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15
Pandemic Risk Modelling

Dominic Smith

15.1	 �Introduction

Infectious disease pandemics are among the deadliest events in human 
history. Events such as the 1918–1919 “Spanish Flu” pandemic and the 
Black Death have devastated communities, cities and continents, causing 
sickness and mortality well beyond the burden of disease experienced in 
normal times.

This chapter will explore the nature of communicable diseases, a brief history 
of pandemics, and will introduce the mathematical models used to evaluate the 
risk pandemics pose to human populations. Such modelling is used in a public 
health context, where modelling past and current events provides insight in 
how to respond most effectively to a new outbreak. It is also used in the con-
text of risk mutualisation and transfer. As recently as 2013, a survey of 30,000 
insurance executives placed global pandemic as the biggest extreme risk facing 
insurers (Towers Watson 2013). The chapter will introduce the principles used 
to model these events in the insurance industry and will conclude with a review 
of the way these models are applied in an unconventional risk transfer context.

Communicable diseases are characterised by pathogens1 spreading through 
populations. This is what sets them apart from other diseases and from more 
geographically localised catastrophic events: where there is contact between 
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a pathogenic agent and a susceptible host, it is possible for that disease to 
spread.

Communicable diseases remain one of the largest causes of death and mor-
bidity globally, accounting for 15.8% of global deaths in 2015 and 19.0% of 
the global burden of disease in terms of disability-adjusted life years (DALYs)2 
(Figs. 15.1 and 15.2).

While there has been improvement in respect of the mortality and morbid-
ity impact of infectious diseases, both in the long term and since 2000, there 
remains a substantial proportion of the world’s population where the leading 
cause of death is communicable disease.3 Communicable diseases ranking in 
the top 20 causes of death in low-income economies include lower respiratory 
infectious, diarrhoeal diseases, HIV/AIDS, tuberculosis, malaria and menin-
gitis.4 Only lower respiratory infectious rank in the top 20 in upper income 
countries in 2015 (Fig. 15.3).

There are some commonly used terms that are used to describe infectious 
diseases. These are related to the natural properties of infectious diseases and 
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Fig. 15.1  Deaths from communicable diseases and other causes since 2000 (World 
Health Organization 2016)
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Fig. 15.2  Proportion of global disease burden in respect of DALYs in 2015. 
Communicable diseases are separated into “infectious and parasitic diseases” and 
“respiratory infectious” together accounting for 19.1% of DALYs (World Health 
Organization 2016)
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Fig. 15.3  Deaths by cause in 2015 by World Bank classification of economies (World 
Health Organization 2016)
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lend themselves directly towards the mathematical modelling of the impact of 
an epidemic or pandemic.

Transmissibility is the ease with which the disease spreads from host to host. 
This can be direct, for example through contact with an infected host or by 
short-range transmission of the pathogen, or indirect, where there is a vehicle 
or vector organism that transmits the disease between human hosts.

Pathogenicity is the ability of the pathogen to cause disease within an 
exposed person.

Virulence is a measure of an infectious disease’s severity. Some pathogens 
cause extreme illness in the host, whereas others may have very little impact 
in an infected host.

For more information on how these terms relate to, and are borne out of, 
mathematical models for communicable diseases, see the section “Modelling 
infectious disease spread”.

The two main definitions of communicable diseases in terms of their 
pattern of occurrence are endemic and epidemic diseases. An endemic dis-
ease is one that has established a stable pattern of transmission. New casel-
oads may vary from one time period to another and by geographic region, 
but overall the occurrence is relatively stationary. Epidemic diseases are 
diseases where the number of cases “spikes”, or temporarily exceeds estab-
lished baseline caseloads. What constitutes an epidemic will depend on the 
nature and prior history of the pathogenic agent. Features of the exposed 
population including its size and susceptibility to the pathogen, and the 
spatio-temporal characteristics of the outbreak are all factors that are used 
to define whether an epidemic is occurring. Taking Dengue as an example, 
an epidemic could be characterised by substantial increase in caseloads in 
an area where Dengue has an established moderate baseline of cases, or if a 
small number of cases were to emerge in an area that had no prior history 
of Dengue. Cases of previously unseen pathogenic agents may only need to 
be small in number in order to be identified as epidemic. An endemic dis-
ease may become epidemic if the environment or susceptibility of a popu-
lation changes.

A pandemic is a special case of epidemic, often defined as the situation 
where a disease reaches epidemic status on multiple continents at the same 
time or, alternatively, the worldwide spread of an epidemic.

An emerging infectious disease is a previously unknown disease. A re-emerging 
infectious disease is a known disease that transitions from a state of being well 
controlled to achieving sustained (often rapid sustained) transmission in a 
population.
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15.2	 �History of Pandemics

Given the lack of modern public health practice and the difficulty in com-
municating long distances, it may seem unlikely that there are much histori-
cal data on infectious disease pandemics before the late nineteenth century. 
However, the scale of pandemics coupled with the fact that they directly 
impact human populations means we have a relatively long historical record, 
albeit of unknown completeness (see Table 15.1 for a summary of historical 
pandemics).

Table 15.1  Pandemics since the middle ages

Years
Reported 
region Description Deaths

1347–1351 Europe Bubonic Plague. The “Black Death” 
was one of the deadliest pandemics 
in history. The pathogen 
responsible for causing the bubonic 
plague is Yersinia pestis, a 
bacterium that is the disease of 
rodents and is carried by a vector, 
the flea Xenopsylla cheopis . 
Through analysis of bones of Black 
Death victims, comorbidities, 
particularly malnourishment, but 
also other health deficits, were 
significant risk factors in mortality 
associated with the pandemic 
(DeWitte 2014).

30–50% of 
Europe’s 
population

1489 Europe Typhus. Typhus epidemics, caused by 
the louse-borne bacterium 
Rickettsia prowazekii, typically 
afflict those living in cramped, 
unhygienic conditions where the 
lice thrive. It is for this reason that 
Typhus has been such a decisive 
factor in wars over the centuries: in 
1489, an army of 25,000 Spanish 
soldiers were reduced to 8000 by 
Typhus while besieging the Moors 
at Granada. The fleeing survivors 
carried the disease to other parts 
of Europe, creating the Typhus 
pandemic of the late fifteenth 
century and carried on well into 
the sixteenth century, becoming 
highly influential in the wars of 
Western Europe in the 1500s.

Unknown total, 
but high death 
counts 
recