or vice versa) and then
the closed set c(a) separates the points x and y. ��

This result proves that to a property-based poset naturally corresponds a
topological space (X,T ) on the set of alternatives, where the properties are
represented by the closed subsets. The following proposition proves that we can
also associate a property-based poset with any topological space.

Proposition 2. Let C be the set of closed set of a topological space X that
satisfies T0 separation axiom. Then the set C is a complete lattice with respect
to set inclusion and the function f : X → P(C ) such that

f(x) = {C ∈ C : x ∈ C}
defines a property-based poset structure on the set X.

Proof. It is easy to prove that C is a lattice with respect to set inclusion with
minimal element ∅ and maximal element X. If (Ci)i∈I is a family of elements of
C then we have that

∧
i∈I Ci =

⋂
i∈I Ci and

∨
i∈I Ci =

⋃
i∈I Ci (where

⋃
i∈I Ci

is the closure of the set
⋃

i∈I Ci) and so we can say that C is a complete lattice.
The relation defined in X by x ≤ y if and only if f(x) ⊆ f(y) is clearly a

preorder on X. Furthermore, the preorder is a partial order since the topology
is satisfies T0 separation axiom and closed sets separate points in X. Clearly
∅ /∈ f(x) for every element x ∈ X. If for every i ∈ I, Ci ∈ f(x) then x ∈ Ci

for every i ∈ I and x ∈ ⋂
i∈I Ci. As a consequence

∧
i∈I ai =

⋂
i∈I Ci ∈ f(x).

We can also prove that if there exists ∧i∈Ixi then f(∧i∈Ixi) = {C ∈ C : xi ∈
C for every i ∈ I} =

⋂
i∈I f(xi) so Requirement(iv) is satisfied. Let C,D be

elements of C such that C ≤ D. Then C ⊆ D and so if C ∈ f(x) for x ∈ X we can
say that D ∈ f(x). Finally we prove that Requirement(vi) is verified. Suppose
that C,D are elements of C such that f(x) ∈ C

∨
D then x ∈ C

∨
D = C

⋃
D

and then we have that or x ∈ C or x ∈ D. We have proved that or C ∈ f(x) or
D ∈ f(x). ��

We can show that the classical properties correspond to the subset of the
associated topological space that are closed and open.

Proposition 3. Let (X,≤) be a property-based poset and (X,T ) the corre-
sponding topological space. For every a ∈ L, a is classical if and only if the
set c(a) is a set that is open and closed with respect to the topology on X.

Proof. If a property a ∈ L is a classical property there exists a property b such
that a ∨ b = 1 and a ∧ b = 0 then it is easy to prove that c(b) = C(c(a)) (where
C(c(a)) is the complement of the set c(a)) and then and c(b) are closed and open
sets. To prove the converse we consider the set c(a), a ∈ L, and we suppose that
c(a) is an open and closed set. Then there exists an element c(b) ∈ c(L) such
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that c(b) = C(c(a)). We have that a ∧ b = 0 since there exists no x ∈ X such
that x ∈ c(a) and x ∈ c(b). We can also prove that X = c(a) ∪ c(b) and then we
get that a ∨ b = 1. ��

4 An Algebraic Characterization of Property-Based
Posets

We introduce some definitions that will be needed in this section. A filterof a
poset P is a subset F of P such that

(i) if x ∈ F and x ≤ y then y ∈ F ,
(ii) if x, y ∈ F there is z ∈ F such that z ≤ x and z ≤ y.

Sets satisfying Condition (i) of a filter are called upsets. The dual notation
is that of an ideal. If a ∈ P we define the principal filter generated by x as
↑ x = {y ∈ L : y ≥ x}. It is easy to prove that ↑ x is a filter for every x ∈ L. It
can be proved that in a finite lattice each filter and each ideal are principal.

In a lattice L a filter F is an upset such that if x, y ∈ F then x ∧ y ∈ F .
A proper filter is a filter that is neither empty nor the whole lattice while a

prime filter is a proper filter F such that whenever
∨

i∈I xi is defined in P for a
finite set I we have xi ∈ F for some i ∈ I. Prime ideals are defined dually.

If (X,≤) is a property-based poset with respect to a complete lattice L we
can define a relation in L by

a � b if and only if c(a) ⊆ c(b)

and we want to characterize this relation with some properties studied in [10].
A binary relation R ⊆ L × L in a lattice L is said to be monotone if when

x ≤ y then (x, y) ∈ R. Let us say that a binary relation R ⊆ L × L in a lattice
L is compatible whenever it preserves the join and the meet i.e.

(i) if (x, y) ∈ R then (x ∧ z, y ∧ z) ∈ R for each z ∈ L;
(ii) if (x, y) ∈ R then (x ∨ z, y ∨ z) ∈ R for each z ∈ L.

Proposition 4. Let (X,≤) be a property-based poset on a complete lattice L.
Then the relation in L defined by

a � b if and only if c(a) ⊆ c(b)

is a monotone and compatible preorder.
If � is a monotone and compatible preorder on a complete and distributive

lattice L there exists complete and distributive lattice M and a function f : L →
P(M) such that for every x ∈ L

a � b if and only if a ∈ f(x) implies that b ∈ f(x).
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Proof. It is straightforward to prove the first statement.
Conversely if � is a monotone and compatible preorder on a complete and

distributive lattice L we consider the complete and distributive lattice P of
prime filters of L. By Theorem 2 in [4] there exists a subset Q ⊆ P such that

a � b if and only if a ∈ F then b ∈ F for every F ∈ Q.

Hence if M = P and we define the function f : L → P(M) such that f(x) =
{F ∈ Q : x ∈ F} we can prove the result. ��

The following result characterizes posets that are property-based. First we
introduce some definitions.

A weak filterof a poset P is a subset F of P such that

(i) if x ∈ F and x ≤ y then y ∈ F ,
(ii) if there exists

∧
S with ∅ ⊂ S ⊆ F then

∧
S ∈ F

A prime weak filter is a weak filter F , ∅ ⊂ P ⊂ P such that whenever
∨

i∈I xi is
defined in P for a finite set I we have xi ∈ F for some i ∈ I. Note that (prime)
filters in a poset are (prime) weak filters.

A set S ⊆ P(P ) where P is a poset is separating if when x, y ∈ P with
x �= y there exists S ∈ S such that x ∈ S and y /∈ S or vice versa.

Proposition 5. A poset (X,≤) is a property-based poset if and only if the set
of prime weak filter F is closed under finite union and arbitrary union and
separating.

Proof. If (X,≤) is a property-based poset the set {c(a) : a ∈ L} is the set of
prime weak filter F of X. Conversely if the set of prime weak filter F is closed
under finite union and arbitrary union and separating F define a T0-topology
on the set X hence by Proposition 2 (X,≤) is a property-based poset. ��

5 Aggregation Functional over Property-Based Posets

Aggregation operators are mathematical functions that are used to combine
several inputs into a single representative outcome; see [13] for a comprehensive
overview on aggregation theory. Aggregation operators play an important role
in several fields such as decision sciences, computer and information sciences,
economics and social sciences. There are a large number of different aggregation
operators that differ on the assumptions on the inputs and about the informa-
tion that we want to consider in the model. One of the most important aggre-
gation functional making sense in a qualitative framework is Sugeno integral
that is a very useful non-linear functional in several applications in mathemat-
ics, economics and decision making (see [6–8]). The aim of this section is to
present a Sugeno-type integral representation for aggregation operators defined
on property-based posets.

Our framework is very general, we do not assume that the set X is finite
or that the map f : L → P(X) is surjective. Moreover, we consider the case in
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which there are more than one equivalent solutions and also the case in which
the only solution is the element if it exists with no properties.

Let N = {1, . . . , n} be a set of individuals with n ≥ 2 and X a property-
based poset. We define an aggregation functional as a map F : Xn → P(X). We
consider now some of the properties that an aggregation functional F : Xn →
P(X) may or may not satisfy:

Monotonicity. If F (x1, . . . xi . . . , xn) ∈ c(a) for a ∈ L and yi ∈ c(a) then
F (x1, . . . yi . . . , xn) ∈ c(a).
Independence. If F (x1, . . . xn) ∈ c(a) for a ∈ L and for all i ∈ N , xi ∈
c(a) if and only if yi ∈ c(a) we have that F (y1, . . . yn) ∈ c(a) .
Strong Independence. If F (x1, . . . xn) ∈ c(a) for a, b ∈ L and for all
i ∈ N , xi ∈ c(a) if and only if yi ∈ c(b) we have that F (y1, . . . yn) ∈ c(b) .

Monotonicity states that if the final outcome has a property a and the voters’
supports for this property increase then the resulting final outcome has property
a as well. Independence is deciding for each property where the final outcome
has this property.

It is easy to prove that a functional F is monotone and independent if and
only if If F (x1, . . . xn) ∈ c(a) for and for all i ∈ N , if xi ∈ c(a) then yi ∈ c(a)
we have that F (y1, . . . yn) ∈ c(a) and that a functional F is monotone and
strongly independent if and only if if F (x1, . . . xn) ∈ c(a) and for all i ∈ N , if
xi ∈ c(a) then yi ∈ c(b) we have that F (y1, . . . yn) ∈ c(b) .

If a is an element of L we define the set N(x, a) = {i ∈ N : xi ∈ c(a)}.
Proposition 6. If (X,≤) is a property-based poset and F : Xn → P(X) a
monotone and independent aggregation functional then there exists for every
a ∈ L a family Fa of subsets of N such that

F (x) =
⋂

{c(a) : N(x, a) ∈ Fa}.
Proof. We say that a set A is a-decisive if there exists x ∈ Xn such that
N(x, a) = A and F (x) ∈ c(a). Being F monotone and independent a set is
a-decisive if and only if for every x ∈ Xn such that N(x, a) = A, F (x) ∈ c(a).
For every a ∈ L let Fa the family of a-decisive subsets of N . Hence for every
x ∈ Xn, F (x) ∈ c(a) if and only if N(x, a) ∈ Fa. Note that we can have Fa = ∅
for some a ∈ L. So we have proved that F (x) =

⋂{c(a) : N(x, a) ∈ Fa}. ��
Proposition 7. If (X,≤) is a property-based poset and F : Xn → P(X) a
monotone and strongly independent aggregation functional then there exists a
family F of subsets of N such that

F (x) =
⋃

A∈F

{c(a) : xi ∈ c(a) for every i ∈ A}.

Proof. It can be easily proved that if the functional F is monotone and strongly
idempotent then the set of a-decisive subset of N does not depend on the prop-
erty a. Let F = Fa for every a ∈ L.

If x ∈ Xn we have that F (x) ∈ c(a) if and only if N(x, a) = A for some
A ∈ F hence if and only if xi ∈ c(a) for every i ∈ A for some A ∈ F . Then the
statement follows at once. ��
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6 Concluding Remarks

In this paper we have introduced a general framework for studying preferences
representation. Our framework is abstract and lattice-theoretic and the crucial
operations being the joining and meet of two properties. It appears that there
are many connections between the work presented here with the results of [1–
3,15–17]. Applications of these types of results can be found in [9,11,17]. There
are however many opportunities for much more detailed research in this area in
particular from the point of view of aggregation theory.
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Abstract. We investigate n-ary semigroups as a natural generalization
of binary semigroups. We refer it as a pair (X,Fn), where X is a set and
an n-associative function Fn : Xn → X is defined on X. We show that
if Fn is idempotent, n-associative function which is monotone in each of
its variables, defined on an interval I ⊂ R and has a neutral element,
then Fn is combination of the minimum and maximum operation. More-
over we can characterize the n-ary semigroups (I, Fn) where Fn has the
previous properties.

1 Introduction

A function Fn : Xn → X is called n-associative if for every x1, . . . , x2n−1 ∈ X
and for every 1 ≤ i ≤ n − 1 we have

Fn(Fn(x1, . . . , xn), xn+1, . . . , x2n−1)
= Fn(x1, . . . , xi, Fn(xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1).

Throughout this paper we assume that the underlying sets X are partially
ordered sets (poset). However, some of the results only work for totally ordered
sets. In our main results we investigate n-ary semigroups on arbitrary nonempty
subintervals of the real numbers.

A set X endowed with an n-associative function Fn : Xn → X is called an
n-ary semigroup and is denoted by (X,Fn). We say that (X,Fn) is a totally
(partially) order based n-ary semigroup for emphasizing that X is totally (par-
tially) ordered. Clearly, we obtain a generalisation of associative functions, which
are the 2-associative functions using our terminology. The main purpose of this
paper is to describe a class of n-ary semigroups. An n-ary semigroup is called
idempotent if Fn(a, . . . , a) = a for all a ∈ X. On a partially ordered set X we
can define monotonicity of a function Fn. An n-associative function is called
monotone in the i’th variable if for every a1, . . . , ai−1, ai+1, . . . , an the 1-variable
functions fi(x) := Fn(a1, . . . , ai−1, x, ai+1, . . . , an) are all order-preserving or all
are order-reversing. An n-associative function is called monotone if it is monotone
c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 14
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in each of its variables. Further we say that an n-associative function has neu-
tral element denoted by e ∈ X if for every x ∈ X and 1 ≤ i ≤ n we have
F (e, . . . , e, x, e, . . . , e) = x, where x is substituted into the i’th coordinate.

Finally, we say that an n-ary semigroup (X,Fn) is conservative (or it is
said to be quasitrivial) if for every x1, . . . , xn ∈ X we have Fn(x1, . . . , xn) ∈
{x1, . . . , xn}. Such an n-variable function Fn is called a choice function. One
might also say that Fn preserves all subsets of X. Ackerman [1] investigated
conservative semigroups and also gave a characterization of them.

If we take n = 2 we get the binary version of the definitions introduced above.
The pair (X,F2) is called a semigroup, where X is a set and the binary function
F2 : X2 → X is (2-)associative.

2 Preliminary Results

In this section we collect the previously known results that we use in order to
prove our main results.

2.1 Binary Case

Let I ⊂ R be a not necessarily bounded, nonempty interval and I be the closure
of I. We also use the standard terminology of the extended reals R = R∪{±∞}.
Let g : I → I be a decreasing function. For every x ∈ I let g(x − 0) and g(x+ 0)
denote the limit of g at x from the left and from the right, respectively. On the
boundary we take the one sided limit of g. We denote by Γg the completed graph
of g, which is a subset of I

2
obtained by extending the graph of the function g

in the following way. If x ∈ I is a discontinuity point of g, then we add a vertical
line segment between the points (x, g(x − 0)) and (x, g(x + 0)) to extend the
graph of g. Formally,

Γg = {(x, y) ∈ I
2

: g(x + 0) ≤ y ≤ g(x − 0)}.

On the infimum and the supremum of I, the extended graph Γg defined with
the sets

{(inf I, y) ∈ I
2

: g(inf I + 0) ≤ y ≤ sup I},

{(sup I, y) ∈ I
2

: inf I ≤ y ≤ g(sup I − 0)},

respectively. It is easy to show that Γg is a closed set. We call Γg (id-)symmetric
if Γg is symmetric to the line x = y. These definitions was introduced in [10,11].

The following theorem gives a description of idempotent, monotone, (2-ary)
semigroups with neutral elements. These semigroups were first investigated by
Czoga�la and Drewniak [2], where the authors only dealt with closed, bounded
subintervals of R but the statement holds for any nonempty interval as it was
mentioned in [6]. On the other hand, instead of monotonicity it was assumed
that the binary function is monotone increasing. However, Lemma4 shows that
monotonicity implies monotone increasingness in this case.
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Theorem 1. Let I be an arbitrary nonempty real interval. If a function F2 :
I2 → I is associative, idempotent, monotone and has a neutral element e ∈ I,
then there exists a monotone decreasing function g : I → I, with g(e) = e, such
that for every x, y ∈ I

F2(x, y) =

⎧
⎪⎨

⎪⎩

min (x, y), if y < g(x)
max (x, y), if y > g(x)
min (x, y) or max (x, y), if y = g(x).

Now we present a full characterization of idempotent, monotone increasing,
(2-ary) semigroups with neutral elements. First this was proved by Martin,
Mayor and Torrens [10]. The statement of their theorem contained a small error
in its condition, but essentially it was correct. In the original paper [10] the
results worked on the closed unit interval [0, 1] and there was given the following
condition for g, instead of the symmetry of Γg. The function g : [0, 1] → [0, 1]
satisfies

inf{y : g(y) = g(x)} ≤ (g ◦ g)(x) ≤ sup{y : g(y) = g(x)} for all x ∈ [0, 1]. (1)

It was proved in [11] that Theorem 2 holds if F2 is commutative and shown that
condition (1) is not equivalent to the (id)-symmetry of Γg. Recently, Theorem 2
was reproved in an alternative way in [5] for any nonempty subinterval of R.

From now on, we denote (g ◦ g)(x) by g2(x).

Theorem 2. Let I ⊆ R be an arbitrary, nonempty interval. A function
F2 : I2 → I is associative, idempotent, monotone and has a neutral element
e ∈ I if and only if there exists a decreasing function g : I → I with g(e) = e
(e ∈ I) such that the completed graph Γg is (id)-symmetric and for every x, y ∈ I

F2(x, y) =

⎧
⎪⎨

⎪⎩

min (x, y), if y < g(x) or y = g(x) and x < g2(x)

max (x, y), if y > g(x) or y = g(x) and x > g2(x)

min (x, y) or max (x, y), if y = g(x) and x = g2(x).

(2)

Moreover, F2(x, y) = F2(y, x) except perhaps the set of points (x, y) ∈ I2 satis-
fying y = g(x) and x = g2(x) = g(y).

2.2 n-ary Case

An important construction of n-ary semigroups is the following. Let (X,F2) be
a binary semigroup. Let Fn := F2 ◦ F2 ◦ . . . ◦ F2︸ ︷︷ ︸

n−1

, where

Fn(x1, . . . , xn) = F2 ◦ F2 ◦ . . . ◦ F2︸ ︷︷ ︸
n−1

(x1, . . . , xn)

= F2(x1, F2(x2, . . . , F2(xn−1, xn))).

The last equality is one of the possible evaluation of the composition. By asso-
ciativity any evaluation gives the same value.
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We obtain an n-associative function Fn : Xn → X and an n-ary semigroup
(X,Fn). In this case we say that (X,Fn) is derived from the binary semigroup
(X,F2). Generally we simply say that Fn is derived from F2.

Dudek and Mukhin [3] have found the exact condition when an n-ary semi-
group (X,Fn) is derived from a binary one.

Proposition 1 [3]. If (X,Fn) is an n-ary semigroup with a neutral element e,
then Fn can be derived from a binary semigroup denoted by F2, where

F2(a, b) = Fn(a, e, . . . , e, b). (3)

As an application of Proposition 1 the authors of [3] obtained that X is an
n-ary group which is derived from a group if and only if it contains a neutral
element. An n-ary semigroup (X,Fn) is called an n-ary group if for i ∈ {1, . . . , n}
and every n − 1 elements x1, . . . , xi−1, xi+1, . . . , xn in X and every a ∈ X there
exists a unique b ∈ X with Fn(x1, . . . , xi−1, b, xi+1, . . . , xn) = a. It is easy to see
from the definition that ordinary groups are exactly the 2-ary groups. Clearly,
a function Fn derived from a semigroup F2 is n-associative but not every n-ary
semigroup can be obtained in this way. We can easily construct n-ary groups
which are not derived from binary groups if n is odd. Indeed, let Gn(x1, . . . , xn) =∑n

i=1(−1)ixi. It is easy to verify that Gn is n-associative and we obtain an n-ary
group. Moreover Gn is clearly monotone and there is no neutral element for Gn.
For further examples see [9].

3 From n-ary to Binary Semigroups

The main purpose of this section is to derive properties from the n-ary semi-
group to the corresponding binary semigroup and vice versa. The results of this
section are also preparations for proving Theorem3.

The following lemma is an easy consequence of the definitions.

Lemma 1. Let (X,≤) be a partially ordered set, (X,F2) be a semigroup and Fn

be derived from F2. If F2 has any of the following properties

1. monotonicity,
2. idempotent,
3. has a neutral element,

then the n-associative Fn also has.

From now on we focus on the possible reverse of the cases of Lemma 1.
First we investigate the neutral element property. By Proposition 1, if Fn has

a neutral element, then Fn is derived from F2 which is defined by Eq. (3).

Remark 1. By the definition (3) of F2, if e is a neutral element of Fn, then
e is also a neutral element of F2. Indeed, F2(e, a) = Fn(e, . . . , e, a) = a =
Fn(a, e, . . . , e) = F2(a, e) for every a ∈ X.
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For monotonicity the following statement have been proved for more general
settings. On the other hand, by Remark 2, it turns out that this weaker condition
implies that Fn is monotone in each of its variables.

Lemma 2. Let Fn : Xn → X be an n-associative function on the partially
ordered set X. Assume Fn is idempotent and monotone in the first and the last
coordinates and derived from an associative function F2. Then F2 is monotone.

Remark 2. As a consequence of Lemmas 1 and 2 we have that if Fn is n-
associative, idempotent and monotone in the first and the last variables on a
poset X and derived from F2, then Fn is monotone in each of its variables.

We can verify idempotency only for totally ordered sets. In Example 1 we
show that this requirement is essential.

Lemma 3. Let Fn : Xn → X be an n-associative function on a totally ordered
set. Assume Fn is idempotent and monotone in each variable and derived from
an associative function F2. Then F2 is idempotent as well.

Example 1. For k ≥ 3 we construct a k-ary semigroup (X,Fk), which is derived
from a non-idempotent semigroup (X,F2), where F2 is monotone in both of its
variables and have a neutral element.

Let X = {m,M} ∪ Zk−1, where Zk−1 is the cyclic group of order k − 1. We
define a partial ordering on X in the following way. M and m are the largest
and smallest elements of X, respectively. The elements of Zk−1 are mutually
incomparable but they are all larger than m and smaller than M . The set X
endowed with this partial ordering is a modular lattice. Further we build up an
associative function F2:

F2(x, y) =

⎧
⎪⎨

⎪⎩

M, if x = M or y = M

m, if x = m or y = m and x, y < M

xy, if x, y ∈ Zk−1.

It is easy to verify that F2 is associative and monotone increasing in both of its
variables. The identity element e of Zk−1 is the neutral element of (X,F2). One
can define Fk−1 and Fk as before. By Lemma 1 the functions Fk−1 and Fk are
(k − 1)- and k-associative functions, respectively. Both of them are monotone
having neutral element. Finally, it is easy to check that Fk−1 is not idempotent
since Fk−1(a, . . . , a) = e for every a ∈ Zk−1 while Fk(x, . . . , x) = x for every x ∈
X. Since Fk−1 is non-idempontent, F2 cannot be idempotent by Lemma 1 (ii).

We note that the cyclic group Zk−1 might be substituted by any nontrivial
group whose exponent divides k − 1.

Remark 3. We note that for distributive lattices the statement of Lemma3 seems
true, but a potential proof would be basically different from the one of Lemma3.

The following easy lemma provides that monotonicity implies monotone
increasingness for partially order based, idempotent semigroups.
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Lemma 4. Let (X,F2) be a partially order based semigroup, where F2 : X2 → X
is idempotent and monotone in each variable, then F2 is monotone increasing
in each variable.

Remark 4. Now we obtain some examples showing that we cannot omit any of
the conditions of Lemma 4.

1. Let F2(x, x) = x for x ∈ R and F2(x, y) = 0 if x, y ∈ R, x �= y. Then F2 is
associative and idempotent, but not monotone in each variable.

2. Let F2(x, y) = 2x − y for x, y ∈ R. Then F2 is idempotent and monotone in
each variable, but not associative and clearly not monotone increasing.

3. Let F2(x, y) = −x, if x, y > 0, and F2(x, y) = 0 otherwise. Then F2 is
associative, since F2(x, F2(y, z)) = F2(F2(x, y), z)) = 0 and F2 is monotone
decreasing in each variable but F2 is not idempotent.

Corollary 1. If (X,Fn) is a totally order based n-ary semigroup, where Fn is
idempotent and monotone in the first and in the last variables and derived from
F2, then Fn is monotone increasing in each variable. Moreover, Fk is monotone
increasing for every k ≥ 2.

Using the results of this section we get the following proposition.

Proposition 2. Let (X,Fn) be a totally order based n-ary semigroup, which is
monotone, idempotent and has a neutral element. Then Fn is derived from a
binary semigroup (X,F2), where F2 is also monotone idempotent and it also has
a neutral element. Moreover, Fn is monotone increasing in each variables.

As a consequence of Proposition 2 we can prove the following.

Lemma 5. Let (X,Fn) be a totally order based n-ary semigroup derived from
(X,F2), where F2 is idempotent, associative, monotone increasing and have a
neutral element on X. Then

Fn(a, y1, . . . , yn−2, b) = F2(a, b)
Fn(b, y1, . . . , yn−2, a) = F2(a, b)

for every a ≤ y1, . . . , yn−2 ≤ b.

4 Main Results

If (X,Fn) is an n-ary semigroup having a neutral element e, then one can assign
a semigroup by F2(a, b) = Fn(a, e, . . . , e, b) for every a, b ∈ X as it was defined in
Eq. (3). This operation will be denoted by F . One of our main theoretic result
is the following:

Theorem 3. For any totally ordered set X the operation F creates bijection
between the set of idempotent, monotone, associative functions on X having
neutral elements and the set of n-associative, idempotent, monotone functions
on X having neutral elements.
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We get the following as an easy consequence of our investigation.

Theorem 4. Let I be a nonempty interval. For n ≥ 2 let Fn : In → I be n-
associative, monotone increasing, idempotent n-ary semigroup and has a neutral
element e ∈ I. Then Fn is conservative.

Applying Theorems 2 and 3 we can obtain a practical method to calculate
the value of Fn(a1, . . . , an) for any a1, . . . , an ∈ I, where I ⊂ R is a nonempty
interval.

For every decreasing function g : I → I a pair (a, b) ∈ I2 is called criti-
cal if g(a) = b and g(b) = a. By Theorem 2 and Lemma 4, for every idempo-
tent, monotone semigroup (X,F2) with neutral element there exists a unique
decreasing function g satisfying (2). Theorem 2 shows also that F2 commutes
in every non-critical pair (x, y) ∈ I2 (i.e. F2(x, y) = F2(y, x)). Since for a crit-
ical pair (a, b) the value of F2(a, b) and F2(b, a) can be independently chosen
from g we have two cases. A pair (a, b) is called extra-critical if critical and
F2(a, b) �= F2(b, a). We note that being critical or extra-critical are both sym-
metric relations.

Finally, in order to simplify notation and give a compact way to express a
value of Fn we introduce the following. The set of entries {a1, . . . , an} of Fn is
denoted by A. The smallest and largest element of A is denoted by c and d,
respectively. Further there exist 1 ≤ i ≤ j ≤ n such that ai, aj ∈ {c, d} and
ak �∈ {c, d} for every 1 ≤ k < i and j < k ≤ n. We write e1 = ai and e2 = aj .

Theorem 5. Let Fn : In → I be an n-associative, idempotent function with
neutral element. Assume that Fn is monotone in its first and last coordinates. If
(c, d) is not an extra-critical pair, then Fn(a1, . . . , an) = F2(c, d).
If (c, d) is an extra-critical pair, then Fn(a1, . . . , an) = F2(e1, e2).

Now we point out three important consequences of Theorem 5. First we generalise
Czogala-Drewniak’s theorem (Theorem 1) as follows.

Theorem 6. Let I be an arbitrary nonempty real interval. If a function Fn :
In → I is n-associative, idempotent, monotone and has a neutral element e ∈ I,
then there exits a monotone decreasing function g : I → I with g(e) = e (e ∈ I)
such that Γg is symmetric and

Fn(a1, . . . , an) =

⎧
⎪⎨

⎪⎩

c, if c < g(d)
d, if c > g(d)
c or d, if c = g(d),

where c and d denote the minimum and the maximum of set A = {a1, . . . , an} ⊂
R, respectively.

We note that a generalization of Theorem 2 is essentially stated in
Theorem 5. In [11] the authors investigated idempotent uninorms, which are
idempontent, associative, commutative, monotone functions with a neutral
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element and defined on [0, 1]. We introduce n-ary uninorms, which are n-
associative, commutative, monotone functions with neutral element. Here we
show a generalization of [11, Theorem 3] for n-ary operations.

Theorem 7. An n-ary operator Un is an idempotent n- ary uninorm on [0, 1]
with neutral element e ∈ [0, 1] if and only if there exists a decreasing function
g : [0, 1] → [0, 1] with fixed point e and with symmetric graph Γg such that

Un(a1, . . . , an) =

⎧
⎪⎨

⎪⎩

c if c < g(d)) or d < g(c)
d if c > g(d) or d > g(c)
c or d if c = g(d) and d = g(c),

(4)

where c and d are as in Theorem6. Moreover, if (c, d) is a critical pair (c =
g(d), d = g(c)), then the value of Un(a1, . . . , an) can be chosen to be c or d
arbitrarily and independently from other critical pairs.

One may extend the concept of associativity for string functions ([4,8]). Let
us define

X∗ =
⋃

n∈N

Xn

to be the space of finite length words over the alphabet X. A multivariate func-
tion F : X∗ → X is associative if it satisfies

F (x,x′) = F (F (x), F (x′))

for all x,x′ ∈ X∗. It is easy to check that F |Xn is n-associative for every n ∈
N. Idempotency, monotonicity and the neutral element properties of F can be
defined as they hold for every n ∈ N.

Theorem 8. Let I be a nonempty real interval. Then F : I∗ → I is associa-
tive, idempotent, monotone and has a neutral element if and only if there is a
decreasing function g : I → I with symmetric completed graph Γg such that F |X2

satisfies (2). Furthermore F must be monotone increasing in each variable.

Acknowledgements. The results based on the article [7], which is an extended ver-
sion of the current paper. This research is partly supported by the internal research
project R-AGR-0500-MRO3 of University of Luxembourg.
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Abstract. In this paper we provide two axiomatizations of the class of
idempotent discrete uninorms as conservative binary operations, where
an operation is conservative if it always outputs one of its input values.
More precisely we first show that the idempotent discrete uninorms are
exactly those operations that are conservative, symmetric, and nonde-
creasing in each variable. Then we show that, in this characterization,
symmetry can be replaced with both bisymmetry and existence of a neu-
tral element.

1 Introduction

Aggregation functions defined on linguistic scales (i.e., finite chains) have been
intensively investigated for about two decades; see, e.g., [1–4,6–11,13,14]. Among
these functions, discrete fuzzy connectives (such as discrete uninorms) are asso-
ciative binary operations that play an important role in fuzzy logic.

This short paper focuses on characterizations of the class of idempotent dis-
crete uninorms. Recall that a discrete uninorm is a binary operation on a finite
chain that is associative, symmetric, nondecreasing in each variable, and has a
neutral element.

A first characterization of the class of idempotent discrete uninorms was
given by De Baets et al. [1, Theorem 3]. This characterization reveals that any
idempotent discrete uninorm is a combination of the minimum and maximum
operations. In particular, such an operation is conservative in the sense that it
always outputs one of the input values.

The outline of this paper is as follows. After presenting some preliminary
results on conservative operations in Sect. 2, we show in Sect. 3 that the idempo-
tent discrete uninorms are exactly those operations that are conservative, sym-
metric, and nondecreasing in each variable. This new characterization is very
simple and requires neither associativity nor the existence of a neutral element.
In Sect. 4 we provide an alternative characterization of this class in terms of
the bisymmetry property. More specifically, we show that the idempotent dis-
crete uninorms are exactly those operations that are conservative, bisymmetric,
nondecreasing in each variable, and have neutral elements.
c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 15
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2 Preliminaries

In this section we present some basic definitions and preliminary results.
Let X be an arbitrary nonempty set and let ΔX = {(x, x) | x ∈ X}.

Definition 1. An operation F : X2 → X is said to be

• idempotent if F (x, x) = x for all x ∈ X.
• conservative if F (x, y) ∈ {x, y} for all x, y ∈ X.
• associative if F (F (x, y), z) = F (x, F (y, z)) for all x, y, z ∈ X.

An element e ∈ X is said to be a neutral element of F (or simply a neutral
element) if F (x, e) = F (e, x) = x for all x ∈ X. In this case we easily show by
contradiction that such a neutral element is unique. The points (x, y) and (u, v)
of X2 are said to be connected for F (or simply connected) if F (x, y) = F (u, v).
We observe that “being connected” is an equivalence relation. The point (x, y)
of X2 is said to be isolated for F (or simply isolated) if it is not connected to
another point in X2.

Remark 1. Conservativeness was introduced in Pouzet et al. [12]. This condition
is also called “local internality” in Mart́ın et al. [5].

Lemma 1. Let F : X2 → X be an idempotent operation. If the point (x, y) ∈ X2

is isolated, then it lies on ΔX , that is, x = y.

Remark 2. We observe that idempotency is necessary in Lemma 1. Indeed, con-
sider the operation F : X2 → X, where X = {a, b}, defined as F (x, y) = a, if
(x, y) = (a, b), and F (x, y) = b, otherwise. Then (a, b) is isolated and a �= b.
The contour plot of F is represented in Fig. 1. Here and throughout, connected
points are joined by edges. To keep the figures simple we sometimes omit the
edges obtained by transitivity.

(a,a) (b,a)

(a,b) (b,b)

Fig. 1. A non-idempotent operation

The following lemma provides an easy test for the existence of a neutral
element of a conservative operation.

Lemma 2. Let F : X2 → X be a conservative operation and let e ∈ X. Then e
is a neutral element if and only if (e, e) is isolated.

Corollary 1. Any isolated point (x, y) of a conservative operation F : X2 → X
is unique and lies on ΔX . Moreover, x = y is a neutral element.
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(a,a) (b,a) (c,a)

(a,b) (b,b) (c,b)

(a,c) (b,c) (c,c)

Fig. 2. An operation with no neutral element

(a,a) (b,a) (c,a)

(a,b) (b,b) (c,b)

(a,c) (b,c) (c,c)

Fig. 3. An operation with no isolated point

(a,a) (b,a) (c,a)

(a,b) (b,b) (c,b)

(a,c) (b,c) (c,c)

Fig. 4. An operation with two isolated points

Remark 3. Lemma 2 no longer holds if conservativeness is relaxed into idempo-
tency. Indeed, by simply taking X = {a, b, c} we can easily construct an idempo-
tent operation with an isolated point on ΔX and no neutral element (see Fig. 2).
Also, it is easy to construct an idempotent operation with a neutral element and
no isolated point (see Fig. 3). It is also noteworthy that there are idempotent
operations with more than one isolated point (see Fig. 4).

3 Main Results

We now focus on characterizations of the class of idempotent discrete uninorms.
These operations are defined on finite chains. Without loss of generality we will
only consider the n-element chains Ln = {1, . . . , n}, n ≥ 1, endowed with the
usual ordering relation ≤.

Recall that an operation F : L2
n → Ln is said to be nondecreasing in each

variable if F (x, y) ≤ F (x′, y′) whenever x ≤ x′ and y ≤ y′.
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Definition 2 (see, e.g., [1]). A discrete uninorm on Ln is an operation
U : L2

n → Ln that is associative, symmetric, nondecreasing in each variable,
and has a neutral element.

A characterization of the class of idempotent discrete uninorms is given in
the following theorem. Although this characterization is somewhat intricate, it
shows, together with Lemma 3 below, that any idempotent discrete uninorm is
conservative.

Theorem 1 (see [1, Theorem3]). An operation F : L2
n → Ln with a neutral

element 1 < e < n is an idempotent discrete uninorm if and only if there exists
a nonincreasing map g : [1, e] → [e, n] (nonincreasing means that g(x) ≥ g(y)
whenever x ≤ y), with g(e) = e, such that

F (x, y) =
{
min{x, y}, if y ≤ g(x) and x ≤ g(1),
max{x, y}, otherwise,

where g : Ln → Ln is defined by

g(x) =

⎧⎨
⎩

g(x), if x ≤ e,
max{z ∈ [1, e] | g(z) ≥ x}, if e ≤ x ≤ g(1),
1, if x > g(1).

We now show that the idempotent discrete uninorms are exactly those oper-
ations that are conservative, symmetric, and nondecreasing in each variable (see
Theorem 2).

First consider the following lemma, which actually holds on arbitrary, not
necessarily finite, chains.

Lemma 3. If F : L2
n → Ln is idempotent, nondecreasing in each variable, and

has a neutral element e ∈ Ln, then F |[1,e]2 = min and F |[e,n]2 = max.

Proposition 1. If F : L2
n → Ln is conservative, symmetric, and nondecreasing

in each variable, then it is associative and it has a neutral element.

For n = 2 and n = 3, the possible operations F : L2
n → Ln that are conserva-

tive, symmetric, and nondecreasing in each variable have contour plots depicted
in Figs. 5 and 6, respectively.

(1,1) (2,1)

(1,2) (2,2)

(1,1) (2,1)

(1,2) (2,2)

Fig. 5. Possible operations when n = 2
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(1,1) (2,1) (3,1)

(1,2) (2,2) (3,2)

(1,3) (2,3) (3,3)

(1,1) (2,1) (3,1)

(1,2) (2,2) (3,2)

(1,3) (2,3) (3,3)

(1,1) (2,1) (3,1)

(1,2) (2,2) (3,2)

(1,3) (2,3) (3,3)

(1,1) (2,1) (3,1)

(1,2) (2,2) (3,2)

(1,3) (2,3) (3,3)

Fig. 6. Possible operations when n = 3

Remark 4

(a) The existence of a neutral element in Proposition 1 is no longer guaranteed
if the chain is not finite. For instance, the real operation F : [0, 1]2 → [0, 1]
defined by F (x, y) = min{x, y}, if x, y ∈ [0, 1

2 )
2, and F (x, y) = max{x, y},

otherwise, is conservative, symmetric, and nondecreasing in each variable,
but it does not have a neutral element.

(b) We observe that conservativeness cannot be relaxed into idempotency in
Proposition 1. For instance the operation F : L2

3 → L3 whose contour plot
is depicted in Fig. 2 is idempotent, symmetric, and nondecreasing in each
variable, but one can show that it is not associative and it has no neutral
element.

(c) We also observe that each of the conditions of Proposition 1 is necessary.
Indeed, we give in Fig. 7 an operation that is conservative and symmetric
but that is not nondecreasing in each variable. We also give in Fig. 8 an
operation that is conservative and nondecreasing in each variable but not
symmetric. Finally, we give in Fig. 9 an operation that is symmetric and
nondecreasing in each variable but not conservative. None of these three
operations is associative and none has a neutral element.

Theorem 2. An operation F : L2
n → Ln is conservative, symmetric, and non-

decreasing in each variable if and only if it is an idempotent discrete uninorm.
Moreover, there are exactly 2n−1 such operations.

Remark 5. Theorem 2 enables us to provide a graphical characterization of the
idempotent discrete uninorms in terms of their contour plots. Indeed, denoting
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1

2

3

Fig. 7. An operation that fails to be nondecreasing in each variable

1

2

3

Fig. 8. An operation that fails to be symmetric

1

3

Fig. 9. An operation that fails to be conservative

by L an arbitrary n-element chain, we observe that the restriction F |L′ of any
idempotent discrete uninorm F : L2 → L to any subchain L′ obtained by remov-
ing one of the endpoints of L is also an idempotent discrete uninorm. Moreover,
the operation F (or equivalently its contour plot) can be retrieved from F |L′ by
connecting all the points of L2 \ L′ 2. It follows that all the idempotent discrete
uninorms can be constructed recursively in terms of their contour plots.

4 Bisymmetric Operations

In this section we provide a characterization of the class of idempotent discrete
uninorms in terms of the bisymmetry (or mediality) property.

Definition 3. An operation F : X2 → X is said to be bisymmetric if

F (F (x, y), F (u, v)) = F (F (x, u), F (y, v))

for all x, y, u, v ∈ X.
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Proposition 2. Let F : X2 → X be a conservative operation that has a neutral
element. Then F is bisymmetric if and only if it is associative and symmetric.

Combining Proposition 2 with Theorem 2, we can easily derive the following
alternative characterization of idempotent discrete uninorms.

Theorem 3. An operation F : L2
n → Ln is conservative, bisymmetric, nonde-

creasing in each variable, and has a neutral element if and only if it is an idem-
potent discrete uninorm.

Acknowledgements. The authors thank Gergely Kiss for fruitful discussion and valu-
able remarks. This research is partly supported by the internal research project R-AGR-
0500-MRO3 of the University of Luxembourg.
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Abstract. In this paper, we define the set I
(x)
F , denoting the set of

all incomparable elements with arbitrary but fixed x ∈ (0, 1) according
to F -partial order and this set is deeply investigated. Then, an equiv-
alence relation on the class of nullnorms induced by a F -partial order
is defined and discussed. Finally, we give an answer to a recently posed
open problem.

1 Introduction

Nullnorms and t-operators were introduced in [6,17], respectively, which are also
generalizations of the notions of t-norms and t-conorms. And then in [18], it is
pointed out that nullnorms and t-operators are equivalent since they have the
same block structures in [0, 1]2. Namely, if a binary operator F is a nullnorm
then it is also a t-operator and vice versa.

In [19], a natural order for semigroups was defined. Similarly, in [13], a partial
order defined by means of t-norms on a bounded lattice was introduced

x �T y :⇔ T (�, y) = x for some � ∈ L,
where L is a bounded lattice, x, y ∈ L and T is a t-norm on L. This partial order
�T is called a T -partial order on L.

In [1], with the help of any t-norm T on [0, 1], a family of t-norms on [0, 1],
(Tλ)λ∈(0,1) was constructed. If T was a divisible t-norm, then it was obtained
that ([0, 1],�Tλ

) was a lattice. The nullnorms and t-norms were also studied by
many other authors [2,7,10,11,14,16,18,20,21].

The present paper is organized as follows. We shortly recall some basic
notions in Sect. 2. In Sect. 3, we define a set I

(x)
F , denoting the set of all incompa-

rable elements with arbitrary but fixed x ∈ (0, 1) according to �F . In Sect. 4, we
define an equivalence on the class of nullnorms on a bounded lattice (L,≤, 0, 1)
and we determine the equivalence class of some special nullnorms. In [3], the
following open problem was proposed: Given an (a, b) � (0, 1), can we find an
F such that KF = (a, b)? In Sect. 5, we give an answer to an this open problem
in [3].

c© Springer International Publishing AG 2018
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2 Notations, Definitions and a Review of Previous
Results

Definition 1 [9]. Let (L,≤, 0, 1) be a bounded lattice. A triangular norm T
(briefly t-norm) is a binary operation on L which is commutative, associative,
monotone and has neutral element 1.

Definition 2 [15]. Let (L,≤, 0, 1) be a bounded lattice. A triangular conorm S
(briefly t-conorm) is a binary operation on L which is commutative, associative,
monotone and has neutral element 0.

Example 1 [15]. Well-known triangular norms and triangular conorms are:
TM (x, y) = min(x, y)
TP (x, y) = x.y
TL(x, y) = max(x + y − 1, 0)

TD(x, y) =

{
0, (x, y) ∈ [0, 1)2

min(x, y), otherwise
SM (x, y) = max(x, y)
SP (x, y) = x + y − x.y
SL(x, y) = min(x + y, 1)

SD(x, y) =

{
1, (x, y) ∈ (0, 1]2

max(x, y), otherwise

Also, t-norms on a bounded lattice (L,≤, 0, 1) are defined in similar way, and
then extremal t-norms T∧ and TW on L is defined as follows, respectively:
T∧(x, y) = x ∧ y

TW (x, y) =

⎧⎪⎨
⎪⎩

x , if y = 1
y , if x = 1
0 , otherwise

Similarly it can be defined the t-conorms S∨ and SW .
Especially we obtained that TW = TD and T∧ = TM for L = [0, 1].

Definition 3 [7]. A t-norm T on L is divisible if the following condition holds:

∀x, y ∈ L with x ≤ y there is a z ∈ L such that x = T (y, z).

A basic example of a non-divisible t-norm on an arbitrary lattice L (i.e., card
L > 3) is the weakest t-norm TD. Trivially, the infimum T∧ is divisible: x ≤ y is
equivalent to x ∧ y = x.

Proposition 1 [8]. Let T be a t-norm on [0, 1]. T is divisible if and only if T
is continuous.

Definition 4 [5]. Given a bounded lattice (L,≤, 0, 1) and a, b ∈ L, if a and b
are incomparable, in this case we use the notation a ‖ b.
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Definition 5 [5]. Given a bounded lattice (L,≤, 0, 1) and a, b ∈ L, a ≤ b, a
subinterval [a, b] of L is defined as

[a, b] = {x ∈ L | a ≤ x ≤ b}
Similarly, [a, b) = {x ∈ L | a ≤ x < b}, (a, b] = {x ∈ L | a < x ≤ b} and
(a, b) = {x ∈ L | a < x < b}.
Definition 6 [6]. Let (L,≤, 0, 1) be a bounded lattice. A commutative, associa-
tive, non-decreasing in each variable function F : L2 → L is called a nullnorm if
there is an element a ∈ L such that F (x, 0) = x for all x ≤ a, F (x, 1) = x for all
x ≥ a.

It can be easily obtained that F (x, a) = a for all x ∈ L. So a ∈ L is the zero
(absorbing) element for F .

Consider the set F of all nullnorms on L with the following order: For
F1, F2 ∈ F ,

F1 ≤ F2 ⇔ F1(x, y) ≤ F2(x, y) for all (x, y) ∈ L2.
Da = [0, a) × (a, 1] ∪ (a, 1] × [0, a) for a ∈ L\{0, 1}.

Proposition 2 [12]. Let (L,≤, 0, 1) be a bounded lattice, a ∈ L \ {0, 1} and F
be a nullnorm with zero element a on L. Then,

(i) S∗ = F |[0,a]2 : [0, a]2 → [0, a] is a t-conorm on [0, a].
(ii) T ∗ = F |[a,1]2 : [a, 1]2 → [a, 1] is a t-norm on [a, 1].

Definition 7 [13]. Let L be a bounded lattice, T be a t-norm on L. The order
defined as following is called a T- partial order (triangular order) for t-norm T :

x �T y :⇔ T (�, y) = x for some � ∈ L.

Definition 8 [3]. Let L be a bounded lattice, S be a t-conorm on L. The order
defined as following is called an S-partial order for t-conorm S:

x �S y :⇔ S(�, x) = y for some � ∈ L.

Definition 9 [3]. Let (L,≤, 0, 1) be a bounded lattice and F be a nullnorm with
zero element a on L. Define the following relation, for x, y ∈ L, as

x �F y :⇔
⎧⎨
⎩

if x, y ∈ [0, a] and there exist k ∈ [0, a] such that F (x, k) = y or
if x, y ∈ [a, 1] and there exist � ∈ [a, 1] such that F (y, �) = x or,
if (x, y) ∈ L∗ and x ≤ y.

(1)

Where Ia = {x ∈ L | x ‖ a} and L∗ = [0, a] × [a, 1] ∪ [0, a] × Ia ∪ [a, 1] × Ia ∪
[a, 1] × [0, a] ∪ Ia × [0, a] ∪ Ia × [a, 1] ∪ Ia × Ia.

Proposition 3 [3]. The relation �F defined in (1) is a partial order on L.

Note: The partial order �F in (1) is called F -partial order on L.
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Proposition 4 [3]. Let (L,≤, 0, 1) be a bounded lattice and F be a nullnorm on
L. If x �F y for any x, y ∈ L, then x ≤ y.

Proposition 5 [3]. Let (L,≤, 0, 1) be a bounded lattice and F be a nullnorm
with zero element a. Then, (L,�F ) is a bounded partially ordered set.

Remark 1 [3]. Let (L,≤, 0, 1) be a bounded lattice and F be a nullnorm with
zero element a. The order �F coincides with the order �T (�S), when a = 0
(a = 1).

Definition 10 [3]. Let F be a nullnorm on [0, 1] and let KF be defined by

KF = {x ∈ [0, 1]| for some y ∈ [0, 1], [x < y and x �F y] or
[y < x and y �F x]}.

3 About the Set I
(x)
F Consisting All Incomparable

Elements with Any x ∈ (0, 1) According to �F

Definition 11. Let F be a nullnorm on [0, 1] with zero element a and let I
(x)
F

for x ∈ (0, 1) be defined by

I
(x)
F = {yx ∈ (0, 1) | [x < yx and x �F yx] or [yx < x and yx �F x]}

After that we will use the notation I
(x)
F to denote the set of all incomparable

elements with x ∈ (0, 1) according to �F .
Note: It is clear that x �= a, by the definition of �F -partial order.

Example 2. Consider the nullnorm F (∨) : [0, 1]2 → [0, 1] with zero element a ∈
(0, 1) defined by

F (∨)(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max(x, y), (x, y) ∈ [0, a]2

a, (x, y) ∈ [a, 1)2 ∪ Da

y, x = 1
x, y = 1

Then,

(a) I
(x)

F (∨) = {yx ∈ (a, 1) | x �= yx} for x ∈ (a, 1) and
(b) I

(x)

F (∨) = ∅ for x ≤ a.

Example 3. Consider the nullnorm F (∧) : [0, 1]2 → [0, 1] with zero element a ∈
(0, 1) defined by

F (∧)(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min(x, y), (x, y) ∈ [a, 1]2

a, (x, y) ∈ (0, a]2 ∪ Da

y, x = 0
x, y = 0
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Then,

(a) I
(x)

F (∧) = {yx ∈ (0, a) | x �= yx} for x ∈ (0, a) and
(b) I

(x)

F (∧) = ∅ for x ≥ a.

Example 4. Consider the function F := F(T nM ,S, 15 )
: [0, 1]2 → [0, 1] defined as

follows:

F(T nM ,S, 15 )
(x, y) =

⎧⎪⎨
⎪⎩

S(x, y), (x, y) ∈ [0, 1
5 ]

2

1
5 , ((x, y) ∈ [15 , 1]2 and x + y ≤ 1) or (x, y) ∈ D 1

5

min(x, y), otherwise

where S is a continuous t-conorm on [0, 1
5 ]. Then, the function F is a nullnorm

with zero element 1
5 . Then,

(a) I
(x)
F = {yx ∈ ( 15 , 1 − x] | x �= yx} for x ∈ ( 15 , 4

5 )
(b) I

(x)
F = ∅ for x ≤ 1

5 or x ≥ 4
5 .

Proposition 6. Let F be a nullnorm on [0, 1]. Then KF =
⋃

x∈[0,1] I
(x)
F .

Proposition 7. Let F1 and F2 be two uninorms on [0, 1]. If for all x ∈ [0, 1],
IF1

(x) = IF2
(x), then the set KF1 is equal to the set KF2 .

Remark 2. The converse of Proposition 7 may not be true.

Proposition 8. Let F be a nullnorm on [0, 1]. If KF is a non-empty set, then
KF is infinite.

4 The Equivalence Classes Obtained from �F

The above introduced �F -partial order allows us to introduce the next equiva-
lence relation on the class of all nullnorms on (L,≤, 0, 1).

Definition 12. Let (L,≤, 0, 1) be a given bounded lattice. Define a relation
αF on the class of all nullnorms on (L,≤, 0, 1) by F1αF F2 if and only if the
F1-partial order coincides with the F2-partial order.

Lemma 1. The relation αF given in Definition 12 is an equivalence relation.

Definition 13. For a given nullnorm F on a bounded lattice (L,≤, 0, 1), we
denote by F the αF equivalence class linked to F , i.e.,

F = {F
′ | F

′
αF F}.

Proposition 9. Consider the weakest nullnorm F (∨) : [0, 1]2 → [0, 1] with zero
element a ∈ (0, 1) of Example 2. Then, the equivalence class of the nullnorm
F (∨) |[0,a]2 is the set of all divisible t-conorms on [0, a] and the equivalence class
of the nullnorm F (∨) |[a,1]2 is the nullnorm F (∨) |[a,1]2 .
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Note: If (x, y) ∈ Da, then we have that F (x, y) = a for all nullnorms with
zero element a. So, in this case all nullnorms with zero element a are equivalent.

Corollary 1. The equivalence class of the weakest t-norm TD on [0, 1] only
consist of the t-norm TD.

Proposition 10. Consider the greatest nullnorm F (∧) : [0, 1]2 → [0, 1] with zero
element a ∈ (0, 1) of Example 3. Then, the equivalence class of the nullnorm
F (∧) |[a,1]2 is the set of all divisible t-norms on [a, 1] and the equivalence class
of the nullnorm F (∧) |[0,a]2 is the nullnorm F (∧) |[0,a]2 .

Corollary 2. The equivalence class of the weakest t-conorm SD on [a, 1] only
consist of the t-norm SD.

Proposition 11 [6]. Let a ∈ (0, 1). A binary operation F is a nullnorm with
zero element a if and only if there exists triangular norm T and triangular
conorm S such that

F (x, y) =

⎧⎪⎨
⎪⎩

φ−1(S(φ(x), φ(y))), (x, y) ∈ [0, a]2

ϕ−1(T (ϕ(x), ϕ(y))), (x, y) ∈ [a, 1]2

a, otherwise

where φ : [0, a] → [0, a] and ϕ : [a, 1] → [a, 1] are linear bijection such that
φ(x) = x

a and ϕ(x) = x−a
1−a .

Proposition 12. Let F be a nullnorm on [0, 1] with zero element a and φ :
[0, a] → [0, a] be a linear bijection and S be a t-conorm on [0, a]. The following
statements are equivalent.

(i) S and F |[0,a]2 are in the same equivalence class.
(ii) φ is order-preserving with respect to �S.

Proposition 13. Let F be a nullnorm on [0, 1] with zero element a and ϕ :
[a, 1] → [a, 1] be a linear bijection and and T be a t-norm on [a, 1]. The following
statements are equivalent.

(i) T and F |[a,1]2 are in the same equivalence class.
(ii) ϕ is order-preserving with respect to �T .

5 An Answer to an Open Problem

Let (L,≤, 0, 1) be a bounded lattice and F be a nullnorm on L. In [3], it has
been shown that KF need not be (0, 1) but any sub-interval of (0, 1) and the
following problem has been posed by Asici [3].

Given an (a, b) � (0, 1), can we find an F such that KF = (a, b)? In the
following theorem, we give an answer to this open problem.
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Theorem 1. Let {0, 1} ⊆ A ⊆ [0, 1] be an arbitrary set. If there exists a fam-
ily ((ui, vi))i∈I and ((yj , zj))j∈I be pairwise disjoint open sub-intervals of [0, 1]
such that ⋃

i∈I

((ui, vi)) ∪
⋃
j∈I

(yj , zj) ⊆ [0, 1] \ A

where I is a finite or countably infinite index set. Then there is a nullnorm F
such that A coincides with the set of all comparable elements of [0, 1] with respect
to �F .

Proof. To proof this theorem, we defined a nullnorm F on [0, 1] with zero element
a. Then we obtained that A = [0, 1] \ KF , that is, A is the set of all comparable
elements of [0, 1] with respect to �F . So, we showed that KF = [0, 1] \ A. Thus,
we proved that given an (a, b) � (0, 1), we can find an F such that KF = (a, b).

6 Conclusions

We have discussed and investigated some properties of F-partial order. Also, we
have defined that the set of all incomparable elements with arbitrary but fixed
x element of (0, 1) according to the F-partial order and we have investigated
some properties of this set. Then, we have defined an equivalence on the class of
nullnorms on a bounded lattice L and we have determined the equivalence class
of some special nullnorms. Finally, we have given an answer to an open problem
posed in [1].

Acknowledgement. In this paper, the full proofs are contained in [4].
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9. Çaylı, G.D., Karaçal, F., Mesiar, R.: On a new class of uninorms on bounded
lattices. Inf. Sci. 367–368, 221–231 (2016)
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Abstract. In this work we propose a generalization of the gravitational
search algorithm where the product in the expression of the gravitational
attraction force is replaced by more general functions. We study some
conditions which ensure convergence of our proposal and we show that
we recover a wide class of aggregation functions to replace the product.

1 Introduction

The development of algorithms inspired in the behaviour of nature has a long
history in artificial intelligence. In a short and non-exhaustive summary, we can
recall evolutionary algorithms [1] or perceptron and neural networks [5].

Regarding physical laws, it is worth to mention that by the year 1977, Wright
proposed an adaptation of Newton’s Law of Gravitation for clustering prob-
lems [8]. More recently, in [7], an optimization algorithm which makes use of
the gravitational law was proposed, in order to approach to the maximum (or
the minimum) of a given function. The idea for this algorithm comes from two
of the most relevant physical laws in the Newtonian framework. A simplified
(and modified) form of the gravitational law, on the one hand, and the second
law of dynamics, on the other hand. Roughly speaking, the Gravitational Search
Algorithm (GSA) considers each possible solution of the optimization problem
as a particle in a dynamical system which evolves under the sole action of a
simplified gravitational attraction in a space of as many dimensions as the arity
of the function to be minimized.

Besides, the gravitational law has also been used in image processing in the
problem of edge detection. For instance, in [6] it is shown how the classical
expression of the Gravitational Law can be modified in order to improve results
of the edge detection algorithms.

In this work, we propose to replace the product in the classical expression of
the gravitational attracting force in order to define a more general form of the
Gravitational Search Algorithm. We mainly focus in the theoretical aspects of

c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 17
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these modified algorithms, providing some easy conditions to ensure convergence
and analyzing what functions which are commonly used in the fuzzy framework
can be considered to replace the product.

The structure of this paper is the following: In Sect. 2 we present some pre-
liminary results and we discuss the original Gravitational Search Algorithm. In
Sect. 3 we propose our modified version of the Gravitational Search Algorithm.
In Sect. 4 we make some considerations about the convergence of the algorithm.
We finish with some conclusions and references.

2 Preliminaries

2.1 Mathematical Concepts and Notations

We will denote by X = (x1, . . . , xk) a vector in the Euclidean space R
k. By ‖X‖,

we denote the Euclidean L2 norm of the vector X, i.e.

‖X‖ =
√

(x1)2 + · · · + (xk)2

When we say that a sequence of vectors {Xn} converges to some other vector
X0, we mean that it does so in the Euclidean norm. Note that Xn → X0 as
n → ∞ if and only if xd

n → xd
0 as n → ∞ for every d ∈ {1, . . . , n}.

2.2 The Gravitational Search Algorithm

We now briefly describe the original Gravitational Search Algorithm (GSA) [7].
The goal of the algorithm is to find an optimum (either a maximum or a min-
imum) of a given fitness function fit : Rn → R. The search of the optimum is
done in an iterative way. Assume that at some iteration t we have N particles;
that is, N points X1(t), . . . ,XN (t) ∈ R

n. Each of these particles represents a
possible solution for our minimization problem. For each of these particles, a
velocity vector Vi ∈ R

n (i ∈ {1, . . . , N}) is also provided.
In order to calculate the corresponding values for the iteration t+1 from the

values of iteration t, the GSA does as follows.

1. Assignation of masses to each of the points at iteration t.
(i) We evaluate the value of the function fit at each of the points Xi. In

particular, we denote:

best(t) = min
j∈{1,...,N}

fit(Xj(t))

worst(t) = max
j∈{1,...,N}

fit(Xj(t))

whenever we are minimizing the fitness function, and just opposite in case
we are maximizing the fitness function.
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(ii) We assign a relative mass mi(t) to the particle Xi(t) as follows.

mi(t) =
fit(Xi(t)) − worst(t)

best(t) − worst

Note that in this way the particle(s) with the best fitness is (are) given
a mass equal to 1, whereas the particle(s) with the worst fitness is (are)
given a mass equal to 0.

(iii) We finally assign a mass Mi to the particle Xi(t) just normalizing the
relative mass mi(t), i.e.,

Mi(t) =
mi(t)∑N
j=1 mj(t)

Note that the particle(s) with the worst fitness get a mass equal to 0.
2. Calculation of gravitational forces at iteration t.

Following the gravitational law model, for each particle we are going to mea-
sure the effect of the “gravitational force” of all the other particles of the
system acting over it. So, for every i ∈ {1, . . . , N}:
(i) We define the force Fij(t) of particle j acting over particle i (i �= j) as

Fij(t) = G(t)
Mi(t)Mj(t)
Rij(t) + ε

(Xj(t) − Xi(t)) (1)

where Rij is the Euclidean (L2) distance between Xj(t) and Xi(t) and
ε > 0 is a small constant which is introduced to avoid possible indetermi-
nacies. Observe that the distance is not squared, contrary to the case of the
Newtonian Law of Gravitation. G(t) is a positive constant which may vary
from iteration to iteration. It is usually required that limt→∞ G(t) = 0.

(ii) We calculate the total force acting over particle Xi(t). To do so, we build
a vector (w1, . . . , wN ) ∈ [0, 1]N , where each wj is a uniformly distributed
random number in the interval [0, 1]. With this vector at hand, we define
the total force acting over particle Xi(t) as

Fi(t) =
n∑

j=1,j �=i

wjFij(t).

Note that the random vector plays a significant role, and, in particular, it
can make the effect of particles with small mass (and hence a bad fitness)
very relevant.

(iii) Now we can calculate the corresponding acceleration ai(t) of the particle
Xi(t) as:

ai(t) =
Fi(t)
Mi(t)

.
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3. Calculation of the new positions
(i) The new velocity of the particle Xi(t) is calculated as

Vi(t + 1) = piVi(t) + ai(t)

where pi ∈ [0, 1] is a random number calculated according to a uniform
distribution of probability.

(ii) Finally, the new position of the particle is calculated as

Xi(t + 1) = Xi(t) + Vi(t + 1)

(iii) We check the stopping criterion of the algorithm. If fulfilled, finish, oth-
erwise go back to the step (1).

Particles and velocities for the first iteration are chosen randomly. The
process is iterated until some stopping condition is satisfied.

3 A Modified Proposal of the GSA Algorithm

In this section, we propose a modification of the Gravitational Search Algorithm.
In particular, our idea is to replace the product in Eq. (1) by another appropriate
function and to analyse what is the effect of such a change in the behaviour of
the algorithm. This approach is inspired by the studies carried out in [6], where,
in the framework of edge detection, the replacement of the product by other,
more general functions led to a significant improvement in the results.

So we are going to define the total force Fi(t) acting over particle i within
the tth iteration:

Fij(t) = G(t)
H(Mi(t),Mj(t))

Rij(t) + ε
(Xi(t) − Xj(t)) (2)

for some appropriate function H : [0, 1]2 → [0, 1].
Then the total force acting over ith particle is

Fi(t) =
N∑
j=1
i�=j

wjFij(t) (3)

with wj ∈ [0, 1] being random numbers specifying the influence of the jth parti-
cle. These numbers are drawn from a uniform distribution on [0, 1]. Accordingly,
herein the randomness reflects the fact that sometimes the particle with very
good fitness has very small influence.

Analogously to the original GSA proceeding, see [7], the first approximation
of MGSA pseudocode can be proposed:

1. Generate initial population in t = 1, of N various particles, N ≥ 2, each one
with its initial particular D dimensional position vector Xi(t). Take an initial
value G0 > 0 for G(t).
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2. Evaluate fitness for each particle fit(Xi(t)) : Rn → R

3. Update G(t), best(t), worst(t). In principle, it is usually required that G(t)
is a decreasing functions such that limt→∞ G(t) = 0. For instance, we can
assume that:

G(t) = G0
1
t

(4)

Then, for each t, the following functions are defined:

best(t) = min
j∈{1...,N}

fit(Xj(t)) (5)

worst(t) = max
j∈{1...,N}

fit(Xj(t)) (6)

It is clear that for each j : best(t) ≤ fit(Xj(t)) ≤ worst(t).
If |best(t) − worst(t)| < crit or t ≥ tmax then finish.

4. Being best(t) < worst(t), which means there exist at least two different
values of fitness function, we can establish mass Mi(t) for each i:

mi(t) =
fit(Xi(t)) − worst(t)

best(t) − worst(t)
(7)

Mi(t) =
mi(t)∑

j∈{1...,N} mj(t)
(8)

It is apparent that in any t : 0 ≤ mi(t) ≤ 1, 0 ≤ Mi(t) ≤ 1.
Moreover

∑
i∈{1...,N} Mi(t) = 1, which follows directly from its definition,

∑
i∈{1...,N}

Mi(t) =
∑

i∈{1...,N}

mi(t)∑
j∈{1...,N} mj(t)

=

∑
i∈{1...,N} mi(t)∑
j∈{1...,N} mj(t)

= 1 (9)

5. Calculate the gravitational force in tth ITERATION:
For every i ∈ {1, . . . , N}:
(i) The force Fij(t) of particle j acting over particle i (i �= j) is

Fij(t) = G(t)
H(Mi(t)Mj(t))

Rij(t) + ε
(Xj(t) − Xi(t)) (10)

and, the total force acting over particle Xi(t) is

Fi(t) =
n∑

j=1,j �=i

wjFij(t).

with (w1, . . . , wN ) ∈ [0; 1]N being a vector, where each wj is a uniformly
distributed random number in the interval [0, 1].

(ii) Hence, the corresponding acceleration ai(t) of the particle Xi(t) is:

ai(t) =
Fi(t)
Mi(t)

.
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6. Calculate the new positions.
(i) The new velocity of the particle Xi(t) is calculated as

Vi(t + 1) = piVi(t) + ai(t)

where pi ∈ [0, 1] is a random number calculated according to a uniform
distribution of probability.

(ii) Finally, the new position of the particle is calculated as

Xi(t + 1) = Xi(t) + Vi(t + 1)

(iii) Go back to the step (2)

4 Study of the Convergence of the Generalized
Gravitational Search Algorithm

Mathematically, both the gravitational search algorithm and the modified ver-
sion can be seen as two instances of dynamical systems. The particle i at iteration
t + 1 is obtained from particle i at iteration t by means of the expression:

Xi(t + 1) = Xi(t) + Vi(t + 1)

Taking into account the expression for the velocity, this identity is the same as

Xi(t + 1) = Xi(t) + pi(t)Vi(t) + ai(t) (11)

So, from standard analysis, we can provide the following lemma.

Lemma 1. The sequence {Xi(t)}t converges (in the usual Euclidean metric) if
and only if

lim
t→∞ pi(t)Vi(t) + ai(t) = 0

Proof. Rewriting Eq. 11 as

Xi(t + 1) − Xi(t) = pi(t)Vi(t) + ai(t)

the result follows from the fact that {Xi(t)}t converges if and only if it is a
Cauchy sequence.

With this Lemma at hand, we can provide the following general convergence
theorem.

Theorem 1. The sequence {Xi(t)}t converges if and only if ai(t) → 0 as
t → ∞.
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Proof. Assume first that ai(t) → 0 as t → ∞. In this setting, since

Vi(t + 1) − pi(t)Vi(t) = ai(t)

it follows that
‖Vi(t)‖ → 0

and from Lemma 1, we get convergence.
Conversely, assume that ai(t) does not converge to 0 as t → ∞. Note that if

the sequence {Xi(t)}t converges, it must also hold that Vi(t) → 0. But from

ai(t) = Vi(t + 1) − pi(t)Vi(t)

if ai(t) does not converge, Vi(t) can not converge, either.

Taking into account these results, we also get a convergence criterion in terms
of the velocity which was already discussed in [3].

Corollary 1. Assume that limt→∞ pi(t) �= 1. The sequence {Xi(t)}t converges
if and only if Vi(t) → 0 as t → ∞.

Proof. It is straight from the previous theorem.

Remark 1. From a physical point of view, each acceleration component magni-
tude is going down to zero, hence the entire system is tending to the steady
state.

So in order to analyse convergence, we must study the behaviour of acceler-
ation along the time.

Using this lemma, we can state the following result.

Theorem 2. The sequence {Xi(t)}t converges if and only if

lim
t→∞ G(t)

∑
i�=j

wj
1

Mi(t)
H

(
Mi(t),Mj(t)

)
Rij(t) + ε

(xd
j (t) − xd

i (t)) = 0 (12)

for every i ∈ {1, . . . , n}. In the case of Mi(t) = 0 we take H(Mi,Mj)/Mi = 0
due to fact that the particle with worst fitness has no influence within the tth

iteration.

Proof. It is just necessary to rewrite the acceleration in terms of the masses.

We recall now the following well-known result that will be useful for our
subsequent estimations.

Lemma 2. For every X = (x1, . . . , xN ) ∈ R
n and for every d ∈ {1, . . . , n}, the

following inequality holds.
|xd|
‖X‖ ≤ 1 (13)
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Proof. It follows from a straightforward calculation.

Taken into account this Lemma, we get the following Corollary.

Corollary 2. The sequence {Xi(t)}t converges if

lim
t→∞ G(t)

∑
i�=j

1
Mi(t)

H
(
Mi(t),Mj(t)

)
= 0 (14)

for every i ∈ {1, . . . , n}, having H(Mi(t),Mj(t))/Mi(t) = 0 in case of Mi(t) = 0.

Proof. First of all, note that the dth component of the acceleration vector for
the ith particle is given by

ad
i (t) =

F d
i (t)

Mi(t)
=

1
Mi(t)

∑
j∈{1...,N}

i�=j

wjG(t)
H

(
Mi(t),Mj(t)

)
Rij(t) + ε

(xd
j (t) − xd

i (t)) (15)

Then, from Lemma 2, we see that

|ad
i (t)| ≤ G(t)

∑
j∈{1...,N}

i�=j

1
Mi(t)

H
(
Mi(t),Mj(t)

)
. (16)

So, if the right hand side term of (16) tends to zero as t goes to infinity, so does
the acceleration.

Remark 2. 1. Note that as soon as the function H(x,y)
x is bounded, if we assume

that G(t) → 0 as t → ∞ and since we are dealing with a finite number of
particles, we get convergence. This is in particular the case of the original
gravitational search algorithm, as, from H(x, y) = xy it follows that

H(x, y)
x

=

{
y if xy > 0
0 in other case.

2. However, even if H(x,y)
x is not bounded, we may also have convergence of the

algorithm.

We are now going to get an easier to handle condition for convergence. From
now on, and to make the text more easily readable, we will write the shortened
forms mi,Mi, etc. instead of mi(t),Mi(t), etc., whenever possible.

First of all, note that the condition
∑

j∈K
i�=j

1
Mi

H
(
Mi,Mj

) ≤ 1 from (16) can

be rewritten as ∑
i�=j

H(Mi,Mj) ≤ Mi (17)

However, we can also expect that
∑
j �=i

H(Mj ,Mi) ≤ Mj (18)
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In order to ensure the fulfillment of (17) and (18) simultaneously, we require that
the strictest of both inequalities holds. So in next consideration we can just put
min{Mi,Mj} on the right hand side of (18). So in the following consideration,
without loss of generality, we can assume Mi ≤ Mj (17).

Lemma 3. For every function H ∈ M and for every Mi ∈ [0, 1[, the following
statements are equivalent:

1.
∑

i�=j H(Mi,Mj) ≤ Mi.
2.

∑
i�=j H(Mi,Mj) ≤ ∑

i�=j Mj
Mi

1−Mi
.

Proof. It is enough, taking into account (9), to observe the following:

Mi = Mi

∑

j∈K

Mj =
∑

j∈K
i�=j

MiMj +M2
i =

∑

j∈K
i�=j

MiMj +
∑

j∈K
i�=j

M2
i Mj + · · ·+

∑

j∈K
i�=j

Mm
i Mj + · · ·

=
∑

j∈K
i�=j

Mj

∞∑

m=1

Mm
i =

∑

j∈K
i�=j

Mj
Mi

1−Mi
,

(19)

so the result follows.

Taking into account our previous discussion, we can provide the following
convergence criterion for the MGSA, whose proof is now straightforward.

Theorem 3. Let H ∈ M . Then, if

H(x, y) ≤ xy

1 − min(x, y)
(20)

for every x, y ∈ [0, 1], the MGSA converges.

With this criterion, many aggregation functions can be used to replace the
product. For instance.

Proposition 1. Let T be a t-norm [4]. If we take H = T in the MGSA, then
the algorithm converges.

Proof. It is enough to note that the minimum satisfies Eq. 20 and, for every
other t-norm T, T (x, y) ≤ min(x, y) for every x, y ∈ [0, 1].

5 Conclusions

In this work we have presented the first discussion of a generalization of the
Gravitational Search Algorithm. Although this study is still preliminary, it has
already shown that the product can be replaced by a large class of aggregation
functions, including t-norms. In future works, we intend to expand this analysis
to get full convergence criteria which allow us to identify every possible aggre-
gation function to be used. We will also develop an experimental analysis of the
new functions to be considered.
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Abstract. This work extends the notion of consistency in terms of sta-
bility for Families of Aggregation Operators (FAO), as defined in previous
works. The notion of stability proposed in this work, not only extends
the previous one, but it can be applied to a wider set of FAOs, par-
ticularly, to those that we name here as Family of Improper Aggregation
Operators (FIAO), or improper FAOs. When the aggregated value can-
not be considered as a new item from the input, the present definition of
consistency cannot be applied. This is usual in several areas, namely in
the development of social, economic and political indexes, as far as the
aggregation process typically yield a new and different concept from the
input elements.

1 Introduction

An aggregation operator is usually defined as a real function A : [0, 1]n → [0, 1],
such that for n items in [0, 1], yields an aggregation value in the same interval
[1,2,8,9,13]. This definition can be extended (see for example [18]) by consider-
ing a Family of Aggregation Operators {An}n∈N , which aggregates a collection
of items of any length n. It is also referred to as extended aggregation func-
tion by other authors [2,16]. Many properties have been studied in relation to
single aggregation operators An, in contrast, few efforts have been dedicated to
study the relations between these operators as members of a family of aggre-
gation functions. As it has been pointed out in some previous works [1,8–10],
most commonly assumed properties (e.g.continuity) represent desirable features
related to each aggregation function An, but they do not imply the consistency
of the FAO as a whole. In this sense, no relation is being imposed among the
members of a given family of operators. In this context, in the mentioned work
[18] it was studied the relation that must exist between {An} and {Am} in order
c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 18
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to ensure consistency when the input cardinality changes (from n data to m).
Thus, some properties of consistency among operators from the same FAO are
defined, that guarantee a robust process of aggregation under such cardinality
changes (e.g. missing data situations). This concept of consistency in FAOs was
named Stability.

In [18], the stability of some of the most commonly used FAOs has been stud-
ied (minimum, maximum, median, arithmetic mean, geometric mean, harmonic
mean, owa, weighted mean and product). It was also considered the structure of
the input, widening the scope of the notion of stability for cases of unstructured
data, lineally structured and hierarchically structured data [15,19]. In addition,
for each of those kind of input data new definitions of stability were introduced,
each one less restrictive, starting with the strict stability, followed by the asymp-
totically strict stability, the almost sure strict stability and, finally, the definition
of instability [14,17,18].

Stability in FAOs relays in the concept of continuity, as small input changes
should imply small output changes. In particular, for a collection of n items
(x1, . . . , xn), when a new item xn+1 is added, such that xn+1 is close to the
aggregation of the previous n items An(x1, . . . , xn), then An+1(x1, . . . , xn, xn+1)
should be either close to An(x1, . . . , xn). Naturally arises the need to study the
symmetry of the FAOs, since for those nonsymmetric operators, the position
of xn+1 is relevant for the result of the process. Notice that from this point of
view, the notion of Self-identity from Yager [21] can be regarded as a particular
case of the stability property for symmetric FAOs. Stability property has been
used in different problems as weights determination for weighted average mean
[3]; data missing problems [4,11,12,20] or index [19] among many others.

Nevertheless, this stability definition cannot be applied to any FAO
since classical definition assumes that the output of the aggregation process
An(x1, . . . , xn) can be considered as a new input. The stability equation estab-
lishes that An+1(x1, . . . , xn, An(x1, . . . , xn)) = An(x1, . . . , xn). But, does this
equation always make sense? In some contexts this could be weird. Although
from a mathematical point of view all values are in [0, 1], their meaning could
be quite different.

Based on this idea, we define the concept of proper aggregation function as
an aggregation function φn in which the meaning of value φn(x1, . . . , xn) could
be consider as a new input in the aggregation process (as for example the mean,
the minimum or maximum). After that, and aiming to extend the notions of
stability for any class of aggregation functions, in this work we propose a new
definition of stability that follows the same ideas of the original definition.

Moreover, the definition of stability proposed in this work is richer and, in
some cases, more restrictive than the previous one, as we shall see below.

2 Preliminary

In this section, the most important stability properties for FAOs are reminded,
for more about them, we refer the reader to [18].
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2.1 Strict Stability for FAOs

Definition 1. Let {An : [0, 1]n → [0, 1], n ∈ N} be a family of aggregation
operators. Then, it is said that:

1. {An}n is an R-strictly stable family if

An(x1, x2, . . . , xn−1, An−1(x1, x2, . . . , xn−1)) = An−1(x1, x2, . . . , xn−1) (1)

holds ∀n ≥ 3 and ∀{xn}n∈N in [0, 1]
2. {An}n is an L-strictly stable family if

An(An−1(x1, x2, . . . , xn−1), x1, x2, . . . , xn−1) = An−1(x1, x2, . . . , xn−1) (2)

holds ∀n ≥ 3 and ∀{xn}n∈N in [0, 1]
3. {An}n is an RL-strictly stable family if both properties hold simultaneously.

Let us observe that the notion of self-identity as defined in [21] is the first
part of this definition of stability. If the FAO is symmetric, both L- (Yager’s self-
identity) and R-stability definitions, and consequently, LR-stability, are equiva-
lent. But this is not true in general if such symmetry is not satisfied.

For example, let us analyze self-identity in the backward inductive extension
{Ab

n}n∈N and forward inductive extension {Af
n}n∈N [3] of any binary aggrega-

tion operator, defined for n > 2 as Ab
n = L2 (x1, L2(. . . , L2(xn−1, xn) . . .) for

n > 2, and Af
n = L2 (. . . , (L2(L2(x1, x2), x3)), . . . , xn) , for n > 2 , where L2 is

a binary aggregation operator, i.e. L2 : [0, 1]2 → [0, 1].
It can be proven that the family of aggregation functions {Af

n}n∈N satis-
fies self-identity if L2 is idempotent, i.e., An(x, . . . , x) = x, for all n ∈ N
and x ∈ [0, 1] (see also [3]). Nevertheless, the family {Ab

n}n∈N does not sat-
isfy self-identity since the order in which this family aggregates the infor-
mation is inverse (i.e. from right to left). In our opinion, the family Ab

n =
L2 (x1, L2(. . . , L2(xn−1, xn))) for n > 2 should be consistent in the sense of
stability when the information is aggregated from right to left.

Moreover, it is important to note that in some cases, the data should be
introduced in the k-th position instead of just left or right. For instance, stability
can be studied for an aggregation process in which there are missing values at
any position (see [5–7,15]).

3 A Generalization of Stability for Any FAOs

As mentioned above, the notion of consistency of an aggregation process has
been introduced in previous works based on the property of stability of a FAO,
a property that has been studied for different data input structures, and also
less restrictive definitions have been introduced, be it strict, asymptotic and in
probability. However, such stability is based on the equivalency for a single value,
it does not take into account a range of neighboring values. Besides, it cannot
be used in any situation, for there are problems in which there is no sense in
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feeding the input data with the aggregated output since both have completely
different meanings.

Therefore, a distinction has to be established between both kinds of families
that has to be concerned with their use rather than their mathematical proper-
ties. In this sense, let X be a data set and a FAO {An}, both involved in an
aggregation process, if the aggregated value can be regarded as a new element
of the original set X, we will say that {An} is a Family of Proper Aggregation
Operators (FPAO) or a proper FAO. Likewise, we will say that {An} is a Fam-
ily of Improper Aggregation Operators (FIAO) or an improper FAO if it is not
a Proper FAO. Notice that any FAO may be proper or improper depending on
the context they are being used. What we want to stress here is that in many
practical problems the need to consider Improper FAOs arises.

Taking this into account, the consistency properties defined in [18] only apply
to proper FAOs, since for an improper FAO {An : [0, 1]n −→ [0, 1], n ∈ N}
the expression An+1(x1, . . . , xn, An(x1, . . . , xn)) has no sense. The concept must
then be reformulated, and to do that let us retake the consistency principle that
guided the previous definition in order to ensure a robust aggregation process:
“small input changes must yield small output changes”. Let us begin for what
“small changes” mean.

Previous idea of stability establish that if the new input that has to be
aggregate coincides with the aggregation of the previous ones (i.e. xn+1 =
An(x1, . . . , xn)), then the aggregation of n+1 items An+1(x1, . . . , xn, An) should
coincide with An. Since the expression An+1(x1, . . . , xn, An) in general has not
sense, the new stability can be reformulated as follows: if xn+1 is close to
x1, . . . , xn, then An+1 should be close to An. The concept of proximity or close-
ness between a point and a set of points is widely used in clustering techniques
under the name of similarity or, equivalently, dissimilarity. So, given a value
xk ∈ [0, 1] and a data set X = {x1, . . . , xn} also in [0, 1], let us denote by Dn the
set of dissimilarity measures Dn : [0, 1]x[0, 1]n −→ [0, 1] for any n. Therefore,
given xa and xb in [0, 1], let us say that xa is closer to X than xb with respect
to D , if D|X|(xa,X) < D|X|(xb,X).

We will see more about dissimilarities below, but now we are able to introduce
a new definition of stability more general than strict stability as defined so
far, and based on the principle of continuity. This new definition should be of
applicability to any kind of FAO, including the improper FAOs, and should
“contain” the previous concept of stability at least in the sense that the latter
implies the former for some particular dissimilarity measures. This definition is
based in the principle of consistency as has been presented above: given a data
set and the aggregation of its elements, the process of aggregating a new value
outside the given set but close enough to it should yield a value close itself to
the previous aggregation. The definition is as follows:

Definition 2. Let Dn be the set of dissimilarity measures Dn : [0, 1]x[0, 1]n −→
[0, 1] for any n, and let X be a set such that |X| = n and X ⊂ [0, 1], and
{An : [0, 1]n �→ [0, 1], n ∈ N} be a FAO. Then we will say that:
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• {An} is an R-Stable family with respect to Dn if: ∀ε > 0,∃δ > 0/D|X|(xa,X)≤
δ → |An+1(X,xa) − An(X)| ≤ ε

• {An} is an L-stable family with respect to Dn if: ∀ε > 0,∃δ > 0/D|X|(xa,X) ≤
δ → |An+1(xa,X) − An(X)| ≤ ε

• {An} is an LR-stable family with respect to Dn if both previous properties
hold.

Let us remark that, for a symmetric FAO {An : [0, 1]n �→ [0, 1], n∈N}, An+1

(X,x) = An+1(x1, . . . , xn, x) = An+1(x, x1, . . . , xn) = An+1(x1, . . . , xk, x, xk+1,
. . . , xn) and, hence, it is enough to prove, e.g., R-stability, to conclude that
L-stability and LR-stability also hold.

Given this new definition of stability, it is of interest studying what is the
relation with the strict stability defined for proper FAOs in [18].

We have not defined so far the dissimilarity measures D in Definition 2, all
we know is that they depend eventually on a family of aggregation operators.
They could actually be defined in several ways, let us distinguish the following
two cases:

• Let {DAn} be the “distance” from xa to the aggregation of the elements of
X, i.e. DAn(xa,X) = |xa − An(X)|

• Let {ADn} be the aggregation of the “distances” from xa to the each of the
elements of X = {x1, . . . , xn}, i.e. ADn(xa,X) = An(|xa−x1|, . . . , |xa−xn|)
It is clear that, for the mean, this both definitions are equal, while in general

they are unequal for any given FAO {An}n. We will see too that the first one
can be applied to the study of proper FAOs and it is actually the concept used
in the previous studies, while the second one is of applicability for proper and
improper FAOs and is actually more intuitive and widely used in real cluster-
ing techniques. For instance let us recall the known single linkage clustering,
complete linkage clustering and group average clustering.

Now, let us see that the definition presented above implies, in some circum-
stances, the previous concept of strict stability:

Proposition 1. Let the dissimilarity measure given by DAn(xa,X) = |xa −
An(X)|:
• If {An} is a family R-stable with respect to DAn, then {An} is R-strictly

stable.
• If {An} is a family L-stable with respect to DAn, then {An} is L-strictly

stable.
• If {An} is a family LR-stable with respect to DAn, then {An} is LR-strictly

stable.

Proof. Let be {An} R-stable with respect to DAn, then ∀X = {x1, . . . , xn} and
∀ε > 0,∃δ > 0:

If DAnxa,X = |xa − An(X)| ≤ δ then |A(n+1)(X,xa) − An(X)| ≤ ε

In particular, for xa = An(X):
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∀δ, |xa − An(X)| = 0 < δ, therefore ∀ε > 0|A(n+1)(X,xa) − An(X)| ≤ ε, and
since this holds ∀ε > 0 no matter how close to zero it is, then necessarily

|A(n+1)(X,xa) − An(X)| = 0

Therefore, {An} is R-strictly stable. 
�
The proof is similar for L-strict stability and hence for LR-strict stability.
Let us insist that this proposition relates the new definition of stability with

the previous of strict stability, i.e. a concept that can only be applied to proper
FAOs as already has been said, so notice that it is not surprising that the
dissimilarity measure used in the proposition is, among both defined above, DAn,
that is, the one that can be applied to such FPAOs. Indeed, if An(X) cannot
be regarded as an element comparable to those belonging to X, then it has no
sense to compare the new element xa with it, as in DAn(xa,X) = |xa −An(X)|.

In [18] the strict stability properties were studied for the most known and
used FAOs (minimum, maximum, median, arithmetic mean, geometric mean,
harmonic mean, owa, weighted mean and product).

Such FAOs classification with respect to their strict stability level is based
on the dissimilarity definition given by DAn(xa,X) = |xa − An(X)| as has
been shown above. It is possible to use the dissimilarity measure ADn instead,
referred to the aggregation of the distances using An, that is, ADn(x,X) =n

(|x − x1|, |x − x2|, . . . , |x − xn|). This distinction makes the difference between
the study of stability among proper FAOs (since as has been said the former
dissimilarity measure can only be applied to such FAOs) and improper FAOs.
However, what follows can be applied to both proper and improper FAOs.
Moreover, since the analysis cannot be made here for any kind of measure as it
would be unmanageable, three types have been chosen to do this, based on three
well known and widely used clustering techniques, namely:

• single linkage clustering (where n = minn and hence ADn(x,X) =
Dminn(x,X) = minn(|x − x1|, |x − x2|, . . . , |x − xn|)),

• complete linkage clustering (where An = maxn and hence ADn(x,X) =
Dmaxn(x,X) = maxn(|x − x1|, |x − x2|, . . . , |x − xn|)),

• group average clustering (where An = meann(X) = μn and hence
ADn(xk,X) = Dµn(x,X) =

∑n
i=1 |x−xi|

n )

Using these three dissimilarity measures, let us study stability for the FAO
of the minimum. Notice that, since {minn}n∈N is symmetric, it is enough to
prove R-stability.

Proposition 2. The FAO {minn}n∈N is LR-stable wrt Dminn(x,X) =
minn(|x − x1|, |x − x2|, . . . , |x − xn|).
Proof. By definition, {minn}n∈N is R-stable wrt Dminn iff ∀X = x1, . . . , xn and
∀ε > 0, δ > 0 :
Dminn(x,X) ≤ δ ⇒ |minn+1(x,X) − minn(X)| ≤ ε.

Hence, let X ={x1, . . . , xn} and ε>0, and let δ=ε, then ∀x /Dminn(x,X)≤δ
there are two possible situations:
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• If x ≥ min(X) = x(1) then |minn+1(x,X)−minn(X)| = |x(1) −x(1)| = 0 ≤ ε;

• If x < x(1) then |minn+1(x,X)−minn(X)| = |x−x(1)| and since |x−x(1)| =
minn(|x − x1|, |x − x2|, . . . , |x − xn|) = Dminn(x,X) =≤ δ = ε. 
�

Proposition 3. The FAO {minn}n∈N is LR-stable wrt Dmaxn(x,X) =
maxn(|x − x1|, |x − x2|, . . . , |x − xn|).
Proof. By definition, {minn}n∈N is R-stable wrt Dmaxn iff ∀X = x1, . . . , xn and
∀ε > 0, δ > 0 :
Dmaxn(x,X) ≤ δ ⇒ |minn+1(x,X) − minn(X)| ≤ ε.

Hence, let X = {x1, . . . , xn} and ε > 0, and let δ = |max(X)−min(x)|+ε =
|x(n) − x(1)| + ε, then ∀x /Dmaxn(x,X) ≤ δ there are two possible situations:

• If x ≥ min(X) = x(1) then |minn+1(x,X) − minn(X)| = |x(1) − x(1)| = 0 ≤ ε
• If x < x(1) then |minn+1(x,X)−minn(X)| = |x−x(1)| and since |x−x(1)| =

maxn(|x − x1|, |x − x2|, . . . , |x − xn|) − |x(n) − x(1)| = Dmaxn(x,X) − |x(n) −
x(1)| ≤ δ −|x(n) −x(1)| = |x(n) −x(1)|+ ε−|x(n) −x(1)| = ε, i.e. |x−x(1)| ≤ ε


�
Proposition 4. The FAO {minn}n∈N is LR-stable wrt Dµn(x,X) =n (|x −
x1|, |x − x2|, . . . , |x − xn|) =

∑n
i=1 |x−xi|

n .

Proof. By definition, {minn}n∈N is R-stable wrt Dµn iff ∀X = x1, . . . , xn and
∀ε > 0, δ > 0 :
Dµn(x,X) ≤ δ ⇒ |minn+1(x,X) − minn(X)| ≤ ε.

Hence, let X = {x1, . . . , xn} and ε > 0, and let δ = ε + |μn − x(1)|, then
∀x /Dµn(x,X) = |x − μn| ≤ δ there are two possible situations:

• If x ≥ min(X) = x(1) then |minn+1(x,X) − minn(X)| = |x(1) − x(1)| = 0 ≤ ε
• If x < x(1) then |minn+1(x,X) − minn(X)| = |x − x(1)| = x(1) − x, notice

too that, in this case, Dµn(x,X) =
∑n

i=1 |x−xi|
n = |x −

∑n
i=1 xi

n | = |x − μn| =
DAn(x,X), and since μn ≥ x(1), then |x − x(1)| = |x − μn| − |μn − x(1)| ≤
δ + |μn − x(1)| = ε + |μn − x(1)| − |μn − x(1)| = ε 
�

4 Final Remarks

The new stability property defined in this work for FAOs is more flexible than
the strict stability defined in previous works. It can be applied to proper and
improper FAOs and different similarity measures can be used, widening the field
of research and applications. As we have seen here, for instance, even the FAO
{minn}n∈N , that was already regarded as an stable family, can be considered as
a stable family for several dissimilarity measures, while other families may not.
Our definition is closer to the principle of continuity and meanwhile it covers
the previous concept of strict stability. Moreover, the new concept introduced
can include other Families of aggregation functions that the previous concept
did not reach, and different lines of research and applications remain open.
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Abstract. The concept of super level measures as a generalization of
classical level measures is discussed and studied in detail. Following the
developing of the theory of Lp-spaces introduced by non-additive inte-
grals based on super level measures we discuss the integration theory
modified by super level measures and we compare it with the classical
approach.

1 Basic Notions and Preliminaries

A common feature of various classes of non-additive integrals (see [6,7,9,10,12])
is the so-called level measure occurring in their definition. Modifying the level
measure using the concept of a “size” we get the so-called super level measure
recently introduced in [5]. As authors say, the concept of super level measures
and integrals with respect to them turns out to be a very suitable component
connecting the theory of Carleson measures and the time-frequency analysis.
Therefore it is both interesting and valuable to study this new theory much
deeper.

In order to make this paper as self-contained as possible, we recall here all the
basic notations and definitions together with a few examples of important terms.
To avoid too abstract setting, we shall assume that X is a topological space. We
denote by EB the σ-algebra of Borel sets of X. Then, the pair (X,EB) will
be called a Borel space associated with X. Further, for several reasons that we
mention later, a subcollection E ⊆ EB will be important in this theory. Similarly,
the term measure will be understood in its most general sense: a measure is a set
function m : S → [0,+∞] on (X,S ), where S is a non-empty class of subsets
of X with the only (natural) condition m(∅) = 0 whenever ∅ ∈ S .

In the following we present a slightly modified definition of sizes originally
introduced in [5]. This modified concept is established in our paper [8]. The mod-
ification lies in the fact that we suppose the size is defined on all Borel subsets of
X instead of a subcollection E only. And, what is more important, we leave the
original approach where the subcollection E is linked to the outer measure gen-
erated by the so-called pre-measure on a subcollection E (see [5, Definition 2.1]).
The generating procedure (deeply described in [5]) cannot produce an arbitrary
monotone set function (in fact, it produces only a sub-additive measure μ in the
original setting). Thus, the original concept of super level measure will not allow
a generalization of many classical (non-additive) integrals.
c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 19
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Definition 1. Let (X,EB) be a Borel space and B(X) be the set of all complex-
valued Borel-measurable functions on X. A size is a map

s : B(X) → [0,+∞]EB

such that for any f, g ∈ B(X) and E ∈ EB it holds

(i) if |f | ≤ |g|, then s(f)(E) ≤ s(g)(E); (monotonicity)
(ii) s(λf)(E) = |λ| s(f)(E) for each λ ∈ C; (scaling property)
(iii) s(f + g)(E) ≤ Cs s(f)(E) + Cs s(g)(E) for some fixed Cs ≥ 1

depending only on s. (quasi-sublinearity)

The concept of sizes can be viewed as a form of averaging the positive func-
tions from the class B(X) over the subcollection E. This approach involves
averaging such as the classical arithmetic mean, generalized arithmetic mean,
weighting the integrals, as well as the supremum of a function over a set. The
last mentioned example does not reflect averaging in its original sense, but it is
a size and it plays an important role in the theory of super level measures.

Example 1. In the following we list some examples of sizes.

(a) Supremum. The mapping s∞ : B(X) → [0,+∞]EB of the form

s∞(f)(E) = sup
x∈E

|f(x)| = sup |f |[E]

is a size. It is the classical supremum (or an L∞-based average). This average
takes only the function f and the set E into account and does not depend
on any further external input (e.g. on a measure of basic sets as it is in the
following example).

(b) Standard (discrete) p-mean. For a non-empty finite set X with discrete topol-
ogy we define the mapping s̃ν,p : B(X) → [0,+∞]EB by

s̃ν,p(f)(E) =

⎧
⎪⎨

⎪⎩

(
1

ν(E)

∑

x∈E

|f(x)|p
) 1

p

, if ν(E) 	= 0,

0, if ν(E) ∈ {0,+∞},

with p ∈ R, p > 0. Here ν is an arbitrary measure defined on EB.
(c) Choquet integral. The mapping s

(Ch)
int,m : B(X) → [0,+∞]EB of a Borel-

measurable function f : X → C over a Borel set E ⊆ X given by

s
(Ch)
int,m(f)(E) := (Ch)

∫

E

|f |dm =
∫ ∞

0

m ({x ∈ E ∩ X; |f(x)| ≥ α}) dα,

where m is a monotone measure, is the well-known Choquet integral and it is
a size. The integral on the right-hand side is the improper Riemann integral.
The monotonicity and the scaling property follows from [12, Theorem 7.2]
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and, although, the Choquet integral is not sublinear in general, the following
inequality is always true, see [1, p. 14]

s
(Ch)
int,m(f + g)(E) ≤ 2

(
s
(Ch)
int,m(f)(E) + s

(Ch)
int,m(g)(E)

)
.

Especially, if monotone measure m is submodular, i.e.,

m(E ∪ F ) + m(E ∩ F ) ≤ m(E) + m(F ) for all E,F ∈ EB,

the Choquet integral is sublinear, cf. [10, Theorem 7.7]. Consequently, the
mapping s

(Ch)
int,m is a sublinear size (Cs = 1) whenever m is a submodular

measure.
(d) Shilkret integral. Under the additional conditions on a measure to be

monotone the Shilkret integral defined for a Borel-measurable functions
f : X → C over a Borel set E ⊆ X as

s
(Sh)
int,m(f)(E) := (Sh)

∫

E

|f |dm = sup
α>0

{α · m ({x ∈ A ∩ X; |f(x)| ≥ α})}

is a size. Especially, if monotone measure is maxitive, i.e.,

m(E ∪ F ) = max{m(E),m(F )} for all disjoint sets E,F ∈ EB,

the Shilkret integral is sublinear, cf [11, pp. 112–113] and the mapping s
(Sh)
int,m

is a sublinear size.

New sizes can be generated by an appropriate multiplication. Indeed, the
mapping 1

ν � s
(Ch)
int,m : B(X) → [0,+∞]EB defined by1

(
1
ν

� s
(Ch)
int,m

)

(f)(E) :=
1
ν

(E)(Ch)
∫

E

|f |dm

with ν being an arbitrary measure defined on EB and with the usual convention
“0 · ∞ = 0”, is again a size. Numerous examples of sizes can be found in the
paper [8].

2 Super Level Measures

In the definition of super level measure the so-called outer essential supremum
plays a crucial role2.

1 The mapping 1
ν
: EB → [0, ∞] assigns 0 if ν(E) = +∞, assigns +∞ if ν(E) = 0 and

the value 1
ν(E)

otherwise.
2 By 1F we denote the characteristic function of the set F , i.e., 1F (x) = 1 if x ∈ F
and 1F (x) = 0 otherwise.
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Definition 2. Let X be a topological space. The outer essential supremum of a
function f ∈ B(X) over a set F ∈ EB with respect to a size s and a subcollection
E ⊆ EB is defined by

outsup
F

s(f)〈E〉 := sup
E∈E

s(f1F )(E).

In the previous definition one can consider different subcollections, for exam-
ple, the subcollection of all open balls in R

m (Eball), the subcollection of tents
in the open upper half-plane R × (0,∞) (Etent), etc. For more details see Sub-
sect. 2.2 in [5]. It is obvious that different subcollections can lead to different
outcomes. Usually we omit the indication of subcollection E when it is identified
with EB or when there is no possible confusion. Let us remark that the origi-
nal definition of the outer essential supremum, see [5, Definition 2.4] differs from
ours. Indeed, the authors in [5] consider the subcollection E to be the same as
the domain of size which has some limitations. And, as it was mentioned, the
subcollection E is not linked to the outer measure μ generated by a pre-measure.

Example 2. Let f : X → R, X = {x1, x2} be a function such that f(x1) = 1
and f(x2) = 2. Let us consider the size s̃ν,p with ν being the counting measure,
p = 1 and two subcollections, the subcollection E1 = {{x1}, {x2}} and the
subcollection E2 = {{x1, x2}}. Then the outer essential supremum for each Borel
set F ∈ EB, EB = 2X is summarized in the following table. In the first column
of the table are all possible sets F ∈ EB, in the first raw are sets E necessary for
computing the outer essential supremum on the corresponding subcollections.
The table is then filled by values s̃ν,1(f1F )(E).

As can be seen, different subcollections lead to different outcomes of the outer
essential supremum.

In the following text let us consider a topological space X and a subcollection
E ⊆ EB.

Definition 3. The quantity

μ(s(f)〈E〉 > α) := inf

{

μ(F ) : F ∈ EB, outsup
X\F

s(f)〈E〉 ≤ α

}

, α > 0,
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is called a super level measure of f ∈ B(X) with respect to monotone measure
μ, size s and subcollection E.

In the following we shall use the notation

hμ,s,E,f (α) := μ(s(f)〈E〉 > α).

Example 3. Following the same inputs as in the Example 2 and considering
monotone measure μ being the counting measure, the value of super level mea-
sure with respect to different subcollections is the following

hμ,̃sν,1,E1,f (α) = μ(̃sν,1(f)〈E1〉 > α) = 2 · 1[0,1[(α) + 1 · 1[1,2[(α),
hμ,̃sν,1,E2,f (α) = μ(̃sν,1(f)〈E2〉 > α) = 2 · 1[0,0.5[(α) + 1 · 1[0.5,1.5[(α).

The concept of super level measure is a generalization of the classical level
measure usually denoted by hm,f . Indeed, for each α > 0 we may write

hm,f (α) = m({x ∈ X; |f(x)| > α}) = inf {m(F ) : F ∈ EB, (∀x ∈ X \ F ) |f(x)| ≤ α} .

Modifying the previous formula by outer essential supremum we get the defi-
nition of the super level measure. Now, the connection with the standard con-
cept is more evident. Also, a natural question arises: When does the concept
of super level measure coincide with the standard measure? In what follows,
under μ-ess sup we understand the standard essential supremum associated with
a monotone measure μ.

Proposition 1. Let E ⊆ EB and let s be a size such that

outsup
F

s(f) = μ-ess sup |f1F |, F ∈ EB.

Then μ(s(f)〈E〉 > α) = μ({x ∈ X; |f(x)| > α}). In particular, if outsupF s(f)
〈E〉 = sup |f |[F ] with F ∈ EB, then μ(s(f)〈E〉 > α) = μ({x ∈ X; |f(x)| > α}).

Proof. Let F ∈ EB. If μ-ess sup |f1X\F | ≤ α, then there is B ∈ EB such that
μ(B) = 0 and (X \F )\B ⊆ {x ∈ X; |f(x)| ≤ α}\B, and thus {x ∈ X; |f(x)| >
α} \ B ⊆ F \ B. From monotonicity of μ we then have

μ({x ∈ X; |f(x)| > α}) = μ({x ∈ X; |f(x)| > α} \ B) ≤ μ(F \ B) = μ(F ),

and finally we obtain

μ(s(f)〈E〉 > α) = inf

{

μ(F ) : F ∈ EB, outsup
X\F

s(f)〈E〉 ≤ α

}

= inf
{
μ(F ) : F ∈ EB, μ-ess sup |f1X\F | ≤ α

}

= μ({x ∈ X; |f(x)| > α}).

To prove the particular case, one can consider a measure μ which assigns 1 to
each non-empty set. ��
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The equality outsupF s(f)〈E〉 = sup |f |[F ] is true for example when one takes
s∞ size in the formula of outer essential supremum under the condition that the
set F is covered by sets from E ⊆ EB. If the set F is not covered by sets from the
subcollection, the value of outer essential supremum is 0, while the supremum
of function f on F can be totally different. So, in this particular case the outer
essential supremum coincides with the classical supremum and the super level
measure is just the outer measure of the upper level set.

3 Integration with Respect to Super Level Measures

Naturally, together with the theory of (super level) measure, the concept of
integrals can be introduced. For a subcollection E ⊆ EB, a size s and functions
f ∈ B(X) the analogues of the Choquet and the Shilkret integral, respectively,
are as follows

ICh(μ, s,E, f) :=
∫ ∞

0

μ(s(f)〈E〉 > α) dα,

ISh(μ, s,E, f) := sup
α>0

{
α · μ(s(f)〈E〉 > α)

}
.

From the definition of super level measure immediately follows that the non-
negative real-valued function μ(s(f)〈E〉 > α) is monotone in α (the same is
true for the standard level measure), so the generalized Choquet integral is well
defined and it is a number from [0,+∞]. According to Proposition 1 the classical
Choquet as well as Shilkret integral with respect to a monotone measures are
included in the definitions above. It is enough to take s∞ size or the others for
which the condition of Proposition 1 is true. Immediately, from the properties
of sizes and corresponding super level measures we get the following result.

Proposition 2. Let E ⊆ EB, s be a size and f, g ∈ B(X). Then for each
N ∈ {Ch,Sh} it holds

(i) if |f | ≤ |g|, then IN(μ, s,E, f) ≤ IN(μ, s,E, g);
(ii) for each λ ∈ C we have IN(μ, s,E, λf) = |λ| IN(μ, s,E, f);
(iii) there is a constant Cs,N independent of f, g such that

IN(μ, s,E, f + g) ≤ Cs,N

(
IN(μ, s,E, f) + IN(μ, s,E, g)

)
.

As can be seen, we have introduced only two types of non-additive integrals.
One reason is that they provide a background for defining outer Lp-spaces in
the original paper [5]. A deeper investigation of their properties could be useful
for developing of the theory of Lp-spaces. However, following this pattern we
can also generalize the another types of non-additive integrals. For example, the
well-known Sugeno integral does not satisfy the scalling property, therefore it is
not a size, but there is no barrier to define a generalized form of Sugeno integral
via super level measures as follows

ISu(μ, s,E, f) := sup
α>0

min{α, μ(s(f)〈E〉 > α)}.
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Or, we can generalize the other non-additive integrals, the generalized upper
Sugeno integral [2], the seminormed integral [3,4] (considering restriction to
[0, 1]), etc.

In the following we compare the standard Choquet integral (based on the level
measure) with its modified version defined via super level measure considering
s
(Ch)
int,m size (see Example 1c).

Example 4. Let f : X → R, X = {x1, x2} be a function such that f(x1) = 1 and
f(x2) = 2. Let m : 2X → [0,+∞) be a monotone measure (capacity) defined by
m(∅) = 0, m({x1}) = 0.4, m({x2}) = 0.6 and m({x1, x2}) = 1.

Then the classical level measure takes the form

hm,f (α) = 1 · 1[0,1[(α) + 0.6 · 1[1,2[(α).

The standard Choquet integral defined via level measure takes the value 1.6,

i.e. (Ch)
∫

f dm =
∞∫

0

hm,f (α) dα = 1.6.

On the other hand, the modified Choquet integral takes different values. Let
ν1 be the counting measure, ν2 be the measure defined as ν2(∅) = 0, ν2({x1}) =
0.5, ν2({x2}) = 0.5 and ν2({x1, x2}) = 1. For the subcollection E = 2X we get
the following values of outer essential supremum on the corresponding set F

F ∅ {x1} {x2} {x1, x2}
outsup

F

1
ν1

� s
(Ch)
int,m(f) 0 0.4 1.2 1.6

outsup
F

1
ν2

� s
(Ch)
int,m(f) 0 0.8 2.4 2.4

and the corresponding super level measure takes the form

h
m, 1

ν1
�s

(Ch)
int,m,f

(α) = 1 · 1[0,0.4[(α) + 0.6 · 1[0.4,1.2[(α) + 0.4 · 1[1.2,1.6[(α),

h
m, 1

ν2
�s

(Ch)
int,m,f

(α) = 1 · 1[0,0.8[(α) + 0.6 · 1[0.8,2.4[(α).

Consequently,

ICh

(

m,
1
ν1

� s
(Ch)
int,m, 2X , f

)

= 1.04, ICh

(

m,
1
ν2

� s
(Ch)
int,m, 2X , f

)

= 2.24.

The previous Example demonstrates that the approach via super level mea-
sures provides results different from the standard approach. Moreover, using
different sizes in the definition of super level measure we can get higher as well
as lower values of modified integral in comparison with the standard approach.

Acknowledgements. The author kindly acknowledges the support of the grant
VVGS-2016-255, and thanks the co-authors of the paper [8] who collaborated on this
research.
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Abstract. In this contribution we discus the problem of monotonicity
of intervals in the ordinal sums of fuzzy implication constructions. As a
result, new ways of constructing of ordinal sums of fuzzy implications are
obtained. These methods allow to adapt the value of fuzzy implication
to specific requirements. For our new methods of construction, several
sufficient properties for obtaining a fuzzy implication as a result are
presented. Moreover, preservation of some properties of the ordinal sums
are examined. Among others neutrality property, identity property, and
ordering property are considered.

1 Introduction

Fuzzy implications find applications in many fields such as fuzzy control, approx-
imate reasoning, and decision support systems. This is why new families of these
connectives are the subject of investigation. One of the directions of such research
is considering an ordinal sum of fuzzy implications on the pattern of the ordi-
nal sum of t-norms. Some interesting results connected to representation of the
residual implication corresponding to a fuzzy conjunction (for example continu-
ous or at least left-continuous t-norms) given by an ordinal sum were obtained
in [2,9,14] (see also [13]). In [15] Su et al. introduced a concept of ordinal sum
of fuzzy implications similar to the construction of the ordinal sum of t-norms.
In [6–8] other constructions of ordinal sums of fuzzy implications were described.

In this paper, some problems connected with the monotonicity are discussed
and consequently new possibilities of defining ordinal sums of fuzzy implications
are proposed. In previously known constructions, if arguments belong to the
interval [ak, bk], then values also belong to this interval. This means, that values
are increasing with respect to index set. Now we change this situation. Moreover,
we can change the length of the set of values of implication on given interval.
The first construction generates a fuzzy implication without any additional
c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 20
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assumptions on summands. In the other one sufficient properties for obtaining
a fuzzy implication are presented.

In Sect. 2 some basic information about fuzzy connectives, in particular tri-
angular norms and fuzzy implications, including their ordinal sum are presented.
In Sect. 3 the construction of ordinal sums of fuzzy implications and properties
of these methods are examined.

2 Preliminaries

Here we recall the notions of a t-norm and a fuzzy implication, as well as some
of the constructions of ordinal sums of these fuzzy connectives.

2.1 Triangular Norms

Firstly, we put the definition of a t-norm and some important class of t-norms
with several examples of these operations.

Definition 1 [12]. A t-norm is an increasing, commutative and associative oper-
ation T : [0, 1]2 → [0, 1] with a neutral element 1.

Example 1 [12, p. 4], [10, p. 7]. Here, we list well-known t-norms.

TM(x, y) = min(x, y), minimum t-norm,
TP(x, y) = xy, product t-norm,

TLK(x, y) = max(x + y − 1, 0), �Lukasiewicz t-norm,

TD(x, y) =

⎧
⎪⎨

⎪⎩

x, if y = 1,

y, if x = 1,

0, otherwise,
drastic t-norm,

TnM(x, y) =

{
0, if x + y ≤ 1,

min(x, y), otherwise,
nilpotent minimum t-norm.

Next, let us recall the generalized Ordinal Sum Theorem for t-norms [11,
Corollary 2].

Theorem 1 (cf. [5,11,12]). Let {[ak, bk]}k∈A be a countable family of nonover-
lapping, closed, proper subintervals of [0, 1], where A is a finite or infinite index
set. Let T be an operation in [0, 1] defined by

T (x, y) =

{
ak + (bk − ak)Tk

(
x−ak

bk−ak
, y−ak

bk−ak

)
, if (x, y) ∈ (ak, bk]2,

min(x, y), otherwise,
(1)

where for each k the binary operation Tk : [0, 1]2 → [0, 1] is associative, com-
mutative increasing such that Tk ≤ min, i.e., Tk is a t-subnorm. Moreover, if
bk = al for some l, k and Tl is with a zero divisor, then Tk has a neutral element
e = 1. We also assume that if bk = 1 for some k, then the operation Tk has a
neutral element e = 1. Then the operation T is a t-norm.



Monotonicity in the Construction of Ordinal Sums of Fuzzy Implications 191

Definition 2. T-norm T defined as in Theorem 1 in Eq. (1) is called an ordinal
sum of {([ai, bi], Ti)}i∈A and each Ti is called a summand.

For the general structure of such ordinal sum of t-norms see Fig. 1.

0 1

1

bk

bk

ai

ai

bi

bi = ak

Ti

Tk

a j

a j

b j

b j

Tjmin

Fig. 1. The structure of an ordinal sum of t-norms given by (1).

2.2 Fuzzy Implications

Now, we focus on the class of fuzzy implications.

Definition 3 [1,10]. A function I : [0, 1]2 → [0, 1] is called a fuzzy implication
if it satisfies the following conditions

(I1) I is non-increasing with respect to the first variable,
(I2) I is non-decreasing with respect to the second variable,
(I3) I(0, 0) = 1,
(I4) I(1, 1) = 1,
(I5) I(1, 0) = 0.

Directly from the above definition we obtain as follows.

Corollary 1. A fuzzy implication has a right zero element 1 and fulfils the
condition

I(0, y) = 1, x, y ∈ [0, 1].

There are other properties the fuzzy implication may also have. Some of them
are listed below. The property (CB), i.e., the boundary condition plays a spacial
role in the sequel.

Definition 4 (cf. [1, p. 9], [3,4]). We say that a fuzzy implication I fulfils:

• the neutrality property (NP), if

I(1, y) = y, y ∈ [0, 1], (NP)
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• the identity principle (IP), if

I(x, x) = 1, x ∈ [0, 1], (IP)

• the ordering property (OP), if

I(x, y) = 1 ⇔ x ≤ y, x, y ∈ [0, 1], (OP)

• the property (CB), if

I(x, y) ≥ y, x, y ∈ [0, 1], (CB)

• the left ordering property (LOP), if

x ≤ y ⇒ I(x, y) = 1, x, y ∈ [0, 1], (LOP)

• the right ordering property (ROP), if

I(x, y) = 1 ⇒ x ≤ y, x, y ∈ [0, 1], (ROP)

• the strong boundary condition (SBC), if

x �= 0 ⇒ I(x, 0) = 0, x, y ∈ [0, 1], (SBC)

• the strong corner condition for 0 (SCC0), if

I(x, y) = 0 ⇒ x = 1 ∧ y = 0, x, y ∈ [0, 1], (SCC0)

• the strong corner condition for 1 (SCC1), if

I(x, y) = 1 ⇒ x = 0 ∨ y = 1, x, y ∈ [0, 1]. (SCC1)

Remark 1. Let us notice that the property (CB) is equivalent to the following one

I(1, y) ≥ y, x, y ∈ [0, 1]. (CB’)

Moreover, if a fuzzy implication satisfies (NP), then it satisfies (CB).

Example 2 (see [1]). Let us present the following family of fuzzy implications for
α ∈ [0, 1]

Iα(x, y) =

⎧
⎪⎨

⎪⎩

0, if x = 1, y = 0,

1, if x = 0 or y = 1,

α otherwise.

The operations I0 and I1 are the least and the greatest fuzzy implication, respec-
tively, where

I0(x, y) =

{
1, if x = 0 or y = 1,

0, otherwise,

I1(x, y) =

{
0, if x = 1, y = 0,

1, otherwise.
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The following are other examples of classical fuzzy implications.

ILK(x, y) = min(1 − x + y, 1), �Lukasiewicz implication,

IGD(x, y) =

{
1, if x ≤ y,

y, otherwise,
Gödel implication,

IRC(x, y) = 1 − x + xy, Reichenbach implication,

IDN(x, y) = max(1 − x, y), Dienes implication,

IGG(x, y) =

{
1, if x ≤ y,
y
x , otherwise,

Goguen implication,

IRS(x, y) =

{
1, if x ≤ y,

0, otherwise,
Rescher implication,

IYG(x, y) =

{
1, if x = y = 0,

yx, otherwise,
Yager implication,

IFD(x, y) =

{
1, if x ≤ y,

max(1 − x, y), otherwise,
Fodor implication,

IWB(x, y) =

{
1, if x < 1,

y, otherwise,
Weber implication

IDP(x, y) =

⎧
⎪⎨

⎪⎩

y, if x = 1,

1 − x, if y = 0,

1 otherwise,
Dubois-Prade implication.

Except for Iα for α ∈ [0, 1) and IRS, the fuzzy implications from this example
fulfil property (CB).

3 Main Results

At the beginning we recall one of the construction of ordinal sum of fuzzy
implication.

Definition 5 [15]. Let {Ik}k∈A be a family of implications and {[ak, bk]}k∈A be
a family of pairwise disjoint closed subintervals of [0, 1] with 0 < ak < bk for all
k ∈ A , where A is a finite or infinite index set. The mapping I : [0, 1]2 → [0, 1]
given by

I(x, y) =

{
ak + (bk − ak)Ik

(
x−ak

bk−ak
, y−ak

bk−ak

)
, if x, y ∈ [ak, bk],

IRS(x, y), otherwise,
(2)

we call ordinal sum of fuzzy implications {Ik}k∈A .
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0 1

1

ai

ai

bi

bi

Ii

a j

a j

b j

b j

I j1

0

Fig. 2. The structure of an ordinal sum of fuzzy implications given by (2).

For the general structure of the above ordinal sum of fuzzy implications see
Fig. 2.

Theorem 2 [15]. Let {Ik}k∈A be a family of implications. Then ordinal sum of
implication given by (2) is a fuzzy implication.

In this construction order in the set A is closely related to order between
members of the family of the intervals {[ak, bk]}k∈A . Moreover, values for these
intervals are ordered in the same manner. The following example shows that it
is not necessary.

Example 3. Let us consider an operation given by

I(x, y) =

⎧
⎪⎨

⎪⎩

1, if x ≤ y,

0.5, if x > y and (x, y ∈ [0.2, 0.4] or x, y ∈ [0.6, 0.8]),
0, otherwise.

For the plot of this function see Fig. 3. To show relationships of the above impli-
cation of the construction of ordinal sum of fuzzy implication we will write our
implication in another form

I(x, y) =

⎧
⎪⎨

⎪⎩

0.5 + 0.5IRS

(
x−0.2
0.2 , y−0.2

0.2

)
, if x, y ∈ [0.2, 0.4],

0.5 + 0.5IRS

(
x−0.6
0.2 , y−0.6

0.2

)
, if x, y ∈ [0.6, 0.8],

IRS , otherwise.

As a generalization of the example above, we present the general construction.

Definition 6. Let {Ik}k∈A be a family of fuzzy implications and {[ak, bk]}k∈A

be a family of pairwise disjoint subintervals of (0, 1), with ak < bk for all k ∈ A ,
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Fig. 3. The structure of fuzzy implication given in Example 3.

where A is a finite or countably infinite index set. Moreover, let {[ck, dk]}k∈A

be a family of subintervals of [0, 1], with ck ≤ dk for all k ∈ A . Let us define an
operation I : [0, 1]2 → [0, 1] by the following formula:

I(x, y) =

{
ck + (dk − ck)Ik

(
x−ak

bk−ak
, y−ak

bk−ak

)
, if x, y ∈ [ak, bk],

IRS(x, y), otherwise.
(3)

For the general structure of the above ordinal sum of fuzzy implications see
Fig. 4.

0 1

1

ai

ai

bi

bi

Ii

a j

a j

b j

b j

I j1

0

Fig. 4. The structure of a fuzzy implication given by (3).

Theorem 3. Let {Ik}k∈A be a family of implications. Then the operation I
given by (3) is a fuzzy implication.
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Proof. Firstly, we consider the condition (I1). Let x1, x2, y ∈ [0, 1] such that
x1 < x2. If y ∈ [ak, bk] for some k ∈ A , then we consider the following cases:

1. bk < x2. Then I(x1, y) ≥ 0 = IRS(x2, y) = I(x2, y).
2. x1 < ak. Then I(x1, y) = IRS(x1, y) = 1 ≥ I(x2, y).
3. ak ≤ x1 < x2 ≤ bk. Then using monotonicity of Ik we have

I(x1, y) = ck + (dk − ck)Ik

(
x1 − ak

bk − ak
,

y − ak

bk − ak

)

≥ ck + (dk − ck)Ik

(
x2 − ak

bk − ak
,

y − ak

bk − ak

)

= I(x2, y).

If y /∈ [ak, bk] for all k ∈ A , then I(x1, y) = IRS(x1, y) ≥ IRS(x2, y) = I(x2, y).
So, I satisfies (I1).

Next, let us consider the condition (I2). Let x, y1, y2 ∈ [0, 1], y1 < y2. If
x ∈ [ak, bk] for some k ∈ A , then we consider the following cases:

1. bk < y2. Then I(x, y1) ≤ 1 = IRS(x, y2) = I(x, y2).
2. y1 < ak. Then I(x, y1) = IRS(x, y1) = 0 ≤ I(x, y2).
3. ak ≤ y1 < y2 ≤ bk. Then using monotonicity of Ik we have

I(x, y1) = ck + (dk − ck)Ik

(
x − ak

bk − ak
,
y1 − ak

bk − ak

)

≤ ck + (dk − ck)Ik

(
x − ak

bk − ak
,
y2 − ak

bk − ak

)

= I(x, y2).

If x /∈ [ak, bk] for all k ∈ A , then I(x, y1) = IRS(x, y1) ≤ IRS(x, y2) = I(x, y2).
So, I satisfies also (I2).

Directly from (3) we have I(0, 0) = IRS(0, 0) = 1 and I(1, 1) = IRS(1, 1) = 1,
I(1, 0) = IRS(1, 0) = 0. So I fulfils (I3), (I4) and (I5).

We have also the following result for which the proof we omit.

Theorem 4. Let {Ik}k∈A be a family of fuzzy implications and operation I be
given by (3).

(i) I does not satisfy (NP).
(ii) I satisfies (IP) if and only if for all k ∈ A dk = 1 and Ik satisfies (IP).
(iii) I satisfies (LOP) ((ROP), (OP), respectively) if and only if for all k ∈ A

dk = 1 and Ik satisfies (LOP) ((ROP), (OP), respectively).
(iv) I does not satisfy (CB).
(v) I satisfies (SBC).
(vi) I does not satisfy (SCC0) and (SCC1).

In this paper we propose yet another method of generating fuzzy implications
by the use of an ordinal sum of fuzzy implications.
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Fig. 5. The structure of a fuzzy implication given by (4).

Definition 7. Let {Ik}k∈A be a family of fuzzy implications and {[ak, bk]}k∈A

be a family of pairwise disjoint subintervals of (0, 1), with ak < bk for all k ∈ A ,
where A is a finite or countably infinite index set. Moreover, let {[ck, dk]}k∈A

be a family of subintervals of [0, 1], with ck ≤ dk for all k ∈ A . Let us define an
operation I : [0, 1]2 → [0, 1] by the following formula:

I(x, y) =

{
ck + (dk − ck)Ik

(
x−ak

bk−ak
, y−ak

bk−ak

)
, if x, y ∈ [ak, bk],

IGD(x, y), otherwise.
(4)

For the general structure of the above ordinal sum of fuzzy implications see
Fig. 5.

Directly from (4) we have the following fact.

Theorem 5. Let {Ik}k∈A be a family of implications. The operation I given by
(4) fulfils (I3), (I4) and (I5).

Theorem 6. Let {Ik}k∈A be a family of implications. If for all k ∈ A we have
ck ≥ bk, then the operation I given by (4) is a fuzzy implication.

Theorem 7. Let {Ik}k∈A be a family of fuzzy implications and the operation I
given by (4) be a fuzzy implication.

(i) I satisfies (NP).
(ii) I satisfies (IP) if and only if for all k ∈ A dk = 1 and Ik satisfies IP.
(iii) I satisfies (LOP) ((ROP), (OP), respectively) if and only if for all k ∈ A

dk = 1 and Ik satisfies (LOP) ((ROP), (OP), respectively).
(iv) I satisfies (CB).
(v) I satisfies (SBC).
(vi) I does not satisfy (SCC0) and (SCC1).
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4 Conclusions

In this paper two methods of constructing ordinal sums of fuzzy implications are
presented. Sufficient properties of summands for obtaining a fuzzy implication
as a result are examined. Basic properties of thus obtained implications have
been examined. It seems useful to examine other properties of the component of
introduced ordinal sums which can be preserved by the ordinal sums.
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Abstract. Non-additive measures generalize additive measures, and
have been utilized in several applications. They are used to represent
different types of uncertainty and also to represent importance in data
aggregation. As non-additive measures are set functions, the number of
values to be considered grows exponentially. This makes difficult their
definition but also their interpretation and understanding. In order to
support understability, this paper explores the topic of visualizing dis-
crete non-additive measures using node-link diagram representations.

1 Introduction

Non-additive measures are monotonic set functions. They generalize additive
measures as e.g. probabilities and the Lebesgue measure. Several names are used
to represent this concept; they are also called fuzzy measures (name introduced
by Sugeno in 1972 [18,19]), capacities (see e.g. Choquet’s seminal work [7]) and
monotonic games (see e.g. [24]).

Non-additive measures can be used for representing uncertainty. In this case,
several families of measures have been defined, see e.g. probabilities, belief and
plausibility, as well as possibility and necessity. It is usual to use functions to
combine and aggregate these uncertainty measures. For instance, the Demspter-
Shafer rule of combination is used for belief measures.

Non-additive measures are also used to represent importance or relevance
of information sources in data aggregation [5,11,23]. This is the case when we
use the Choquet [7] and the Sugeno integral [19]. These integrals aggregate a
set of values proceeding from a set of information sources taking into account
the relevance of the sources. Non-additive measures are used to represent our
background knowledge on this relevance of the sources. The measures permit us
to have more flexibility than the one offered by additive measures. They do not
longer require that the measure of a set is the addition of the measure of its
components. This permits to represent positive and negative interaction of the
elements. That is, we can have for two disjoint sets A and B (i.e., A ∩ B = ∅)
that either μ(A∪B) > μ(A)+μ(B), μ(A∪B) < μ(A)+μ(B) or just μ(A∪B) =
μ(A) + μ(B) as it is the case for probabilities.

This additional flexibility is at the cost of a more complex definition. As
non-additive measures do not satisfy the additivity axiom, we need to supply
c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 21
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values for each subset of the reference set. Being a set function, this means that
we need to supply O(2n) where n is the number of elements of the reference set.

In order to help in the definition of these measures, a few families of mea-
sures have been defined with reduced complexity. This is the case of Sugeno
λ-measures [19], ⊥-decomposable fuzzy measures, hierarchically decomposable
fuzzy measures [22], distorted and m-dimensional distorted probabilities [14],
k-additive measures [10]. There have also been approaches to learn these mea-
sures from data. This is the case of e.g. [1,16].

Due to the number of parameters needed to define these measures, it is also
difficult to understand what exactly represents a fuzzy measure. For this purpose,
several (mathematical) indices can be used. The Shapley [17] and Banzhaf [3]
indices are two of them.

In this paper we propose and explore an alternative way to understand these
type of measures using graphical representations of the measures. As we will
discuss later, our proposal is based on graph visualizations, in particular, node-
link diagram representations.

Node-link diagrams [4,13,20] (see e.g. Fig. 1) are widely used to draw rela-
tionships between elements in a model. They are used in social networks, process
models, and on hierarchical structures [6]. This type of graphs depict a collec-
tion of elements (vertices or nodes) and a set of relations between them (edges).
Edges may indicate a weight (such as the strength of the relationship), as well
as the direction of the relationship between the nodes. It is easier to read and
understand node-link diagrams when the underlying relations are simple and
sparse [8], however, they are less preferred with many overlapping links, that
can generate occlusion problems [4]. The interpretation of the nodes’ and links’
depends on the application. In fact, one prior user study depicting multivari-
ate data sets [2] gave weights to the links with selected visual cues to better

Fig. 1. Visualization of Example 1 where the difference between measures are repre-
sented by means of thickness.
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understand the relationships’ strength. Using similar principles, in this paper we
propose the use of brightness and width to better understand and emphasize the
relationships of discrete non-additive measures.

The problem of visualizing non-additive measures have also been considered
by Murofushi’s lab [15,21,25]. They have also used graphs to represent fuzzy
measures (Hasse diagrams). As we do here, nodes represent subsets A ⊆ X.
Then, [15] locates the nodes in the picture taking into account the measure of
the sets. In [15] they use a combinatorial optimization problem with exhaustive
search to determine the position of the nodes in the picture. In [25] they use a
branch and bound algorithm for the same purpose. Their approach is different
to our approach here where measures are represented by brightness and width
of the edges.

The structure of the paper is as follows. In Sect. 2 we review some basic
definitions that we need in this paper. Section 3 introduces our approach for
visualizing the measures and Sect. 4 provides visualization examples. The paper
finishes with a summary and lines for future work.

2 Preliminaries

In this section we review the definition of non-additive measures. We also give
the definition of the Choquet integral, one of the tools used to aggregate data
from a set of information sources with respect to the non-additive measure.

Definition 1. A non-additive (or fuzzy) measure μ on a set X is a set function
μ : ℘(X) → [0, 1] satisfying the following axioms:

(i) μ(∅) = 0, μ(X) = 1 (boundary conditions)
(ii) A ⊆ B implies μ(A) ≤ μ(B) (monotonicity)

Here, ℘(X) represents the power set of X.
Note that in this definition the additivity axiom μ(A∪B) = μ(A)+μ(B) for

A ∩ B = ∅ is replaced by the monotonicity condition.
Given a set of information sources X (e.g., sensors or experts) we can rep-

resent the value supplied by each information source x in X by f(x). Then, μ
represents the importance of the sets A ⊆ X. That is, μ represents the impor-
tance of a set A of information sources.

When the additivity takes place, we have that the importance of a set
corresponds to the addition of the importance of its terms. That is μ(A) =∑

x∈A μ({x}). As this is no longer a requirement we may represent positive
interactions between elements and negative interactions. Note that we have a
positive interaction between A and B (with A ∩ B = ∅) when

μ(A ∪ B) > μ(A) + μ(B)

and that we have a negative interaction when

μ(A ∪ B) < μ(A) + μ(B).
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A well known example of a non-additive measure is the one introduced in [9].
This example is about the evaluation of students of a high school in terms of their
ratings in three subjects: mathematics, physics, and literature. The importance
of these subjects is expressed by means of a measure. We revise this example
below as we will use it for illustration in this paper. The formulation follows [23].

Example 1. The director of a high school has to evaluate the students according
to their level in mathematics (M), physics (P ), and literature (L). The evaluation
consists of obtaining a final rating as an average of the ratings of the three
subjects. For each student, the final rating depends on the importance given to
the subjects. To settle these importances, a non-additive measure is used. Here,
X is the set of all subjects (i.e., X = {M,P,L}), and μ(A) is the importance
of a particular set of subjects A. The definition of the measure considers the
following elements.

1. Boundary conditions:
μ(∅) = 0, μ({M,P,L}) = 1
The importance of the empty set is 0. The set consisting of all objects has
maximum importance.

2. Relative importance of scientific versus literary subjects:
μ({M}) = μ({P}) = 0.45, μ({L}) = 0.3
The importance of mathematics and physics is greater than the importance
of literature.

3. Redundancy between mathematics and physics:
μ({M,P}) = 0.5 < μ({M}) + μ({P})
Mathematics and physics are similar subjects. The importance of the set
containing both should not be larger than their addition.

4. Support between literature and scientific subjects:
μ({M,L}) = μ({P,L}) = 0.9 > μ({P}) + μ({L}) = 0.45 + 0.3 = 0.75
μ({M,L}) = μ({P,L}) = 0.9 > μ({M}) + μ({L}) = 0.45 + 0.3 = 0.75
Mathematics and literature are complementary subjects.

An outline of this fuzzy measure is given in Table 1.

In this example we have seen that mathematics and literature have positive
interaction while mathematics and physics have negative interaction. One of the
ways to observe the positive interaction is by means of the Möbius transform.

The Möbius transform of a non-additive measure on X is a set function
that assigns to each subset of X a value (either positive or negative). For each

Table 1. Non-additive measure of Example 1 based on [9].

µ(∅) = 0 µ({M,L}) = 0.9

µ({M}) = 0.45 µ({P,L}) = 0.9

µ({P}) = 0.45 µ({M,P}) = 0.5

µ({L}) = 0.3 µ({M,P,L}) = 1
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Table 2. Möbius transform of the measure given in Example 1 and summarized in
Table 1.

m(∅) = 0 m({M,L}) = 0.15

m({M}) = 0.45 m({P,L}) = 0.15

m({P}) = 0.45 m({M,P}) = −0.4

m({L}) = 0.3 m({M,P,L}) = −0.1

non-additive measure there is a unique Möbius transform, and for each Möbius
transform there is a unique measure. Formally, a Möbius transform is a function
m : ℘(X) → R such that m(∅) = 0,

∑
A⊆X m(A) = 1, and, if A ⊂ B, then∑

C⊆A m(C) ≤ ∑
C⊆B m(C). The following definition explains how to build the

Möbius transform from a measure.

Definition 2. Let μ be a fuzzy measure; then, its Möbius transform m is
defined as

mµ(A) :=
∑

B⊆A

(−1)|A|−|B|μ(B) (1)

for all A ⊂ X.

Note that the function m is not restricted to the [0, 1] interval.
Given a function m that is a Möbius transform, we can reconstruct the orig-

inal measure as follows:
μ(A) =

∑

B⊆A

m(B)

for all A ⊆ X.
Table 2 gives the Möbius transform of the measure in Example 1 and outlined

in Table 1.
Given an assignment f : X → R (that assigns a value to each information

source), and a non-additive measure μ we can aggregate the values f(x) for
x ∈ X by means of a Choquet integral. In Example 1 this means that given a
student and three marks one for mathematics, another for physics and a third
for literature, we can average them and obtain an aggregated value taking into
account the importances of these subjects according to the measure μ. For illus-
tration, we give the definition of the Choquet integral below.

Definition 3. Let μ be a non-additive measure on X = {x1, . . . , xN}; then, the
Choquet integral of a function f : X → R

+ with respect to the fuzzy measure μ
is defined by

(C)
∫

fdμ =
N∑

i=1

[f(xs(i)) − f(xs(i−1))]μ(As(i)), (2)

where f(xs(i)) indicates that the indices have been permuted so that 0 ≤
f(xs(1)) ≤ · · · ≤ f(xs(N)) ≤ 1, and where f(xs(0)) = 0 and As(i) =
{xs(i), . . . , xs(N)}.
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An important property of the Choquet integral is that when the measure
is additive it corresponds to the Lebesgue integral. In other words, when the
measure is a probability, the Choquet integral corresponds to the weighted mean
of the values (where the weights corresponds to the probabilities).

3 Our Approach

In order to visualize graphically a non-additive measure, we first build a graph
from the measure, and then we use node-link diagrams to depict the graph. It
is well known that a graph consists of nodes or vertices – basic elements–, and
edges – relationships between these elements–. That is, a graph G is defined by
the pair G = (V,E) where V is the set of vertices and E ⊂ V × V is the set
of edges. In our case, we consider labeled graphs where both vertices and edges
have a label. So, in addition to V and E we have also two label functions lV
and lE .

The construction of a graph for a non-additive measure μ on the reference
set X is as follows.

• Define the set of vertices as the subsets of X excluding the empty set. That
is, V = ℘(X) \ ∅.

• Define the set of edges in terms of set inclusion on ℘(X) between sets that
only differ in one element. That is,

E = ∪a⊂X,c/∈a{(a, a ∪ c)}.

• Assign to each vertex the Möbius transform of the corresponding set. That
is, lV (A) = m(A).

• Assign to each edge (a, b) the difference between the measure on the largest
set and the measure on the smallest set. That is, for (a, b) with a ⊂ b define
lE((a, b)) = μ(b) − μ(a).

Then, we depict this graph using a node-link diagram, that is, we represent
each vertex (i.e., the corresponding subset of X and its Möbius transform) and
the edges (i.e., the difference between the values of the non-additive measures
lE((a, b))). We have considered two graphical representations for lE . In one case
this information is depicted by brightness. The values of brightness range from
0.0 to 0.9, where the value 0.0 represents the biggest difference (darker blue),
and 0.9 the smallest difference (brighter blue). Then, we transform the difference
between values (say d) into brightness using 1 − d. In the other case, we use the
thickness of the link between the nodes for depicting lE .

To illustrate this construction, we consider the non-additive measure in
Example 1. The graph contains 7 nodes corresponding to the subsets of X =
{M,L,P}. That is,

V = {{M}, {P}, {L}, {M,L}, {M,P}, {P,L}, {M,P,L}}.
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Table 3. Labelling function for the graph constructed for Example 1 and summarized
in Table 1.

(M,ML) = 0.45 (L,PL) = 0.60

(M,MP ) = 0.05 (ML,MPL) = 0.1

(P, PL) = 0.45 (PL,MPL) = 0.1

(P,MP ) = 0.05 (MP,MPL) = 0.5

(L,ML) = 0.60

Edges will be defined for (M,ML), (M,MP ), (P, PL), (P,MP ), (L,PL),
(L,MPL), (MP,MPL), (PL,MPL), (ML,MPL). Then, lV is defined for each
node according to Table 2. Finally, lE is defined according to Table 3. As an exam-
ple, we give the computation of lE((M,ML)) and lE((M,MP )). We use MP to
represent the set {M,L}.

lE((M,ML)) = μ(ML) − μ(M) = 0.9 − 0.45 = 0.45

lE((M,MP )) = μ(MP ) − μ(M) = 0.5 − 0.45 = 0.05

Figures 1 and 2 represent this graph. Figure 2 corresponds to the case of using
brightness. For instance, lE of the edge (L,PL) is 0.60 and thus a high value
(therefore, it is depicted by a dark edge), while the lE of the edge (PL,MPL) is
0.1 (therefore, it is shown with a brighter edge). The default value of the edge’s
width was 0.43px and hue valued 240 from the HSB model. So, the visualization
shows with dark arrows when the measure increase is significant. We can also
see that the measure of {M,P} is not changed much with respect to the one of
{M} and {P} (all inputs have arrows with light colours) and this causes that
the Möbius transformation is negative. In contrast, {M,L} and {P,L} receive
two dark arrows and the Möbius is positive.

Fig. 2. Visualization of Example 1 where the difference between measures are repre-
sented by means of brightness. (Color figure online)
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Figure 1 corresponds to the use of thickness to represent the difference
between measures. However, it may be perceptually challenging to differentiate
between edges with similar thickness values. Thus, we suggest to utilize bright-
ness to encode differences between measures in the next section. Brightness, as
well as hue and width, has been used previously for encoding correlation degree
in graphs, see e.g. [12].

4 Examples of Visualizations

In this section we present the visualization of another measure that contains five
elements, and thus, more relationships. It is a hierarchically decomposable fuzzy
measure (see [22] for details) that is based on the structure represented in Fig. 3.

T

Sa

SbSb

P M L G

Fig. 3. Graphical representation of a hierarchical decomposable fuzzy measure on the
reference set {T,M,P, L,G}. The reference set contains two subjects for humanities
(literature and classical greek) and three scientific subjects (topology, mathematics and
physics).

The measure is similar to the one of Example 1, but the reference set includes
five subjects instead of three. There are three scientific subjects: mathematics
(M), physics (P ) and topology (T – in fact, in the original example this is
mathematical logics but we use T here for convenience), and two humanistic
subjects: literature (L) and greek (G). The measure has some similarities to
Example 1 as scientific subjects have more weight than humanistic ones, and
interactions between scientific and humanistic are positive while interactions
between scientific subjects, and interactions between humanistic are negative.

In this sense note that the Möbius transform can be misleading as
m({T, P,M}) = 0.35 but μ({T, P,M}) = 0.50 with μ({T, P}) = μ({T,M}) =
μ({P,M}) = 0.47.

Two visualizations of this measure are given in Fig. 4. Both describe the
information by means of the brightness of the colour. One uses standard arrows
and the other uses tapered arrows. In this case, the nodes contain the value of
the measure for the set (instead of the Möbius transform). Again, we can see the
most significant changes.

Figure 5 gives another representation of the measure. In this case, only the
edges with a significant difference between measures are shown (i.e., a difference
larger than 0.1). The nodes include the Möbius transform. The brightness of
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Fig. 4. Visualization of the hierarchical decomposable fuzzy measure. (Color figure
online)
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Fig. 5. Visualization of the hierarchical decomposable fuzzy measure. (Color figure
online)

the edges is in relation to the difference. Finally, for each edge we have a label
corresponding to the element that we are adding. That is, in the edge between
{T, P,M} and {T, P,M,G} we have the label G.

5 Future Work

In this paper we have suggested and explored the visualization of non-additive
measures using node-link diagrams. Future work will focus on evaluating the ini-
tiatives presented here with users, as well as developing alternative ways for visu-
alizing discrete non-additive measures including, e.g., other indices. For instance,
the size of the nodes could encode the Möbius transformation. Moreover, we plan
to look at measures on larger sets, and use other tools to build the visualizations,
exploring, for example, the use of hypergraphs. We will also explore visualiza-
tion tools for measures on larger sets, and see if our approach scales well or
alternative tools are needed.
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NOVA 20140294 projects, supported by the Swedish Knowledge Foundation.
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and Enrique Herrera-Viedma1

1 Department of Computer Science and Artificial Intelligence,
University of Granada, Granada, Spain
{cabrerizo,viedma}@decsai.ugr.es

2 Universidad Internacional de La Rioja (UNIR), Logroño, Spain
juan.morente@unir.net

3 Department of Software Engineering, University of Granada, Granada, Spain
zerjioi@ugr.es

4 Department of Computer Science and Engineering,
University of Cádiz, Cádiz, Spain

{ignaciojavier.perez,raquel.urena}@uca.es

Abstract. A Group decision making process is carried out when human
beings jointly make an election from a possible collection of alternatives.
Here, a question of importance is to avoid winners and losers, in the sense
that the choice is not any more attributable to any single individual,
but all group members contribute to the decision. For this reason, the
agreement or consensus achieved among all the individuals should be as
high as possible. In this contribution, a feedback mechanism is presented
in order to increase the consensus achieved among the decision makers
involved in this kind of problems. It is based on granular computing,
which is utilized here to provide the necessary flexibility to increase the
consensus. The feedback mechanism is able to deal with heterogeneous
contexts, that is, contexts in which the decision makers have importance
degrees considering their capacity or talent to handle the problem.

Keywords: Group decision making · Consensus · Feedback mecha-
nism · Granular computing · Heterogeneous contexts

1 Introduction

A group decision making problem (GDM) consists of more than one deci-
sion maker interacting to make a decision. In particular, this situation is
defined as that one in which a group of decision makers, E = {e1, e2, . . . , em}
(m ≥ 2), give their assessments about a collection of possible alternatives,
X = {x1, x2, . . . , xn} (n ≥ 2), by means of a particular preference structure.
The decision makers aim to reach a common solution by ranking the alterna-
tives from best to worst [7,11,20]. If the decision process is defined in a fuzzy
c© Springer International Publishing AG 2018
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environment, some degrees of preferences given in the unit interval are associated
with the alternatives.

To solve this kind of decision problems, different questions have to be
considered:

– To model the evaluations expressed by the decision makers, various represen-
tation structures have been used in this research field [5,6]. Among them, the
most common one, caused by its efficiency in modeling decision process, is
the preference relation because the attempt to perform pairwise evaluations
is more reasonable contrasted with any experimental overhead required when
giving membership grades to all possible alternatives in an only one stage.
This means the decision maker must assess each alternative against all the
others as a whole, and it is not an easy job. In particular, researchers have
widely used the fuzzy preference relations [27,33] as they have useful prop-
erties to operate with them without trouble and also provide an expressive
preference representation [5,16].

– In most of the approaches, the opinions provided by the decision makers
are considered equally important. However, decision makers usually possess
distinct understanding levels and background about the problem at hand. To
tackle the different importance levels among the decision makers, a weight
value is assigned to each decision maker. This weight value is usually utilized
in the aggregation phase to model this heterogeneity [28,38].

– In order to obtain an adequate level of agreement among the assessments
conveyed by the decision makers involved in a GDM situation, it is advisable
that the decision makers talk about their reasons for providing their prefer-
ences. If this process is not effectuated, some decision makers could reject the
solutions achieved as they might not accept them [2,32]. Therefore, a con-
sensus process is usually carried out before obtaining the solution in a GDM
situation [8,10,20,26,37].

In this contribution, a feedback mechanism is presented to improve the con-
sensus among the decision makers implicated in a GDM problem defined in a het-
erogeneous context, i.e., in a situation in which it is considered that the decision
makers possess distinct level of understanding about the alternatives and, there-
fore, importance degrees are given to them in order to reflect their importance to
solve the problem. The goal of the feedback mechanism is to give advice about
how the decision makers should adjust their opinions for the purpose of increas-
ing the level of agreement. Concretely, the feedback mechanism proposed here
uses, as a key component, an allocation of information granularity [29,31,35] to
generate the advice. That is, because decision makers should be ready to modify
their initial assessments on the alternatives, information granularity could pro-
vide the required level of flexibility by utilizing the initial assessments which are
adjusted in order to increase the consensus. Assuming that the opinions com-
municated by the decision makers are represented by fuzzy preference relations,
this flexibility is achieved by considering granular fuzzy preference relations in
which each value is considered as an information granule in place of a single
numeric one.
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The rest of this manuscript is set up as follows. In Sect. 2, a classical consensus
reaching process is described. The proposed feedback mechanism is presented in
Sect. 3. An application example of the proposed approach is illustrated in Sect. 4.
Lastly, some conclusions are pointed out in Sect. 5.

2 Consensus Reaching Process

A consensus reaching process is a discussion process carried out repeatedly and
composed of a number of negotiation rounds. Here, it is assumed that the decision
makers want to cooperate and consent to change their evaluations following the
recommendations provided by a moderator, who is aware of the agreement degree
in each round of the consensus reaching process, for the purpose of increasing
the level of consensus. Concretely, a typical consensus process is composed of
the following steps:

1. The problem and the collection of possible alternatives to solve it are shown
to the decision makers.

2. Decision makers discuss and share their knowledge about the problem with
the aim of facilitating the process of providing their preferences.

3. Decision makers express their evaluations about the alternatives in a partic-
ular structure of preference representation (in this contribution, fuzzy prefer-
ence relations).

4. The moderator uses the decision makers’ opinions to compute consensus mea-
sures allowing him/her to identify if an adequate level of consensus has been
obtained.

5. The consensus reaching process stops if an enough level of consensus has
been reached and, then, the solution can be obtained by applying a selection
process [4,19]. If not, a feedback mechanism is applied in which the moderator
gives advice to the decision makers.

6. The advice is provided to the decision makers and the round is completed.
Then, decision makers discuss their evaluations again in order to increase the
level of consensus (Step 2).

The moderator knows the consensus level achieved among the decision makers
by calculating some consensus measures. To compute them, coincidence among
the opinions is calculated [3,14]. As aforementioned, in this contribution we
assume that fuzzy preference relations are used to model the evaluations con-
veyed by the decision makers [21,27,33].

Definition 1. A fuzzy preference relation PR on a set of alternatives X is a
fuzzy set on the Cartesian product X×X, i.e., it is characterized by a membership
function μPR : X × X → [0, 1].

The n × n matrix PR = (prij) is usually utilized to represent a fuzzy prefer-
ence relation PR. Here, prij = μPR(xi, xj) (∀i, j ∈ {1, . . . , n}) is the preference
degree of the alternative xi over xj : prij = 0.5 means indifference between xi and
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xj (xi ∼ xj), prij = 1 means that xi is entirely preferred to xj , and prij > 0.5
means that xi is preferred to xj (xi � xj). According to this interpretation,
prii = 0.5 ∀i ∈ {1, . . . , n} (xi ∼ xi). Since the entries of the main diagonal (prii)
do not matter here, they will be written as ‘–’ instead of 0.5 [21].

When fuzzy preference relations are used, consensus degrees are given at
three different levels: pairs of alternatives, alternatives, and relation. In such a
way, consensus degrees are computed as follows [3,36]:

1. A similarity matrix, SMkl = (smkl
ij ), is determined for each pair of decision

makers (ek, el) (k = 1, . . . , m − 1, l = k + 1, . . . , m) as follows:

smkl
ij = 1 − D(prkij , prlij) (1)

where D : [0, 1] × [0, 1] → [0, 1] is a distance function [9]. The closer smkl
ij to

1, the more similar prkij and prlij .
2. All the (m − 1) × (m − 2) similarity matrices are aggregated using an aggre-

gation function φ to obtain a consensus matrix CM = (cmij).

cmij = φ(smkl
ij ), k = 1, . . . ,m − 1, l = k + 1, . . . , m (2)

3. Then, the consensus degrees are obtained at the three different levels of a
fuzzy preference relation:
(a) Consensus degree on the pairs of alternatives, cpij . It is defined to estimate

the consensus degree on a pair of alternatives (xi, xj), among all the
decision makers. It is expressed by the entry of CM :

cpij = cmij (3)

(b) Consensus degree on the alternatives, cai. This measure is defined to esti-
mate the consensus degree on an alternative (xi), among all the decision
makers. This value is estimated by aggregating the consensus degrees of
all the pair of alternatives involving it:

cai = φ(cpij), j = 1, . . . , n ∧ j 	= i (4)

(c) Consensus degree on the relation, cr. It expresses the global consensus
degree among the evaluations given by all the decision makers. It is com-
puted by aggregating all the consensus degrees at the level of alternatives:

cr = φ(cai), i = 1, . . . , n (5)

The value used to check the consensus state is cr. Concretely, the closer cr
to 1, the greater the consensus among all the decision makers’ judgments.
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3 Generating Advice with an Allocation of Information
Granularity

The generation of advice to the decision makers is an essential point for the
purpose of increasing the consensus in the next discussion rounds. Therefore,
many consensus approaches incorporate a feedback mechanism helping decision
makers to discover the alterations they need to make in their assessments to
improve the consensus.

At the beginning, the advice was given by the moderator [1,12,13,21–23].
Nevertheless, because of the moderator can introduce some subjectivity in the
discussion process, consensus models were developed by the researchers in which
the moderator figure was substituted by automatic tools [15,17,18,36].

In GDM situations, a collaborative and cooperative atmosphere is recom-
mendable and, therefore, it is supposed that decision makers are ready to mod-
ify their evaluations in order to get better consensus solutions. In such a way,
the decision makers have to allow a certain flexibility in their initial assess-
ments. Based on this assumption, we propose a feedback mechanism in which
the required flexibility is brought by acknowledging the entries of the fuzzy pref-
erence relations as information granules instead of numbers. To emphasize that
the feedback mechanism uses granular fuzzy preference relations, the notation
G(PR) is employed, being G(.) a specific granular formalism being utilized
(fuzzy sets, rough sets, probability density functions, intervals, and so on). Con-
cretely, the feedback mechanism exploits the role of information granularity as
a way to increase the accord by treating the granularity level as synonymous of
flexibility, which is utilized to optimize an optimization criterion related to the
level of consensus. Furthermore, the feedback mechanism is carried out automat-
ically, without a moderator, making more efficient and effective the discussion
process.

This optimization problem is not an easy task and, therefore, it requires the
use of a global optimization technique. In particular, among different optimiza-
tion techniques, the Particle Swarm Optimization (PSO) framework is utilized
here [24], which is based on the social behavior metaphor. Here, first, a popu-
lation of particles (candidate solutions) is initialized randomly. Second, a ran-
domized velocity is allocated to each particle, which is iteratively moved though
the search-space according to simple mathematical formulae over the particle’s
velocity and position. The movement of each particle is guided in the direc-
tion of the position of the best fitness reached up to now by the particle itself
and by the position of the best fitness reached so far across the entire popula-
tion [24,25,34]. This optimization environment has been chosen because it does
not present a high level of computational overhead and because it provides an
important flexibility level in the optimization.

In what follows, the details of this optimization framework are introduced.
In particular, we describe the fitness function, the particle’s representation and
the algorithm used here.
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3.1 Fitness Function

In the PSO environment, during the particle’s movement, its performance is
evaluated by means of a fitness function or performance criterion. In this contri-
bution, the PSO aims to maximize the consensus achieved among the decision
makers. Concretely, the consensus degree cr is used to compute it. Therefore,
the optimization problem reads as follows:

MaxPR1,PR2,...,PRm∈P (PR)cr (6)

Here, we assume intervals to articulate the granularity of information and,
therefore, the length of the intervals can be sought as a level of granularity
α. Hence, this maximization problem is performed by the feedback mechanism
for all interval-valued fuzzy preference relations that are possible according to
the fixed level of information granularity α. In addition, because interval-valued
fuzzy preference relations are used, G(PR) = P(PR), where P(.) signifies a
family of intervals.

In summary, the following fitness function f will be used by the PSO
environment:

f = cr (7)

3.2 Particle

In the PSO framework, how to find a proper association between the problem
solution and the particle’s representation is very important. In the GDM context
assumed here, each particle is represented by a vector whose values belong to
the unit interval, i.e., if we assume a group of m decision makers and a set of n
possible alternatives, the particle is made of m · n(n − 1) entries.

Let us suppose an element prij and a granularity level α placed in the [0, 1]
interval. If we start with an initial fuzzy preference relation expressed by a
decision maker, the interval of acceptable values of this element of P(PR) is
calculated as follows:

[a, b] = [max(0, prij − α/2),min (1, prij + α/2)] (8)

For instance, if we have prij = 0.5, being the level of granularity α = 0.2,
and the related element of the particle x equal to 0.2, then, the related interval
of the interval-valued fuzzy preference relation computed using Eq. (8) is [a, b] =
[0.40, 0.60]. Then, using the expression z = a + (b − a)x, the modified value of
prij changes into 0.44.

3.3 Algorithm

The common configuration of the PSO environment is applied in this contribu-
tion. Then, the particle’s velocity is updated as follows:

v(t + 1) = w × v(t) + c1a · (zp − z) + c2b · (zg − z) (9)
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being “t” an index of the generation or iteration, · a vector multiplication carried
out coordinate-wise, zg the best position overall and developed up to this point
across the swarm, and zp the best position obtained up to this point for the
particle under study.

The inertia component (w) scales the actual velocity v(t) and stresses some
effect of resistance to modify the actual velocity. Its value is usually 0.2 and it
is kept constant through all the optimization process [30]. a and b represent
vectors of random numbers obtained from the uniform distribution over the unit
interval. These vectors help form an appropriate combination of the compo-
nents of the velocity. Particularly interesting is the second expression controlling
the modification in the particle’s velocity because it captures the connections
between the particle’s history and the overall population’s history in terms of
their performance obtained up to this point.

Finally, in generation “t + 1”, the particle’s position is calculated as:

z(t + 1) = z(t) + v(t + 1) (10)

Once the fuzzy preference relations have been optimized by the PSO envi-
ronment, they are presented to the decision makers in order to improve the
consensus.

4 Practical Example

In this section, we illustrate an application example in order to quantify the
increase of the consensus when our approach is used.

Let us suppose a GDM problem in which a group of four decision makers,
{e1, e2, e3, e4}, have to express their opinions about a collection of four alterna-
tives, {x1, x2, x3, x4}. Furthermore, because the decision makers possess different
levels of knowledge about the problem, the following weight values are assigned
to them: w1 = 0.35, w2 = 0.25, w3 = 0.20, and w4 = 0.20.

At the beginning of the discussion process, the following fuzzy preference
relations are provided by the group of four decision makers:

PR1 =

⎛
⎜⎜⎝

− 0.40 0.70 0.20
0.60 − 0.60 0.70
0.30 0.10 − 0.20
0.80 0.20 0.90 −

⎞
⎟⎟⎠ PR2 =

⎛
⎜⎜⎝

− 0.20 0.60 0.70
0.90 − 0.40 0.20
0.20 0.70 − 0.70
0.10 0.70 0.20 −

⎞
⎟⎟⎠

PR3 =

⎛
⎜⎜⎝

− 0.90 0.10 0.10
0.10 − 0.80 0.80
0.80 0.10 − 0.80
0.10 0.20 0.20 −

⎞
⎟⎟⎠ PR4 =

⎛
⎜⎜⎝

− 0.80 0.30 0.60
0.20 − 0.70 0.30
0.80 0.40 − 0.40
0.40 0.90 0.60 −

⎞
⎟⎟⎠

Once the preferences have been provided, the consensus measures are com-
puted as presented in Sect. 2. In this example, the arithmetic mean is used as
aggregation function φ, and the following distance measure is used:

D(prkij , prlij) = |prkij − prlij | (11)



218 F.J. Cabrerizo et al.

The consensus matrix is equal to:

CM =

⎛
⎜⎜⎝

− 0.58 0.65 0.63
0.53 − 0.78 0.63
0.62 0.65 − 0.65
0.58 0.57 0.58 −

⎞
⎟⎟⎠

The element (i, j) of the consensus matrix represents the consensus degrees
on the pair of alternatives (xi, xj).

The consensus degrees on the alternatives are:

ca1 = 0.60
ca2 = 0.63
ca3 = 0.66
ca4 = 0.61

And the consensus on the relation is:

cr = 0.62

Here, we suppose the consensus achieved is not sufficient and, therefore, the
decision makers must adjust their evaluations in order to increase the level of
consensus before applying the selection process. To help them, our feedback
mechanism is applied.

First, as a consequence of an exhaustive experimentation, in the PSO envi-
ronment, the following values of the parameters were selected:

– 50 particles formed the swarm, as this value was found to obtain stable results.
– 200 iterations were performed as it was observed that, after this number of

iterations, were no further modifications of the values of the fitness function.
– c1 and c2 were set as 2 because these values are usually found in the current

literature.

Given a level of granularity α = 0.6, the feedback mechanism recommends
the following fuzzy preference relations to the decision makers:

PR1 =

⎛
⎜⎜⎝

− 0.24 0.57 0.19
0.53 − 0.56 0.66
0.08 0.20 − 0.23
0.80 0.33 0.60 −

⎞
⎟⎟⎠ PR2 =

⎛
⎜⎜⎝

− 0.26 0.65 0.67
0.80 − 0.36 0.24
0.33 0.57 − 0.60
0.20 0.62 0.05 −

⎞
⎟⎟⎠

PR3 =

⎛
⎜⎜⎝

− 0.83 0.19 0.24
0.11 − 0.65 0.76
0.62 0.17 − 0.65
0.77 0.19 0.05 −

⎞
⎟⎟⎠ PR4 =

⎛
⎜⎜⎝

− 0.70 0.16 0.55
0.32 − 0.60 0.14
0.67 0.43 − 0.29
0.22 0.80 0.30 −

⎞
⎟⎟⎠

In the next discussion round, it is assumed that the decision makers accept
the advice generated by the feedback mechanism and, therefore, the consensus
measures are calculated again.
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The consensus matrix is equal to:

CM =

⎛
⎜⎜⎝

− 0.63 0.69 0.71
0.62 − 0.85 0.62
0.66 0.76 − 0.74
0.61 0.65 0.68 −

⎞
⎟⎟⎠

The element (i, j) of the consensus matrix represents the consensus degrees
on the pair of alternatives (xi, xj).

The consensus degrees on the alternatives are:

ca1 = 0.66
ca2 = 0.69
ca3 = 0.73
ca4 = 0.67

And the consensus on the relation is:

cr = 0.69

At this step, if we consider that the level of consensus is enough, the selection
process would be applied in order to obtain the solution set of alternatives.
In this process, the weights of the decision makers should be considered when
aggregating their opinions.

To conclude this practical example, it should be noted that a granularity level
equal to 0.6 has been utilized here. Using this granularity level, we have observed
that the consensus among the decision makers has been improved. In such a way,
the higher the level of granularity, the higher the level of flexibility and, therefore,
the possibility of increasing the consensus. For instance, if a granularity level of
0.3 is used, the consensus achieved is equal to 0.65, and if a granularity level of
0.8 is used, the consensus reached is equal to 0.75.

5 Conclusions

An allocation of information granularity has been used in this contribution to
give advice that helps the decision makers involved in a GDM situation to
increase the level of consensus. Concretely, a feedback mechanism generating
recommendations has been presented, in which the level of granularity has been
used as synonymous of flexibility. This granularity level has been utilized to
optimize the consensus level (optimization criterion): the higher the level of
granularity, the higher the level of adaptability and, in such a way, the level of
consensus achieved.

Finally, we would like to clarify the following aspects of the feedback mech-
anism presented here:

– The higher the level of granularity α, the higher the changes advised by
the feedback mechanism and, in such a way, the possibility of obtaining the



220 F.J. Cabrerizo et al.

required level of consensus is higher. However, if the granularity level α is
very high, the changes advised could be very different in comparison with
the first opinions provided by the decision makers and, hence, the decision
makers could not accept them.

– The PSO framework has been shown as a suitable optimization technique
for this problem. Nevertheless, the fitness function is optimized by the PSO
framework and the result obtained is the best one being formed by the PSO,
but there is no promise that it is an optimal result.
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Abstract. We propose a new method for constructing fuzzy measures.
This method is based on a fixed aggregation function A, similarity mea-
sure S and a vector x ∈ [0, 1]n. Some illustrative examples yielding para-
metric families of fuzzy measures are given, and some properties of our
method are studied.
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1 Introduction

When studying links between aggregation functions and fuzzy measures, mostly
several kinds of integrals are considered, assigning to a fixed fuzzy measure m the
related aggregation function. Recall, as a distinguished example, the Choquet
integral (i.e., construction of comonotone additive aggregation functions) and
the Sugeno integral (i.e., the construction of comonotone maxitive and minitive
aggregation functions). For more details we recommend [1,4,6,7]. An alternative
view, when, based on a fixed aggregation function, some related fuzzy measures
are derived, was proposed by Benvenuti et al. [2]. In this paper, we introduce a
more sophisticated approach how to derive fuzzy measure based on a given fixed
aggregation function A. In our approach, we deal with a similarity measure
S, too, and with an arbitrary n-ary vector x ∈ [0, 1]n. Note that Benvenuti’s
approach was based on constant vector c ∈ [0, 1]n only, requiring A(c) > 0.

The paper is organized as follows. In the next section, we recall necessary
preliminaries. Section 3 brings our new method for constructing fuzzy measures.
This method is exemplified in Sect. 4. Some properties and particular instances
of our method are contained in Sect. 5. Finally, some concluding remarks are
added.

c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 23
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2 Preliminaries

We will deal with universe N = {1, . . . , n}, where n ≥ 2 can be seen, for example,
as a number of considered criteria. An aggregation function A : [0, 1]n → [0, 1]
is a monotone function preserving the bounds, A(0) = 0 and A(1) = 1 (i.e., it
is an order-preserving homomorphism of lattices [0, 1]n and [0, 1]). Similarly, a
fuzzy measure m : 2N → [0, 1] is an order preserving homomorphism, i.e., m is
a monotone set function satisfying m(∅) = 0 and m(N ) = 1. In what follows, we
will work with the characteristic function 1E of the set E ⊆ N , i.e.,

1E(i) =
{

1 if i ∈ E,
0 otherwise.

It is not difficult to see that, for any aggregation function A : [0, 1]n → [0, 1],
the mapping mA : 2N → [0, 1] given by

mA(E) = A(1E), E ⊆ N ,

is a fuzzy measure. Similarly, if A(c) > 0 for some constant vector c ∈]0, 1]n, c ∈
]0, 1], then mA,c : 2N → [0, 1] given by

mA,c(E) =
A(c · 1E)

A(c)
, E ⊆ N ,

is a fuzzy measure, see [2].
We will work also with similarity measures [3,5]. Recall that a function S :

[0, 1]2 → [0, 1] is called a similarity measure whenever it satisfies the next axioms:

(S1) S(x, x) = 1 for each x ∈ [0, 1];
(S2) S(0, 1) = 0;
(S3) S(x, y) = S(y, x) for each x, y ∈ [0, 1];
(S4) for each 0 ≤ x ≤ y ≤ z ≤ 1, S(x, z) ≤ S(x, y) ∧ S(y, z).

3 A New Construction Method for Fuzzy Measures

Consider a fixed aggregation function A : [0, 1]n → [0, 1], a fixed similarity
measure S : [0, 1]2 → [0, 1], and a vector x ∈ [0, 1]n. For E ⊆ N , let

E+
A,x = A(x ∨ 1Ec)

and
E−

A,x = A(x ∧ 1E),

where Ec is the complement of the set E, Ec = N \ E.
It is not difficult to check that:

(i) ∅+A,x = A(1) = 1 and ∅−
A,x = A(0) = 0;

(ii) N+
A,x = A(x) = N −

A,x;
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(iii) if E ⊆ F ⊆ N then E−
A,x ≤ F−

A,x ≤ F+
A,x ≤ E+

A,x.

Based on the above properties, the next claim can be verified.

Theorem 1. Let A : [0, 1]n → [0, 1] be an aggregation function, S : [0, 1]2 →
[0, 1] be a similarity measure and x ∈ [0, 1]n. Then the mapping mA,S,x : 2N →
[0, 1] given by

mA,S,x(E) = S(E−
A,x, E+

A,x)

is a fuzzy measure.

Proof. The monotonicity of mA,S,x follows from the above property (iii). Con-
cerning the boundary conditions, we have mA,S,x(∅) = S(1, 0) = 0, see the prop-
erty (i) above, and mA,S,x(N )) = S(A(x), A(x)) = 1, see property (ii) above.
Summarizing, we see that mA,S,x is a fuzzy measure.

4 Examples

In this section we give some illustrations of Theorem 1.

Example 1. Let A : [0, 1]3 → [0, 1] be an OWA operator [8] given by

A(x) = 0.2 max(x) + 0.5med (x) + 0.3min(x).

Consider S = S1, i.e., S(x, y) = 1 − |x − y|, and let x = (x1, x2, x3) be such that
x1 = med (x), x2 = min(x) and x3 = max(x). Then, for m = mA,S,x, it holds:

m({1}) = 0.3 − 0.1x1, m({2}) = 0.3 − 0.1x2, m({3}) = 0.3 − 0.1x3,

m({1, 2}) = 0.8 − 0.3x1 + 0.2x2, m({2, 3}) = 0.8 − 0.3x3 + 0.2x2

and
m({1, 3}) = 0.8 − 0.3x3 + 0.2x1.

Example 2. Consider a weighted arithmetic mean W : [0, 1]n → [0, 1] given by
W (x) =

∑n
i=1 wixi, where w ∈ [0, 1]n and

∑n
i=1 wi = 1. Then, for E ⊆ N ,

E+
W,x =

∑
i/∈E

wi +
∑
i∈E

wixi

and
E−

W,x =
∑
i∈E

wixi.

For λ ∈]0,∞[, define Sλ : [0, 1]2 → [0, 1] by

Sλ(x, y) = 1 − (x − y)λ.
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Then Sλ is a similarity measure. Based on Theorem 1, we have a parametric
class (mW,Sλ,x)λ∈]0,∞[, x∈[0,1]n of fuzzy measures given by

mW,Sλ,x(E) = 1 −
(∑

i/∈E

wi

)λ

.

In this class, the choice of x ∈ [0, 1]n is irrelevant, mW,Sλ,x = mW,Sλ,y for all
x,y ∈ [0, 1]n. In particular, if λ = 1, mW,S1,x(E) =

∑
i∈E wi, i.e., we have

obtained a probability measure on N related to the normed weighting vector
w = (w1, . . . , wn).

Put now S : [0, 1]2 → [0, 1],

S(x, y) =
x ∧ y

x ∨ y
,

with convention 0
0 = 1. Then S is a similarity measure and the fuzzy measure

mW,S,x : 2N → [0, 1] is given by

mW,S,x(E) =
∑

i∈E wixi

1 − ∑
i∈E wi(1 − xi)

.

Then mW,S,1 = mW,S1,1 is the probability measure related to w = (w1, . . . , wn),
mW,S,0 = m∗ is the smallest fuzzy measure,

m∗(E) =
{

1 if E = N ,
0 otherwise,

etc. We see now that mW,S,x depends on x.

5 Some Properties and Particular Cases

When considering dualities, the next result can be shown.

Proposition 1. Let A : [0, 1]n → [0, 1] be an aggregation function, S : [0, 1]2 →
[0, 1] be a similarity measure and x ∈ [0, 1]n. Then mA,S,x = mAd,Sd,1−x, where
Ad : [0, 1]n → [0, 1] is the dual aggregation function given by Ad(x) = 1−A(1−x),
and Sd : [0, 1]2 → [0, 1] is the dual similarity measure given by Sd(x, y) =
S(1 − x, 1 − y).

For extremal aggregation functions A∗, A∗ : [0, 1]n → [0, 1] given by

A∗(x) =
{

0 if x = 0,
1 otherwise

and

A∗(x) =
{

1 if x = 1,
0 otherwise,
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we have the following result, independent of the considered similarity measure S:

mA∗,S,x(E) =
{

0 if E �= N , E ∩ supp x = ∅,
1 otherwise

and

mA∗,S,x(E) =
{

0 if E �= N , E ⊆ ker x,
1 otherwise,

where supp x = {i ∈ N |xi > 0} and ker x = {i ∈ N |xi = 1}.
As an interesting particular case consider x ∈ {0, 1}n, i.e., the case when

x = 1B for some set B ⊆ N . Then x ∨ 1Ec = 1B∪Ec and x ∧ 1Ec = 1B∩E , and
thus for determining values E+

A,x and E−
A,x, we need to know the fuzzy measure

mA only. Denoting, for simplification, mA = m, we have then

E+
A,x = m(B ∪ Ec) and E−

A,x = m(B ∩ E).

These facts ensure the next result.

Theorem 2. Let m : 2N → [0, 1] be a fuzzy measure. Then, for any similarity
measure S : [0, 1]2 → [0, 1] and any B ⊆ N , the mapping mS,B : 2N → [0, 1]
given by

mS,B(E) = S(m(B ∩ E),m(B ∪ Ec))

is a fuzzy measure.

The proof follows from the above facts and Theorem1 directly and therefore
it is omitted.

Using the notation from Sect. 4, we see that

– mSλ,∅ = 1 − (m(Ec))λ =
(
mλ

)d (E), and, in particular, mS1,0 = md;
– mSλ,N = 1 − (1 − m(E))λ, and, in particular, mS1,N = m;
– mS,B(E) = m(B∩E)

m(B∪Ec) (with convention 0
0 = 1), and, in particular,

mS,N\{i}(E) =

{
m(E) if i /∈ E,
m(E\{i})
m(N\{i}) if i ∈ E.

As a by–product, we see also a construction method based on m and S only
(the first result is related to B = ∅, the second one to B = N ).

Proposition 2. Let m : 2N → [0, 1] be a fuzzy measure and S : [0, 1]2 → [0, 1]
be a similarity measure. Then the mappings m

(1)
S ,m

(2)
S : 2N → [0, 1] given by

m
(1)
S (E) = S(0,m(Ec))

and
m

(2)
S (E) = S(m(E), 1)

are fuzzy measures.
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6 Concluding Remarks

We have introduced and discussed new construction methods for fuzzy measures.
In its most general form, our method is based on an aggregation function A, a
similarity measure S and a vector x. We have proposed also more specific meth-
ods, based, e.g., on a fixed fuzzy measure m, a similarity measure S and a set
B. Though in some cases our approach is limited, see, e.g., (mW,Sλ,x) family dis-
cussed in Sect. 4, in most of the cases all considered parameters A,S and x have
their influence on the resulting fuzzy measure mA,S,x. Note that our approach
modifies the earlier approach of Benvenuti et al. [2], allowing to consider any
vector x ∈ [0, 1]n. We expect application of our approach in multicriteria deci-
sion support exploiting fuzzy measures, where some perturbation of an a-priori
given fuzzy measure m is necessary to fit better to the considered real data.
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Abstract. Bodjanova, Kalina and Král’ recently introduced a construc-
tion method, called paving, which enables to define a new associative,
commutative and increasing operation from a given one and a discrete
representable partial operation. As a matter of fact, not every discrete
t-norm is representable, i.e. it can not always be generated by some addi-
tive generator, and this also holds for t-conorms and uninorms. Inspired
by this fact and the method of paving, we construct some new associa-
tive, commutative and increasing operations on the unit interval from
a t-norm on the unit interval and a discrete t-norm, t-superconorm,
t-conorm or uninorm. Because of the duality between t-norms and
t-conorms, we also define some operations from a t-conorm and a discrete
t-norm, t-subnorm, t-conorm or uninorm.

Keywords: Associative operations · Uninorms · T-norms · T-conorms ·
Paving

1 Introduction

The associativity models the independence of the aggregation on the grouping
of input values and it allows to investigate binary aggregation operators only
(as far as their n-ary extensions are then determined uniquely). It is needless to
emphasize the key role of associative operations (t-norms, t-conorms, uninorms,
nullnorms, etc.) not only in fuzzy set theory, but also in many areas of applica-
tion, especially in decision-making under uncertainty [5], image processing [1,6],
fuzzy neural networks [7] and so on. The most important classes of associative,
commutative, increasing operations in the framework of fuzzy sets is that of
uninorms ([4,5,18]), which includes t-norms [10,17] and t-conorms [10] as two
special classes. A large number of methods to construct uninorms (including
t-norms and t-conorms) are introduced: Klement et al. [10], Schweizer and Sklar
[17], Jenei [8], Ling [13], Maes and De Baets [11], Mas et al. [12], Mesiarová-
Zemánková [14–16] and so on.
c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 24
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Kalina et al. [2,9] introduced a construction method called paving. The main
idea is as follows: the unit interval is split into countably many disjoint sub-
intervals (Ii)i∈Jn

with Jn an index-set and with the help of an appropriate
operation ∗′ on Jn and a family of increasing transformations ϕi : Ii → [0, 1], a
new operation ⊕ is defined by

x ⊕ y = ϕ−1
i∗′j(ϕi(x) ∗ ϕj(y)), x ∈ Ii, y ∈ Ij . (1)

Unfortunately, Kalina et al. only consider discrete representable associative oper-
ations as operation ∗′, which is rather restrictive. For instance, not every dis-
crete t-norm can be generated by some additive generator, and this applies to
t-conorms and uninorms. Moreover, the operation ∗′ in [2] is not always inter-
nal on Jn. In this paper, we will consider a general discrete associative oper-
ation as operation ∗′ on Jn, to construct some new associative, commutative
and increasing operations. The graphical schema of paving is depicted in Fig. 1

Ii∗ j

Ii∗ (j+1) Ij∗ (j+1)

Ij∗ j

Ij∗ i

I(j+1)∗ (j+1)

I(j+1)∗ j

I(j+1)∗ i0

0 Ii Ij Ij+1

Ii

Ij

Ij+1

Fig. 1. The structure of ⊕, where the thick line is the boundary between {(i, j) |
i ∗′ j = 0} and {(i, j) | i ∗′ j > 0)}. Inside the blocks it is shown in which sub-interval
the operation ⊕ takes its values.
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I0∗ 0

I0∗ 1

I0∗ i

I0∗ j

I1∗ 1

I1∗ i

I1∗ j

Ii∗ 1 Ij∗ 1

I1∗ 0 Ii∗ 0 Ij∗ 0

Ii∗ j

Ii∗ i Ij∗ i

1

0 a0I0 I1 Ii Ij

a0

I0

I1

Ii

Ij

Fig. 2. The structure of ⊕, where the thick line is the boundary between {(i, j) |
i ∗′ j = n} and {(i, j) | i ∗′ j < n)}. Inside the blocks it is shown in which sub-interval
the operation ⊕ takes its values.

(which depicts the construction of a conjunctive operation ⊕) and Fig. 2 (which
depicts the construction of a disjunctive operation ⊕).

The paper is organized as follows. In Sect. 2, we present some preliminary
notions and results that are necessary for the rest of the paper. Starting from
Eq. (1), when ∗ is a t-norm and ∗′ is a discrete t-norm, t-superconorm, t-conorm
or uninorm, we construct some new associative, commutative and increasing
operations in Sect. 3. At the same time, all the dual constructions when ∗ is a
t-conorm are also listed in Sect. 3.

2 Preliminaries

In this section we recall some basic notions and facts that are necessary for the
understanding of what follows.

Definition 1 [10]. A decreasing function N : [0, 1] → [0, 1] is called a fuzzy
negation if N(0) = 1 and N(1) = 0. Moreover, a fuzzy negation N is called
strong if it is involutive, i.e., if N(N(x)) = x for all x ∈ [0, 1].

Definition 2 [18]. A binary operation U : [0, 1]2 → [0, 1] is called a uninorm if
it is associative, commutative, increasing and has a neutral element e ∈ [0, 1],
i.e., U(x, e) = x for all x ∈ [0, 1].

A uninorm with neutral element e = 1 is a t-norm [10,17] and a uninorm
with neutral element e = 0 is a t-conorm [10]. We say that a uninorm U is proper
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if e ∈ ]0, 1[. If U(1, 0) = 0, then U is called conjunctive. If U(1, 0) = 1, then U is
called disjunctive. Conjunctive and disjunctive uninorms are dual to each other.
For an arbitrary disjunctive uninorm U and a strong negation N , its N -dual
conjunctive uninorm is given by

Ud
N (x, y) = N(U(N(x), N(y))). (2)

For an overview of basic properties of uninorms, we refer to [3].

Remark 1. Note that, for a strong negation N , the N -dual operation to a t-norm
T defined by S(x, y) = N(T (N(x), N(y))) is a t-conorm. For more information,
see, e.g., [10].

Definition 3 [8]. (i) A binary operation ˜T : [0, 1]2 → [0, 1] is called a triangular
subnorm (t-subnorm, for short), if it is associative, commutative, increasing and
fulfills the condition ˜T (x, y) ≤ min(x, y) for all (x, y) ∈ [0, 1]2.

(ii) A binary operation ˜S : [0, 1]2 → [0, 1] is called a triangular superconorm
(t-superconorm, for short), if it is associative, commutative, increasing and ful-
fills the condition ˜S(x, y) ≥ max(x, y) for all (x, y) ∈ [0, 1]2.

Definition 4. Let ∗ : [0, 1]2 → [0, 1] be a commutative operation. Fix a value
a ∈ [0, 1]. We say that x ∈ [0, 1], x �= a, is an a-divisor if there exists y ∈ [0, 1],
y �= a, such that

x ∗ y = a. (3)

3 Construction of New Operations

The main idea of our construction method is described in Eq. (1) with the help
of a discrete associative operation ∗′. For the rest of this paper, we adopt the
following notations.

Let N be the set of all positive integers. We consider an index-set

Jn = {0, 1, 2, . . . , n}
for some n ∈ N.

We will split the interval [0, 1] into n + 1 sub-intervals by choosing the end-
points of the system of sub-intervals

0 = a−1 < a0 < a1 < a2 < . . . < an−1 < an = 1.

Because of this partition, we will use half-open intervals, i.e., either left-open or
right-open. We will use indexing of the chosen sub-intervals in accordance with
the right end-point. For the case of left-open sub-intervals, Ii = ]ai−1, ai]; for
the case of right-open sub-intervals, Ii = [ai−1, ai[.

For a fixed system of right-open sub-intervals (Ii)ni=0, ϕi : Ii → [0, 1[ are
increasing bijections. For a fixed system of left-open sub-intervals (Ii)ni=0, χi :
Ii → ]0, 1] are increasing bijections.
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Remark 2 [2]. In order not to get out of the range of the transformations χi when
using left-open sub-intervals, the starting operation ∗ (the basic paving stone)
must be without zero-divisors. Similarly, when using right-open sub-intervals,
∗ must be without one-divisors.

Here, we consider to construct new associative, commutative and increasing
operations from a given one ∗, and two certain cases of associative, commutative
and increasing operations will be taken into account: the case that ∗ is a t-norm
and the case that ∗ is a t-conorm.

3.1 The Case that ∗ Is a T-Norm

In this subsection, we construct some new associative, commutative and increas-
ing operations on the unit interval from a t-norm on the unit interval and a
discrete t-norm/t-superconorm/t-conorm/uninorm.

Firstly, we construct a new operation ⊕ from a t-norm ∗ and a discrete
t-norm ∗′ in Eq. (1). Because of the partition of unit interval, we distinguish two
cases: when right-open sub-intervals of [0, 1[ and left-open sub-intervals of ]0, 1].

Proposition 1. Let ∗ : [0, 1]2 → [0, 1] be a t-norm, (Ii)ni=0 be a partition of
[0, 1[ consisting of right-open sub-intervals. Assume that ∗′ is a discrete t-norm
on Jn = {0, . . . , n} such that ∗′ is strictly increasing on the domain {(i, j) | i, j ∈
Jn, i ∗′ j > 0}. Then the operation ⊕1 defined by

x ⊕1 y =

⎧

⎨

⎩

ϕ−1
i∗′j(ϕi(x) ∗ ϕj(y)), if x ∈ Ii, y ∈ Ij and i ∗′ j > 0,

min(x, y), if max(x, y) = 1,
0, otherwise,

(4)

is a t-norm.

In fact, ⊕1 is not always increasing without the condition that ∗′ is strictly
increasing on the domain {(i, j) | i, j ∈ J, i ∗′ j > 0}.
Example 1. Assume that J7 = {0, 1, 2, . . . , 7}, (Ii = [i/8, (i + 1)/8[)7i=0 is a
partition of [0, 1[. Let ∗ be the t-norm TM (x, y) = min(x, y) on [0, 1], ∗′ be the
discrete t-norm TM (i, j) = min(i, j) on J7, ϕi(x) = x−ai−1

ai−ai−1
. Define x ⊕ y as

follows:

x ⊕ y =

⎧

⎨

⎩

ϕ−1
min(i,j)(min( x−ai−1

ai−ai−1
,

y−aj−1
aj−aj−1

)), if x ∈ Ii, y ∈ Ij , and min(i, j) > 0,
min(x, y), if max(x, y) = 1,
0, otherwise.

Consider that x = 3
16 , y = 3

16 and z = 1
4 , then we have that

x ⊕ y = ϕ−1
1

(1
2
)

=
3
16

>
1
8
= ϕ−1

1 (0) = x ⊕ z. (5)

That is, ⊕ is not increasing.



234 W. Zong et al.

By (4), we can see that for any t-norm ∗, its values on the upper right
boundary of the unit square [0, 1]2 have no impact on the properties of ⊕1.
Moreover, It is obvious that associativity, commutativity and monotonicity of
⊕1 are determined by the corresponding properties of ∗, respectively. Thus, we
can easily obtain that Proposition 1 holds for t-subnorm instead of t-norm.

Example 2. Assume that Jn = {0, 1, 2, . . . , n}, (Ii)ni=0 is a partition of [0, 1[ con-
sisting of right-open sub-intervals. Let ∗ be the t-subnorm ˜T = max(min(x, 1

2 )+
min(y, 1

2 ) − 3
4 , 0) on [0, 1], ∗ be the discrete t-norm TL(i, j) = max(0, i + j − n)

on Jn, ϕi(x) =
x−ai−1
ai−ai−1

. Define x ⊕ y as follows:

x ⊕ y =

⎧

⎨

⎩

ϕ−1
i+j−n( ˜T ( x−ai−1

ai−ai−1
,

y−aj−1
aj−aj−1

)), if x ∈ Ii, y ∈ Ij and i + j > n,

min(x, y), if max(x, y) = 1,
0, otherwise,

(6)

is a t-norm.

As stated earlier, ∗ must be a t-norm without zero-divisors when left-open
sub-intervals are taken into account. Similar to Proposition 1, the following
proposition can be obtained:

Proposition 2. Let ∗ : [0, 1]2 → [0, 1] be a t-norm without zero-divisors, (Ii)ni=0

be a partition of ]0, 1] consisting of left-open sub-intervals. Assume that ∗′ is a
discrete t-norm on Jn such that ∗′ is strictly increasing on the domain {(i, j) |
i, j ∈ Jn, i ∗′ j > 0}. Then the operation ⊕2 defined by

x ⊕2 y =

⎧

⎨

⎩

min(x, y), if max(x, y) = 1,
χ−1
i∗′j(χi(x) ∗ χj(y)), if x ∈ Ii \ {1}, y ∈ Ij \ {1} and i ∗′ j > 0,

0, otherwise,
(7)

is a t-norm.

Next, we discuss the construction when ∗ is a t-norm and ∗′ is a discrete
t-superconorm. Analogously, two cases of right-open sub-intervals of [0, 1[ and
left-open sub-intervals of ]0, 1] are taken into account. We start with the case of
the right-open sub-intervals.

Proposition 3. Let ∗ : [0, 1]2 → [0, 1] be a t-norm, (Ii)ni=0 be a partition of [0, 1[
consisting of right-open sub-intervals. Assume that ∗′ is a discrete t-superconorm
on Jn such that ∗′ is strictly increasing and i ∗′ j > max(i, j) on the domain
{(i, j) | i, j ∈ Jn, i ∗′ j < n}. Then the operation ⊕3 defined by

x ⊕3 y =
{

ϕ−1
i∗′j(ϕi(x) ∗ ϕj(y)), if x ∈ Ii, y ∈ Ij and i ∗′ j < n,

1, otherwise,
(8)

is a t-superconorm.

Without the condition that ∗′ is strictly increasing on the domain {(i, j) |
i, j ∈ Jn, i ∗′ j < n}, ⊕3 is not always increasing. We have the following
counterexample.
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Example 3. Assume that J7 = {0, 1, 2, . . . , 7}, (Ii = [i/8, (i + 1)/8[)7i=0 is a
partition of [0, 1[. Let ∗ be the t-norm TM (x, y) = min(x, y) on [0, 1], ∗′ be the
discrete t-superconorm ˜S = min(n,max(i, j)+4) on J7, ϕi(x) =

x−ai−1
ai−ai−1

. Define
x ⊕ y as follows:

x ⊕ y =

{

ϕ−1
˜S(i,j)

(min( x−ai−1
ai−ai−1

,
y−aj−1
aj−aj−1

)), if x ∈ Ii, y ∈ Ij and i ∗′ j < n,

1, otherwise.

Consider that x = 1
16 , y = 1

8 and z = 3
16 , then we have that

x ⊕ z = ϕ−1
5

(1
2
)

=
11
16

>
5
8
= ϕ−1

5 (0) = y ⊕ z. (9)

Obviously, ⊕ is not increasing.

In Eq. (8), let x ⊕3 y = max(x, y) on the domain {(x, y) | x, y ∈ [0, 1],min
(x, y) = 0}. We can easily prove that the operation ⊕3 is a t-conorm by simple
calculations.

Similarly, when left-open sub-intervals are taken into account, ∗ must be a
t-norm without zero-divisors. Then, the following proposition can be obtained:

Proposition 4. Let ∗ : [0, 1]2 → [0, 1] be a t-norm without zero-divisors, (Ii)ni=0

be a partition of ]0, 1] consisting of left-open sub-intervals. Assume that ∗′ is
a discrete t-superconorm on Jn such that ∗′ is strictly increasing and i ∗′ j >
max(i, j) on the domain {(i, j) | i, j ∈ Jn, i ∗′ j < n}. Then the operation ⊕4

defined by

x ⊕4 y =

⎧

⎨

⎩

χ−1
i∗′j(χi(x) ∗ χj(y)), if x ∈ Ii, y ∈ Ij and i ∗′ j < n,

max(x, y), if min(x, y) = 0,
1, otherwise,

(10)

is a t-conorm.

In what follows, we construct a new operation from a t-norm ∗ and a discrete
uninorm ∗′.

Proposition 5. Let ∗ : [0, 1]2 → [0, 1] be a t-norm, (Ii)ni=0 be a partition of
[0, 1[ consisting of right-open sub-intervals. Assume that ∗′ is a discrete uninorm
on Jn with neutral element h such that ∗′ is strictly increasing on the domain
{(i, j) | i, j ∈ Jn, max(i, j) ≤ h, i ∗′ j > 0} and {(i, j) | i, j ∈ Jn, min(i, j) ≥
h, i ∗′ j < n}. Then the operation ⊕5 defined by

x ⊕5 y =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ai, if min(x, y) < ah and ah ≤ ai ≤ max(x, y) < ai+1,
ϕ−1

i∗′j(ϕi(x) ∗ ϕj(y)), if x ∈ Ii, y ∈ Ij , max(i, j) ≤ h and i ∗′ j > 0,

or h < min(i, j) and i ∗′ j < n,
1, if x ∈ Ii, y ∈ Ij , h < min(i, j) and i ∗′ j = n,

or max(x, y) = 1,
0, otherwise,

(11)

is associative, commutative and increasing.
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In fact, the similar proposition does not hold when (Ii)ni=0 is a partition of
]0, 1] consisting of left-open sub-intervals. A counterexample is as follows:

Example 4. Assume that J4 = {0, 1, 2, 3, 4}, (Ii =]i/5, (i+1)/5])4i=0 is a partition
of ]0, 1]. Let ∗ be the t-norm TM (x, y) = min(x, y) on [0, 1], ∗′ be the discrete
uninorm U with neutral element 2:

U(i, j) =

⎧

⎨

⎩

TL(i, j), if 0 ≤ i, j ≤ 2,
SL(i, j), if 2 ≤ i, j ≤ 4,
min(i, j), otherwise,

where TL(i, j) = max(0, i + j − 2), SL(i, j) = min(4, i + j − 2).
Besides, ϕi(x) =

x−ai−1
ai−ai−1

. Define x ⊕ y as follows:

x ⊕ y =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ai+1, if 3
5

< max(x, y) and ai < min(x, y) ≤ ai+1 ≤ 3
5
,

ϕ−1
U(i,j)(ϕi(x) ∗ ϕj(y)), if x ∈ Ii, y ∈ Ij , max(i, j) ≤ 2 and i ∗′ j > 0,

or 2 < min(i, j) and i ∗′ j < 4,
0, if x ∈ Ii, y ∈ Ij , max(i, j) ≤ 2 and i ∗′ j = 0,

or min(x, y) = 0,
1, otherwise.

Consider that x = 1
2 , y = 1

2 and z = 4
5 , then we have that

(x ⊕ y) ⊕ z = aU(2,2) = a2 =
3
5

�= 1
2
= x ⊕ a2 = x ⊕ (y ⊕ z). (12)

Obviously, ⊕ is not associative.

When ∗ is a t-norm and ∗′ is a discrete t-conorm, we can construct some
proper uninorms.

Proposition 6. Let ∗ : [0, 1]2 → [0, 1] be a t-norm, (Ii)ni=0 be a partition of [0, 1[
consisting of right-open sub-intervals. Assume that ∗′ is a discrete t-conorm on
Jn such that ∗′ is strictly increasing on the domain {(i, j) | i, j ∈ Jn, i∗′ j < n}.
Then the operation ⊕6 defined by

x ⊕6 y =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

ϕ−1
i∗′j(ϕi(x) ∗ ϕj(y)), if x ∈ Ii \ {a0}, y ∈ Ij \ {a0} and i ∗′ j < n,

or min(x, y) ∈ I0, max(x, y) ∈ In,
y, if x = a0,
x, if y = a0,
1, otherwise,

(13)

is a proper disjunctive uninorm with neutral element a0 if and only if ∗ has no
zero-divisors.

In what follows, we give an example to illustrate that ∗′ must be strictly
increasing on the domain {(i, j) | i, j ∈ Jn, i ∗′ j < n}.
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Example 5. Assume that J4 = {0, 1, 2, 3, 4}, (Ii = [i/5, (i + 1)/5[)4i=0 is a parti-
tion of [0, 1[. Let ∗ be the t-norm TM (x, y) = min(x, y) on [0, 1], ∗′ be the discrete
t-conorm SM = max(i, j) on J4, ϕi(x) =

x−ai−1
ai−ai−1

. Define x ⊕ y as follows:

x ⊕ y =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ϕ−1
max(i,j)

(min(
x−ai−1
ai−ai−1

,
y−aj−1
aj−aj−1

)), if x∈Ii \ { 1
5
}, y ∈ Ij \ { 1

5
} and max(i, j) < 4,

or min(x, y) ∈ [0, 1
5
[, max(x, y) ∈ [ 4

5
, 1[,

y, if x = 1
5
,

x, if y = 1
5
,

1, otherwise.

Consider that x = 3
10 , y = 2

5 and z = 1
2 , then we have that

x ⊕ z = ϕ−1
2

(1
2
)

=
1
2

>
2
5
= ϕ−1

2 (0) = y ⊕ z. (14)

Obviously, ⊕ is not increasing.

Similar to Proposition 6, when the left-open sub-intervals are taken into
account, we have the following result:

Proposition 7. Let ∗ : [0, 1]2 → [0, 1] be a t-norm without zero-divisors, (Ii)ni=0

be a partition of ]0, 1] consisting of left-open sub-intervals. Assume that ∗′ is a
discrete t-conorm on Jn such that ∗′ is strictly increasing on the domain {(i, j) |
i, j ∈Jn, i ∗′ j <n}. Then the operation ⊕7 defined by

x ⊕7 y =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

χ−1
i∗′j(χi(x) ∗ χj(y)), if x ∈ Ii, y ∈ Ij and i ∗′ j < n,

or min(x, y) ∈ I0, max(x, y) ∈ In,
0, if min(x, y) = 0,
1, otherwise,

(15)

is a proper conjunctive uninorm with neutral element a0.

3.2 The Case that ∗ Is a T-Conorm

Taking into account the duality between t-norms and t-conorms, the results in
the case that ∗ is a t-conorm are easily obtained.

Proposition 8. Let ∗ : [0, 1]2 → [0, 1] be a t-conorm without one-divisors,
(Ii)ni=0 be a partition of [0, 1[ consisting of right-open sub-intervals. Assume that
∗′ is a discrete t-conorm on Jn such that ∗′ is strictly increasing on the domain
{(i, j) | i, j ∈ Jn, i ∗′ j < n}. Then the operation ⊕1 defined by

x ⊕1 y =

⎧

⎨

⎩

ϕ−1
i∗′j(ϕi(x) ∗ ϕj(y)), if x ∈ Ii \ {0}, y ∈ Ij \ {0} and i ∗′ j < n,

max(x, y), if min(x, y) = 0,
1, otherwise,

is a t-conorm.
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Similar to the case that ∗ is a t-norm, Proposition 8 holds for t-superconorm
instead of t-conorm.

Proposition 9. Let ∗ : [0, 1]2 → [0, 1] be a t-conorm, (Ii)ni=0 be a partition of
]0, 1] consisting of left-open sub-intervals. Assume that ∗′ is a discrete t-conorm
on Jn such that ∗′ is strictly increasing on the domain {(i, j) | i, j ∈Jn, i∗′j <n}.
Then the operation ⊕2 defined by

x ⊕2 y =

⎧

⎨

⎩

max(x, y), if min(x, y) = 0,
χ−1
i∗′j(χi(x) ∗ χj(y)), if x ∈ Ii, y ∈ Ij and i ∗′ j < n,

1, otherwise,

is a t-conorm.

Proposition 10. Let ∗ : [0, 1]2 → [0, 1] be a t-conorm without one-divisors,
(Ii)ni=0 be a partition of [0, 1[ consisting of right-open sub-intervals. Assume that
∗′ is a discrete t-subnorm on Jn such that ∗′ is strict increasing and i ∗′ j <
min(i, j) on the domain {(i, j) | i, j ∈ Jn, i ∗′ j > 0}. Then operation ⊕3

defined by

x ⊕3 y =

⎧

⎨

⎩

ϕ−1
i∗′j(ϕi(x) ∗ ϕj(y)), if x ∈ Ii, y ∈ Ij and i ∗′ j > 0,

min(x, y), if max(x, y) = 1,
0, otherwise,

is a t-norm.

Proposition 11. Let ∗ : [0, 1]2 → [0, 1] be a t-conorm, (Ii)ni=0 be a partition of
]0, 1] consisting of left-open sub-intervals. Assume that ∗′ is a discrete t-subnorm
on Jn such that ∗′ is strictly increasing and i ∗′ j < min(i, j) on the domain
{(i, j) | i, j ∈ Jn, i ∗′ j > 0}. Then the operation ⊕4 defined by

x ⊕4 y =
{

χ−1
i∗′j(χi(x) ∗ χj(y)), if x ∈ Ii, y ∈ Ij and i ∗′ j > 0,

0, otherwise,

is a t-subnorm.

Proposition 12. Let ∗ : [0, 1]2 → [0, 1] be a t-conorm without one-divisors,
(Ii)ni=0 be a partition of [0, 1[ consisting of right-open sub-intervals. Assume that
∗′ is a discrete t-norm on Jn such that ∗′ is strictly increasing on the domain
{(i, j) | i, j ∈ Jn, i ∗′ j > 0}. Then the operation ⊕5 defined by

x ⊕5 y =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ϕ−1
i∗′j(ϕi(x) ∗ ϕj(y)), if x ∈ Ii, y ∈ Ij and i ∗′ j > 0,

or min(x, y) ∈ I0, max(x, y) ∈ In,
1, if max(x, y) = 1,
0, otherwise,

is a proper disjunctive uninorm with neutral element an−1.
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Proposition 13. Let ∗ : [0, 1]2 → [0, 1] be a t-conorm, (Ii)ni=0 be a partition of
]0, 1] consisting of left-open sub-intervals. Assume that ∗′ is a discrete uninorm
on Jn with neutral element h such that ∗′ is strictly increasing on the domain
{(i, j) | i, j ∈ Jn, max(i, j) ≤ h, i ∗′ j > 0} and {(i, j) | i, j ∈ Jn, min(i, j) ≥ h,
i ∗′ j < n}. Then the operation ⊕6 defined by

x ⊕6 y =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ai+1, if max(x, y) > ah−1 and ai < min(x, y) ≤ ai+1 ≤ ah−1,
χ−1
i∗′j(χi(x) ∗ χj(y)), if x ∈ Ii, y ∈ Ij , max(i, j) ≤ h − 1 and i ∗′ j > 0,

or h − 1 < min(i, j) and i ∗′ j < n,
0, if x ∈ Ii, y ∈ Ij , max(i, j) ≤ h − 1 and i ∗′ j = 0,

or min(x, y) = 0,
1, otherwise,

is associative, commutative and increasing.

Proposition 14. Let ∗ : [0, 1]2 → [0, 1] be a t-conorm, (Ii)ni=0 be a partition of
]0, 1] consisting of left-open sub-intervals. Assume that ∗′ is a discrete t-norm on
Jn such that ∗′ is strictly increasing on the domain {(i, j) | i, j ∈ Jn, i ∗′ j > 0}.
Then the operation ⊕7 defined by

x ⊕7 y =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

χ−1
i∗′j(χi(x) ∗ χj(y)), if x ∈ Ii \ {an−1}, y ∈ Ij \ {an−1} and i ∗′ j > 0,

or min(x, y) ∈ I0, max(x, y) ∈ In,
y, if x = an−1,
x, if y = an−1,
0, otherwise,

is a proper conjunctive uninorm with neutral element an−1 if and only if ∗ has
no one-divisors.

Results

Inspired by the construction method of paving, we construct some new associa-
tive, commutative and increasing operations on the unit interval from a t-norm
on the unit interval and a discrete t-norm/t-superconorm/t-conorm/uninorm.
Similarly, we present the dual constructions from a t-conorm and a discrete
t-norm/t-subnorm/t-conorm/uninorm.
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On Implication Operators
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Abstract. Distributivity properties play an important role in fuzzy
research. Based on the solution of the autodistributivity functional equa-
tions, we give a characterisation of two types of distributivity of fuzzy
implication. Based on the mean disjunctive operator, the mean implica-
tion operator is introduced. Using the Pliant operators -where all oper-
ators have a common generator function- we show that some weakened
properties of the fuzzy mean implications are valid. In the propositions
we use the fixed point of the negation as a threshold. Finally, the gener-
alized modus ponens is examined in this framework.

1 Introduction

The implication operator (→) plays a significant role in classical two-valued
logic. From implication, we can obtain all other basic logical connectives of the
binary logic,viz., the binary operators- and (∧), or (∨)-and the unary negation
operator (¬). The implication operator holds the center stage in the inference
mechanisms of any logic, like modus ponens and modus tollens. The truth table
for the classical implication operator is given in Table 1.

In multivalued logic, several problems arise with the definition of the impli-
cation operator. Even if we find good connectives (negation and disjunction) for
the definition of an implication, these do not preserve the good properties of the
classical implication operator.

Now we will give some basic definition.

Definition 1. The negation operator is compatible with two-valued logic and it
is continuous, strictly decreasing function and involutive, i.e. it is a strong nega-
tion. The negation operator can be characterized by its fixed point ν (η(ν)) = ν).
The negation operator with fixed point ν will be denoted by ην(x).

Definition 2. Let c(x, y) and d(x, y) denote the strictly monotonously increas-
ing Archimedian t-norm and t-conorm. The representation of these operators is

c(x, y) = f−1
c (fc(x) + fc(y)) d(x, y) = f−1

d (fd(x) + fd(y)),

where fc(x) and fd(x) are the generator functions of the operators and fc(x) :
(0, 1] → [0,∞] is a strictly decreasing continuous function and fd(x) : [0, 1) →
[0,∞] is a strictly monotonously increasing continuous function and we suppose

c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 25
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that the conjunctive and the disjuctive operator build a DeMorgan class with a
negation operator. We will denote

c̄(x, y) = f−1
c

(
1
2
(fc(x) + fc(y))

)
d̄(x, y) = f−1

d

(
1
2
(fd(x) + fd(y))

)

the corresponding mean operators.

Table 1. Truth table for classical implication

p q p → q

0 0 1

0 1 1

1 0 0

1 1 1

2 Fuzzy Implication and Its Properties

Here, we will use the definition proposed by Baczyński [2,15]. Then, we will sum-
marise the properties and definitions associated with the implication operator.

Definition 3. A function i : [0, 1]2 → [0, 1] is called a fuzzy implication if it
satisfies, for all x, x1, x2, y, y1, y2 ∈ [0, 1], the following conditions:

if x1 ≤ x2, then i(x1, y) ≥ i(x2, y), i.e., i(·, y) is decreasing, (i1)

if y1 ≤ y2, then i(x, y1) ≤ i(x, y2), i.e., i(x, ·) is increasing, (i2)

i(0, 0) = 1, (i3)

i(1, 1) = 1, (i4)

i(1, 0) = 0. (i5)

The set of all fuzzy implications will be denoted by I .

Remark 1. From Definition 3, we may deduce that each fuzzy implication i is
constant for x = 0 and for y = 1, i.e. i satisfies the following properties, called
the left and right boundary conditions, respectively:

i(0, y) = 1, y ∈ [0, 1], i(x, 1) = 1, x ∈ [0, 1].
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Therefore, i also satisfies the normality condition

i(0, 1) = 1 (i6)

Consequently, every fuzzy implication restricted to the set [0, 1]2 coincides with
the classical implication, and hence fulfils the binary implication truth table
provided in Table 1.

It is also apparent that the fuzzy implication i (a function of two real vari-
ables) is continuous.

Additional properties of fuzzy implications were postulated by theorists (see
Trillas and Vaverde, Dubois and Prade, Smeth and Magrez, Fodor and Roubens,
Gottwald [12,17,18]).

The fuzzy implication i is said to satisfy
the left neutrality property if

i(1, y) = y, y ∈ [0, 1]; (1)

the exchange principle, if

i(x, i(y, z)) = i(y, i(x, z)), x, y, z ∈ [0, 1]; (2)

the identity principle, if

i(x, x) = 1, x ∈ [0, 1]; (3)

the ordering property, if

i(x, y) = 1 if and only if x ≤ y, x, y ∈ [0, 1]. (4)

One of the most importatnt tautologies in classical two-valued logic is the
law of contraposition.

Let i ∈ I and η be a fuzzy negation. i is said to satisfy
The law of contraposition with respect to η(x), if

i(x, y) = i(η(y), η(x)), x, y ∈ [0, 1], (5)

The law of left contraposition with respect to η, if

i(η(x), y) = i(η(y), x), x, y ∈ [0, 1], (6)

The law of right contraposition with respect to η, if

i(x, η(y)) = i(y, η(x)), x, y ∈ [0, 1], (7)

The general form of the law of importation is given by

i(c(x, y), z) = i(x, i(y, z)), x, y, z ∈ [0, 1], (8)

where i is a fuzzy implication and c is a conjunctive operator.
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3 Distributivity of Fuzzy Implication

In classical logic, the distributivity of a binary operator over another deter-
mines the underlying structure of the algebra imposed by these operators. In
fuzzy logic too, we find that many papers discuss the distributivity of t-norms
over t-conorms (see [3–5,13]), uninorms over t-operators [14,16] and the like.
The following are the four basic distributive equations involving an implication
operator:

(x ∨ y) → z ≡ (x → z) ∧ (y → z), (d1)

(x ∧ y) → z ≡ (x → z) ∨ (y → z), (d2)

x → (y ∧ z) ≡ (x → y) ∧ (x → z), (d3)

x → (y ∨ z) ≡ (x → y) ∨ (x → z), (d4)

Each of the above equivalences is a tautology in classical logic. Here, we will
concentrate on (d2) and (d4) to find the necessary and sufficient conditions. In
this equation the conjunctive operator is denoted by ĉ(x, y) and the disjunctive
operator by d̂(x, y). The properties of ĉ(x, y) and d̂(x, y) are given in Definition 2.

To solve the distributivity aspect of the fuzzy implication problem, we have
to find the proper disjunctive operator d̂(x, y) when the definition of the impli-
cation is

x → y = x̄ ∨ y = d̂(x, y) (9)

This is the so-called S implication. To find the proper solution, let us turn to
the autodistributivity functional equations (see Aczel [1]):

F (x, F (y, z)) = F (F (x, y), F (x, z)) (10)
F (F (x, y), z) = F (F (x, z), F (y, z))

We need a definition of reducibility:

Definition 4. F (x, y) is reducible if

F (t, x) 
= F (t, y) F (x, t) 
= F (y, t) for x 
= y

Proposition 1 [1]. The most general, continuous, reducible function F (x, y) ∈
(a, b) and (x, y ∈ (a, b)) that satisfies the autodistributivity Eq. (10) is

F (x, y) = f−1 ((1 − q)f(x) + qf(y)) , (q ∈ (0, 1))

with an arbitrary, continuous monotonic f (generator function) and constant q.
If F (x, y) is commutative, then q = 1

2 .

F (x, y) = f−1

(
1
2
(f(x) + f(x))

)
(11)
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Now we can give the necessary and sufficient conditions for the distributivity
of the fuzzy implication operator. The autodistributivity equation is generally
solved on [a, b] interval. In our case [a, b] = [0, 1].

Proposition 2. The distributivity of fuzzy implications (d2)(d4) holds if and
only if

d̂(x, y) = d̄(x, y)

c̄(x, y) = f−1

(
1
2
(fc(x) + fc(y))

)

d̄(x, y) = f−1

(
1
2
(fd(x) + fd(y))

)

ī(x, y) = f−1

(
1
2
(fd(η(x)) + fd(y))

)

Proof. The proof is based on the autodistributivity functional equation and its
solution.

The distributivity of fuzzy implication (d2) and (d4) can be written using
the S implication (9)

x ∧ y ∨ z = (x̄ ∨ ȳ) ∨ z = (x̄ ∨ z) ∨ (ȳ ∨ z)
x̄ ∨ (y ∨ z) = (x̄ ∨ y) ∨ (x̄ ∨ z),

replacing x̄, ȳ and z̄ by x, y, z and denoting x ∨ y by d̂(x, y). Then we get the
autodistributivity Eq. (10). Based on Aczel’s theorem, the necessary and suffi-
cient conditions for autodistributivity are

d̂(x, y) = d̄(x, y) = f−1

(
1
2
(fd(x) + fd(y)

)
.

So the fuzzy implication operator is

ī(x, y) = f−1

(
1
2
(f(η(x)) + f(y))

)
.

Remark 2. ī(x, y) is a new type of S implication based on the mean operator
d̄(x, y). This new operator also depends on the negation operator and because it
is characterized by its fixed point, the corresponding mean implication operator
is also characterized by this fixed point and is denoted by iν(x, y). To see its
properties we will use a special class of operator system.

4 Pliant Implication Operator

Several different structures appear in the framework of fuzzy theory. One of them
is the Pliant concept. In this system we have infinitely many negation operators,
and hence infinitely many fixed points can be defined (see e.g. [6,8,9,11]). All
Pliant operators are created by using just one generator function.
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Definition 5. We call c(x, y) and d(x, y) Pliant operators when the generator
functions, given in Definition 2, satisfy

fc(x)fd(x) = 1

Let us denote fc(x) by f(x). Then the Pliant operators are

c(x, y) = f−1(f(x) + f(y)) c̄(x, y) = f−1

(
1
2
(f(x) + f(y)

)

d(x, y) = f−1

(
1

1
f(x) + 1

f(y)

)
d̄(x, y) = f−1

(
2

1
f(x) + 1

f(y)

)

= f−1

(
f(x)f(y)

f(x) + f(y)

)
= f−1

(
2f(x)f(y)

f(x) + f(y)

)

Here, not only the associative operator is given, but so are the corresponding
bisymmetric mean operators.

The corresponding negation operator is

ην(x) = f−1

(
f2(ν)
f(x)

)
, (12)

where ν is the fixed point of the negation operator. This value can be interpreted
as a threshold (decision) level. The modifier operator in the Pliant system has
the following form

τν∗(x) = f−1

(
f(ν)

f(x)
f(ν∗)

)

And if ν < ν∗ then it is a strengthened unary operator; and if ν > ν∗ it is a
weakened unary operator (see [7,10]).

Remark 3. If f(x) =
(
1−x

x

)α when α ∈ R
+, then we have the Dombi operator

system.

Definition 6. A function i : [0, 1]2 → [0, 1] is called a (d, η)-implication if there
exists a disjunctive operator and a fuzzy negation η such that

iν(x, y) = x → y = x̄ ∨ y = d(ην(x), y)

īν(x, y) = x
.→ y = x̄

.∨ y = d̄(ην(x), y).

x, y ∈ [0, 1] if ην is a strong fuzzy negation. Here the mean implication operator
is based on the mean disjunctive operator. The implication operator has a lower
ν index which indicates the fixed point of the negation operator.

Proposition 3. The general form of the Pliant and mean-Pliant implication
operators is:

iν(x, y) = f−1

(
f2(ν)f(y)

f2(ν) + f(x)f(y)

)
, (13)

īν(x, y) = f−1

(
2f2(ν)f(y)

f2(ν) + f(x)f(y)

)
. (14)
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when the implication operator is defined by (10).

Proof. We get the result by direct calculation using the Pliant operators.

In the Dombi operator case, we get the following expressions:

i(α)
ν (x, y) =

(
(1 − ν)2αxαyα + ν2α(1 − x)α(1 − y)α

) 1
α

((1 − ν)2αxαyα + ν2α(1 − x)α(1 − y)α)
1
α + (1 − ν)2(1 − y)x

(15)

ī(α)
ν (x, y) =

(
(1 − ν)2αxαyα + ν2α(1 − x)α(1 − y)α

) 1
α

((1 − ν)2αxαyα + ν2α(1 − x)α(1 − y)α)
1
α + 2

1
α (1 − ν)2(1 − y)x

(16)

If ν = 1
2 , then

i(α)
ν (x, y) =

(xαyα + (1 − x)α(1 − y)α)
1
α

(xαyα + (1 − x)α(1 − y)α)
1
α + (1 − y)x

(17)

See Figs. 1, 2 and 3

ī(α)
ν (x, y) =

(xαyα + (1 − x)α(1 − y)α)
1
α

(xαyα + (1 − x)α(1 − y)α)
1
α + 2

1
α (1 − y)x

(18)

Fig. 1. α = 0.3 Fig. 2. α = 1 Fig. 3. α = 8

If α = 1, then

iν(x, y) = i(1)ν (x, y) =
(1 − ν)2xy + ν2(1 − x)(1 − y)
(1 − ν)2x + ν2(1 − x)(1 − y)

. (19)

See Figs. 4, 5 and 6

īν(x, y) = ī(1)ν (x, y) =
(1 − ν)2xy + ν2(1 − x)(1 − y)

(1 − ν)2x(2 − y) + ν2(1 − x)(1 − y)
. (20)
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Fig. 4. ν = 1
4

Fig. 5. ν = 1
2

Fig. 6. ν = 3
4

If α = 1 and ν = 1
2 , then

i(x, y) = i 1
2
(x, y) =

xy + (1 − x)(1 − y)
x + (1 − x)(1 − y)

(21)

ī(x, y) = ī 1
2
(x, y) =

xy + (1 − x)(1 − y)
x(2 − y) + (1 − x)(1 − y)

(22)

In Table 2, we summarize the properties of iν(x, y) and īν(x, y).
It is obvious that in the S implication case, the identity principle is not

valid. The fixed point of the negation [0, 1] interval is divided into two intervals
[0, ν), [ν, 1]. Here, this fixed point can be viewed as a threshold. We can weaken
the indentity principle so that īν(x, x) ≥ ν.

Proposition 4. The Pliant implication function īν : [0, 1]2 → [0, 1] satisfies the
weak identity principle. That is

īν(x, x) ≥ ν. (23)

Proof. Since

ī(x, y) = f−1

(
2f2(ν)f(x)

f2(ν) + f2(x)

)
≥ ν,

it follows that
2f2(ν)f(x)

f2(ν) + f2(x)
≤ 1

One of the most important features of the implication operator is the ordering
principle. The S implication doesn’t have this property. In the next theorem, we
will show that a weakened form of it does.

Proposition 5. For the mean implication operator, the following is valid:

if x ≤ y then īν(x, y) ≥ ν
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Table 2. Properties of the implication and mean-implication operators

Property iν(x, y) īν(x, y)

1 Continuity i( lim
n→∞

xn, lim
n→∞

yn) =

lim
n→∞

i(xn, yn)

� �

2 Lipschitz |F (x1, y1) − F (x2, y2)| ≤
c · (|x1 − x2| + |y1 − y2|)

� �

3 First place monotonicity if x1 ≤ x2, then i(x1, y) ≥
i(x2, y)

� �

4 Second place isotonicity if y1 ≤ y2, then i(x, y1) ≤ i(x, y2) � �
5. Compatibility i(0, 0) = 1 � �

i(1, 1) = 1 � �
i(1, 0) = 0 � �
i(0, 1) = 1 � �

6 Dominance of falsity i(0, x) = 1 � �
7 Dominance of truth

consequent
i(x, 1) = 1 � �

8 Left neutrality i(1, x) = x � −
9 The strong negation

principle
i(x, 0) = ην(x) � −

10 Law of contraposition i(x, y) = i(ην(y), ην(x)) � �
i(ην(x), y) = i(ην(y), x) � �
i(x, ην(y)) = i(y, ην(x)) � �

11 Exchange principle iν(x, iν(y, z)) = iν(y, iν(x, z)) � �
12 Law of importation i(c(x, y), z) = i(x, i(y, z)) � �
13 Identity principle i(x, x) = 1 − −
14 Ordering property i(x, y) = 1 if and only if x ≤ y − −
15 Distributivity property 1 ī(c(x, y), z) = d̄(̄i(x, z), ī(y, z)) − �
16 Distributivity property 2 ī(x, d̄(y, z)) = d̄(̄i(x, y), ī(x, z)) − �

Proof. We use the fact that x ≤ y so f(x) ≥ f(y) and f(ν)
f(x) ≤ f(ν)

f(y) and it is
known that

2 ≤ f(x)
f(ν)

+
f(ν)
f(x)

≤ f(x)
f(ν)

+
f(ν)
f(y)

.

Hence 2f(ν)f(y)
f(x)f(y) + f2(ν)

≤ 1

Next, multiplying both sides by f(ν) and applying f−1(x) (a strictly decreas-
ing function), we get the desired result. That is,

2f2(ν)f(y)
f(x)f(y) + f2(ν)

≤ f(ν)

ī(x, y) ≥ ν.
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Remark 4. The converse is not true i.e. there exist an x and y such that

īν(x, y) ≥ ν and x 
≤ y (24)

5 Implication and Modus Ponens

An implication operator plays an important role in the deductive process of a
logic, which is usually realized by some rules of inference. Modus ponens is one
such rule of inference, wherein given two classical logic propositions A → B and
from A we infer B. A similar rule of inference in the case of fuzzy propositions
is called the generalized modus ponens (GMP), wherein given two fuzzy propo-
sitions A′ → B′ and from A′ we infer B′. A key point of this inference is that
even if A′ 
= A, we will still be able to infer a reasonable conclusion B′.

The classical description of modus ponens is

x = 1
x → y = 1
y = 1

Next, we will use the threshold concept and we will show that the following
proposition is valid.

Proposition 6. In the Pliant system, the modus ponens is true using the mean
implication. Namely,

x ≥ ν
īν(x, y) ≥ ν

y ≥ ν
(25)

Proof. So we can write (25) using the fact that f(x) is a strictly decreasing
function and using the Pliant operators, we get

f(x)
f(ν) < 1

2 f(y)
f(ν)

1 + f(x)
f(ν)

f(y)
f(ν)

< 1

f(y)
f(ν) < 1

(26)

So 1 + f(x)
f(ν)

f(y)
f(ν) > 2 f(y)

f(ν) and we have 1 − f(y)
f(ν) > f(y)

f(ν)

(
1 − f(x)

f(ν)

)
because

f(x)
f(ν) < 1 so f(y)

f(ν)

(
1 − f(x)

f(ν)

)
> 0 and 1 − f(y)

f(ν) > 0.

The Generalized Modus Ponens (GMP) can be solved by replacing x ≥ ν by
τνx

(x) ≥ ν. νx is given and we have to find τνy
(y).
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Proposition 7. In the Pliant system, the solution of the Generalised Modus
Ponens is

τνx
(x) ≥ ν

īν(x, y) ≥ ν
τνy

(y) ≥ ν
or

x ≥ νx

īν(x, y) ≥ ν
y ≥ νy

and if νx ≤ f−1 (2f(ν)), then

νy = f−1

(
f2(ν)

2f(ν) − f(νx)

)
.

Proof. Now we use this proposition and in (26) the inequality relation of the
implication operator will have the following form

f(y)
f(ν)

≤ 1

2 − f(x)
f(ν)

.

Here we use the fact that νx ≤ f−1 (2f(ν)). The larger bound for this inequaility
is x = νx. So solving for y, we get the desired result (y = νy).

6 Conclusions

Here, a new so-called mean implication operator is introduced. Necessary and
sufficient conditions were given for two types of fuzzy distributivity implications.
The implication operator has a fixed point as well, which corresponds to the
negation operator we need. The fixed point in the negation operator is used as a
threshold. Based on this threshold, some weakened properties of the implication
operator were proved in the framework of the Pliant concept and modus ponens
was also examined. It is an open question whether the general mean implication
operator has this property too.
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Abstract. The purpose of this paper is to study fuzzy operators induced
by fuzzy relations and fuzzy relations induced by fuzzy operators. Many
results are obtained about the relationship between ∗-preorders and fuzzy
consequences operators for a fixed t-norm ∗. We analyse these properties
by considering a semi-copula (generalization of t-norm concept) instead
of a t-norm. Moreover, we show that the conditions imposed cannot be
relaxed. We have been able to prove some important results about the
relationships between fuzzy relations and fuzzy operators in this more
general context.

1 Introduction

Fuzzy relations and fuzzy operators are essential tools in fuzzy logic. The fuzzy
operator induced by a fuzzy relation through Zadeh’s compositional rule and the
fuzzy relation induced by a fuzzy operator are concepts that have been studied
extensively (see for instance [3,4,8–10,16]).

Fuzzy consequence operator notion was introduced by Pavelka in 1979. He
extends the notion of consequence operator defined by Tarski to fuzzy set theory
field (see [15]). From then, fuzzy consequence operators have been largely studied
in the approximate reasoning context using different fuzzy logics (see for instance
[2–4,9,10,12,13]).

Since the introduction of Fuzzy Set Theory by Zadeh in 1965, the concept of
fuzzy ∗-preorder has been essential on fuzzy logic. Moreover, fuzzy consequence
operators are closely related to fuzzy preorders through coherent operators which
were introduced in the early nineties by Castro and Trillas in [4].

T-norms are a useful tool in order to define the transitivity for fuzzy relations
but it is well-known that these operators are too restrictive in some cases (see
for instance [5,6]). Associativity, commutativity and the boundary conditions
can be weakened.

c© Springer International Publishing AG 2018
V. Torra et al. (eds.), Aggregation Functions in Theory and in Practice,
Advances in Intelligent Systems and Computing 581, DOI 10.1007/978-3-319-59306-7 26
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This paper is organized as follows: in Sect. 2, we show some basic notions
which are required in the sequel. In Sect. 3, we study and characterize the rela-
tionship between preorders and fuzzy consequence operators at the general con-
text of conjunctors. Section 4 is devoted to the study of a specific families of
fuzzy consequence operators. In Sect. 5, we characterize when an operator gen-
erated by a fuzzy relation is a FCO for a finite universe. In fact, we prove that
this operator is a FCO if a only if the fuzzy relation is a •-preorder. Finally, we
address some conclusions.

2 Preliminaries

In this section we give a brief account of some notions and results which are
necessary in the following sections. A binary operation ∗ : [0, 1] × [0, 1] −→ [0, 1]
is called a t-norm (see [14]) if it verifies the following properties:

1. (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ [0, 1].
2. a ∗ b = b ∗ a for all a, b ∈ [0, 1].
3. 1 ∗ a = a for all a ∈ [0, 1].
4. If a1 ≤ a2, then a1 ∗ b ≤ a2 ∗ b for all a1, a2, b ∈ [0, 1].

Conjunctor (see [5,6]) is a more general concept which allows us to work with
fuzzy relations and operators:

Definition 1. A binary operation • : [0, 1]×[0, 1] −→ [0, 1] is called a conjunctor
if:

1. If a1 ≤ a2 and b1 ≤ b2, then a1 • b1 ≤ a2 • b2 for all a1, a2, b1, b2 ∈ [0, 1].
2. 0 • 1 = 1 • 0 = 0 y 1 • 1 = 1.

The conjunctor • is said to be associative if (a • b) • c = a • (b • c) for all a,
b, c ∈ [0, 1]. Furthermore, if the conjunctor • verifies: 1 • a = a • 1 = a for all
a ∈ [0, 1], it is called a semi-copula (see for instance [1,7]).

Note that the conjunction for classical relations satisfies the two conditions
in the previous conditions and that any t-norm is a particular case of conjunctor.

Let X be a non-empty universal set and let R be a fuzzy relation on X:

1. If R(x, x) = 1 for all x ∈ X, R is named reflexive relation.
2. If R(x, y) = R(y, x) for all x, y ∈ X, R is named symmetric relation.
3. If R(x, y) • R(y, z) ≤ R(x, z) for all x, y, z ∈ X, R is named •-transitive

relation.

If R is a fuzzy relation which verifies (1) and (3), R is called •-preorder. If R is
a fuzzy relation which verifies (1), (2) and (3), R is called •-indistinguishability
(or •-equivalence).
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Definition 2. A function C : [0, 1]X −→ [0, 1]X is called Fuzzy Consequence
Operator (FCO, for short) if it fulfils the following axioms:

(C1) μ ⊂ C(μ) for all fuzzy set in [0, 1]X (Inclusion).
(C2) If μ1 ⊂ μ2, then C(μ1) ⊂ C(μ2) for all μ1, μ2 ∈ IX (Monotony).
(C3) C(C(μ)) ⊂ C(μ) for all μ ∈ IX (Idempotence).

The inclusion of fuzzy subsets is given by the pointwise order, that is, μ1 ⊂ μ2

if μ1(x) ≤ μ2(x) for all x ∈ X.

We denote by k the constant fuzzy set defined by k(x) = k for all x ∈ X.

Remark 1. Note that under the axioms (C1) and (C2), the idempotence axiom
(C3) may be written equivalently as C(C(μ)) = C(μ)∀μ ∈ IX .

Fuzzy consequence operators have been extensively studied (see for instance
[11,17]) when we deal with t-norms. They are also called closure operators,
both in the algebraic and in the topological context. The following notion is a
generalization for the case of conjunctors. It will be a very important property
when we study the relationship between fuzzy consequence operators and fuzzy
relations.

Definition 3. Given a conjunctor •, an operator C is called •-coherent if it
verifies for all x, a ∈ X and μ ∈ [0, 1]X :

μ(a) • C(ϕa)(x) ≤ C(μ)(x)

where ϕa denotes the singleton a, that is, ϕa(a) = 1 and ϕa(x) = 0 for all x �= a.

3 On the Relationship Between •-preorders and Fuzzy
Consequence Operators

In [9], Elorza and Burillo achieved some results about the relationship of fuzzy
preorders and fuzzy consequence operators. Now, we will extend these results to
the case we are working with conjunctors instead of just t-norms.

Let us introduce the notion of fuzzy operator induced by a fuzzy relation and
viceversa, based on the studies developed in [4].

Definition 4. Let • be a conjunctor and let R be a fuzzy relation, the fuzzy
operator induced by R through sup-• Zadeh’s compositional rule is given by

C•
R(μ)(x) = sup

ω∈X
{μ(ω) • R(ω, x)}

Definition 5. Let C : [0, 1]X → [0, 1]X be a fuzzy operator, the fuzzy relation
induced by C is defined by

RC(x, y) = C(ϕx)(y)

These two concepts are very related, as we can see at the following result.
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Theorem 1. Let • be a semi-copula and let R be a fuzzy relation on the uni-
versal set X, then

R = RC•
R

Proof. Let x, y be two elements in X, we have that

RC•
R
(x, y) = C•

R(ϕx)(y) = sup
ω∈X

{ϕx(ω) • R(ω, y)} = 1 • R(x, y) = R(x, y)

Thus, R and RC•
R

are the same relation. 	

In the particular case that R has some specific properties, the fuzzy operator

induced by it also fulfils some extra properties. Indeed,

Theorem 2. Let X be a finite universal set, let • be an associative semi-copula,
and let R be a fuzzy relation on X. If R is •-preorder, then the operator C•

R is
a FCO.

Proof

(C1) μ(x)=μ(x) • R(x, x) ≤ sup
ω∈X

{μ(ω) • R(ω, x)}=C•
R(μ)(x) for all x∈X.

(C2) If μ1 ⊂ μ2, then we have:

C•
R(μ1)(x) = sup

ω∈X
{μ1(ω) • R(ω, x)} ≤ sup

ω∈X
{μ2(ω) • R(ω, x)} = C•

R(μ2)(x)

for any x ∈ X.
(C3) Let x be any element in X, then

C•
R(C•

R(μ))(x) = sup
ω∈X

{sup
τ∈X

{μ(τ) • R(τ, ω)} • R(ω, x)}
= sup

ω∈X
{sup

τ∈X
{(μ(τ) • R(τ, ω)) • R(ω, x)}}

= sup
ω∈X

{sup
τ∈X

{μ(τ) • (R(τ, ω) • R(ω, x))}}
≤ sup

ω∈X
{sup

τ∈X
{μ(τ) • R(τ, x)}} = sup

τ∈X
{μ(τ) • R(τ, x)} = C•

R(μ)(x)

Therefore, C•
R fulfils all the requirement in Definition 2, that is, it is a fuzzy

consequence operator. 	

Note that the existence of the unity for the conjunctor cannot be removed in

Theorems 1 and 2 as it is shown in the following example.

Example 1. Let X be an universal set and let • be the conjunctor defined by:
1 • 1 = 1 and x • y = 0 otherwise.

• Let R be a •-fuzzy preorder such that there exist x, y∈X with 0 < R(x, y)<1.
Then,

RC•
R
(x, y) = C•

R(ϕx)(y) = sup
ω∈X

{ϕx(ω) • R(ω, y)} = 1 • R(x, y) = 0 �= R(x, y)

that is, the equality for Theorem 1 is not fulfilled.
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• Let μ be the fuzzy set such that μ(x) = 1
2 for all x ∈ X. Then,

μ(x) =
1
2

> 0 = sup
ω∈X

{
1
2

• R(ω, x)
}

= sup
ω∈X

{μ(ω) • R(ω, x)} = C•
R(μ)(x)

Since C•
R does not satisfy the axiom (C1) in Definition 2, it is not fuzzy

consequence operator for any •-preorder R. Thus, we can see the existence of
the unity for the conjunctor is a necessary condition in Theorem2.

We can see from Theorem 2 as the commutative property is not necessary
for proving that preorder induce fuzzy consequence operators. Thus, we do not
need to work with t-norms and it is enough to deal with associative semi-copula.
Indeed, we are going to see that C•

R is even •-coherent, even in the case the
conjunctor is not associative.

Theorem 3. Let • be a semi-copula and let R be a fuzzy relation on an universal
set X, then C•

R is •-coherent.
Proof. Let consider any x, a ∈ X and any μ ∈ [0, 1]X , then

μ(a) • C•
R(ϕa)(x) = μ(a) • sup

ω∈X
{ϕa(ω) • R(ω, x)} = μ(a) • (1 • R(a, x))

= μ(a) • R(a, x) ≤ sup
ω∈X

{μ(ω) • R(ω, x)} = C•
R(μ)(x)

that is, C•
R is •-coherent. 	


Conversely, we are going to see the properties inherit by the fuzzy relation
induced by a fuzzy consequence operator.

Theorem 4. Let • be a conjunctor and let C : [0, 1]X → [0, 1]X be a •-coherent
FCO, then the fuzzy relation RC induced by C is a •-preorder.
Proof. (R1) RC(x, x) = C(ϕx)(x) ≥ ϕx(x) = 1 ∀x ∈ X by the axiom (C1) in

Definition 2.
(R2) Since C is •-coherent and a fuzzy consequence operator,

RC(x, y) • RC(y, z) = C(ϕx)(y) • C(ϕy)(z) ≤ C(C(ϕx))(z) = C(ϕx)(z) = RC(x, z)

for any x, y, z ∈ X. 	


4 Families of Fuzzy Consequence Operators Using
Conjunctors

Let S be a non-empty family of fuzzy subsets of X, an operator CS was defined
in [9] as

CS : [0, 1]X −→ [0, 1]X

μ �→ CS(μ)

where
CS(μ)(x) = inf

ν∈S,μ⊂ν
{ν(x)}
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It was also proven that CS is a fuzzy consequence operator which satisfies:

1. If μ ∈ S, then CS(μ) = μ.
2. If S = {μ}, then

CS(ρ) =
{

μ ifρ ⊂ μ
X otherwise

The use of ∗-coherence property in fuzzy consequence operators setting is a key
concept, so it is interesting to ask when CS will be •-coherent for a conjunctor •.
The following theorem shows a sufficient condition in order to get it.

Let Φ1 be the set of fuzzy singletons, that is, Φ1 = {ϕx | x ∈ X}.

Theorem 5. If Φ1 ⊂ S, then CS is •-coherent for every semi-copula •.
Proof. Since a • 1 = a, we have a • b ≤ a • 1 = a. In the same way, 1 • b = b and
a • b ≤ b.

Thus,

μ(a) • CS(ϕa)(x) = μ(a) • ϕa(x) ≤ min{μ(a), ϕa(x)} ≤ μ(x) ≤ CS(μ)(x)

for any x, a ∈ X. 	

The chain Ω∗

p ⊂ Ω̃∗ ⊂ Ω∗
rt ⊂ Ω ⊂ Ω′ was proven in the case of t-norms (see

[9]), where Ω′ = {C | C : IX −→ IX}, Ω = {C | C is FCO}, Ω∗
rt = {C ∈

Ω | RC is ∗ -preorder}, Ω̃∗ = {C ∈ Ω | C is ∗ -coherent} and Ω∗
p = {C ∈

Ω | ∃R ∗ -preorder with C = C∗
R}. There is not problem to extend this chain to

semi-copulas in a natural way:

Ω•
p ⊂

(1)
Ω̃• ⊂

(2)
Ω•

rt ⊂
(3)

Ω ⊂
(4)

Ω′

In fact, (1) is due to Theorem 3, (2) is due to Theorem 4 and (3) and (4) are
obvious.

Moreover, the inclusions in this chain are strict, like the following examples
show.

Example 2 (Ω•
p �= Ω̃•). Let • a semi-copula and let S be a family of fuzzy sets

of X such that Φ1 ⊂ S, if CS is not the identity operator, then CS is •-coherent
but CS is not in Ω•

p .

In fact, by Theorem 5, Cs ∈ Ω̃•. If CS is induced by a •-preorder R, then by
Theorem 1, we have that CS is equal to CRC•

R
for the •-preorder R. Then, we

have: for all x ∈ X

CRC•
R

(μ)(x) = sup
ω∈X

{μ(ω) • CS(ϕω)(x)} = sup
ω∈X

{μ(ω) • ϕω(x)} = μ(x) • 1 = μ(x)

Hence, μ(x) = CS(μ)(x) for all x ∈ X, but there exists some x ∈ X, μ(x) �=
CS(μ)(x) because CS is not the identity operator.

Example 3 (Ω̃• �= Ω•
rt). Let • a semi-copula and let X be a set with two or more

elements. If a �= b in X, μ a fuzzy set such that μ(x) < 1 for all x ∈ X and
μ(a) > μ(b), S = {μ}. Then CS ∈ Ω•

rt, but CS is not •-coherent.
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In fact, since CS fulfils (C1), RCS
is a reflexive relation. For each ϕx, we have

that μ does not contain ϕx, then for all x, y, z ∈ X:

RCS
(x, z) = CS(ϕx)(z) = 1 ≥ RCS

(x, y) • RCS
(y, z)

Therefore, RCS
is a •-preorder. Now, since μ(a) > μ(b), we have:

μ(a) • CS(ϕa)(b) = μ(a) • 1 = μ(a) > μ(b) = CS(μ)(b)

Therefore, CS is not •-coherent.

Example 4 (Ω•
rt �= Ω). Let • a semi-copula and let X be a set with three or

more elements, let x, y, z ∈ X different elements and let μ be a fuzzy set such
that μ(x) = 1 �= μ(y) > μ(z). If S = {μ}, then CS ∈ Ω but CS �∈ Ω•

rt.
In fact, we know that CS is fuzzy consequence operator. Now, since ϕx ⊂ μ

and ϕy �⊂ μ, we have:

CS(ϕx)(z) = μ(z) < μ(y) = μ(y) • 1 = CS(ϕx)(y) • CS(ϕy)(z)

Hence, RCS
(x, z) < RCS

(x, y)•RCS
(y, z). We conclude RCS

is not •-preorder.

5 Operators Induced by Relations Using Conjunctors

The purpose of this section is to show when the •-preorder obtained in Theorem4
from the fuzzy consequence operator obtained from a •-preorder remains equal
to the initial •-preorder.

In order to do that, two new axioms for fuzzy consequence operators have to
be introduced:

(C4) C(μ ∨ ν) = C(μ) ∨ C(ν) for all μ, ν ∈ [0, 1]X

(C5) C(k ∧ ϕx) = k • C(ϕx) for all ϕx ∈ Φ1 and all constant fuzzy set k.

For any finite universe X, Esteva et al. (see [12]) proved the two following
results:

• Let X be a finite universal set, let ∗ be a t-norm and let C : [0, 1]X −→ [0, 1]X

be a fuzzy operator, then C satisfies (C1), (C4) and (C5) if and only if there
exists a reflexive relation R such that C = C∗

R.
• Let X be a finite universal set, let ∗ be a t-norm and let C : [0, 1]X −→ [0, 1]X

be a fuzzy operator, then C satisfies (C1), (C3), (C4) and (C5) if and only if
there exists a ∗-preorder R such that C = C∗

R.

Both results are extended the natural way to semi-copulas:

Theorem 6. Let X be a finite universal set, let • be a semi-copula and let
C : [0, 1]X −→ [0, 1]X be an operator, then C satisfies (C1), (C4) and (C5) if
and only if there exists a reflexive relation R such that C = C•

R.

Proof. Suppose R is a reflexive relation such that C = C•
R. We have
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(C1)
C•

R(μ)(x) = sup
ω∈X

{μ(ω) • R(ω, x)} ≥ μ(x) • R(x, x) = μ(x)

(C4)

C•
R(μ ∨ ν)(x) = sup

ω∈X
{μ ∨ ν(ω) • R(ω, x)}

= sup
ω∈X

{(μ(ω) • R(ω, x)) ∨ (ν(ω) • R(ω, x))}
= sup

ω∈X
{(μ(ω) • R(ω, x))} ∨ sup

ω∈X
{(ν(ω) • R(ω, x))}

= C•
R(μ)(x) ∨ C•

R(ν)(x)

(C5)

C•
R(k ∧ ϕx)(y) = sup

ω∈X
{(k ∧ ϕx)(ω) • R(ω, y)}k(x) • R(x, y)

= k(x) • C•
R(ϕx)(y) = k • C•

R(ϕx)(y)

Conversely, suppose the fuzzy operator C satisfies (C1), (C4) and (C5). We
define R(x, y) := C(ϕx)(y). It is clear that R is reflexive.

Let us see that C = C•
R:

Any fuzzy set h can be written as h = ∨
x∈X

ϕx ∧h(x). Therefore, by (C4) and

(C5),

C(h) = C( ∨
x∈X

(ϕx ∧ h(x)))= ∨
x∈X

C(ϕx ∧ h(x)) = ∨
x∈X

h(x) • C(ϕx)

and thus,

C(h)(y) = sup
x∈X

{h(x) • C(ϕx)(y)} = sup
x∈X

{h(x) • R(x, y)} = C•
R(h)(y)

where we have taken into account that X is finite. 	

Theorem 7. Let X be a finite universal set, let • be an associative semi-
copula and let C : [0, 1]X −→ [0, 1]X be a fuzzy operator, then C satisfies
(C1), (C3), (C4) and (C5) if and only if there exists a •-preorder R such that
C = C•

R.

Proof. If C satisfies (C1), (C3), (C4), (C5), from the previous theorem, there
exists a reflexive fuzzy relation R such that C = C•

R.
Prove that R is •-transitive. For x, y, z ∈ X, we have

R(x, y) • R(y, z) ≤ sup
ω∈X

{R(x, ω) • R(ω, z)} = sup
ω∈X

{C•
R(ϕx)(ω) • R(ω, z)}

= C•
R(C•

R(ϕx))(z)
(C3)

≤ C•
R(ϕx)(z) = R(x, z)

Conversely, from the previous theorem, we obtain (C1), (C4) and (C5) and
from Theorem 2, we obtain (C3). 	
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Some of the following results hold for any universal set X (not necessarily
finite).

Theorem 8. Let R be a fuzzy relation on an universal set X and let • be a
semi-copula. Then:

(1) C•
R satisfies (C1) if and only if R is reflexive.

(2) If C•
R satisfies (C3), then R is •-transitive. Moreover if • is associative and

X is finite, then the converse is true.

Proof. (1) We suppose that C•
R is (C1), then

R(x, x) = RC•
R
(x, x) = C•

R(ϕx)(x) ≥ ϕx(x) = 1

Conversely, μ(x) = μ(x) • R(x, x) ≤ sup
ω∈X

{μ(ω) • R(ω, x)} = C•
R(μ)(x) for all

x ∈ X.
(2) We suppose that C•

R is (C3), since R = RC•
R
, we have

R(x, y) • R(y, z) ≤ sup
ω∈X

{R(x, ω) • R(ω, z)} = sup
ω∈X

{C•
R(ϕx)(ω) • R(ω, z)}

= C•
R(C•

R(ϕx))(z) ≤ C•
R(ϕx)(z) = R(x, z)

Conversely, if • is associative and X is finite, we have:

C•
R(C•

R(μ))(x) = sup
ω∈X

{sup
τ∈X

{μ(τ) • R(τ, ω)} • R(ω, x)}
= sup

ω∈X
{sup

τ∈X
{(μ(τ) • R(τ, ω)) • R(ω, x)}}

= sup
ω∈X

{sup
τ∈X

{μ(τ) • (R(τ, ω) • R(ω, x))}}
≤ sup

ω∈X
{sup

τ∈X
{μ(τ) • R(τ, x)}} = sup

τ∈X
{μ(τ) • R(τ, x)} = C•

R(μ)(x)

	

Moreover, it is clear that the operator C•

R is always (C2) for every relation
R. Then:

Corollary 1. Let R be a fuzzy relation on a finite universal set X and let • be
an associative semi-copula. Then, C•

R is a FCO if and only if R is a •-preorder.

Conclusion

We have studied in this work several relationships between fuzzy relations and
fuzzy consequence operators. We have shown that, under the conditions of semi-
copulas instead of t-norms, it is still possible to obtain some interesting results.
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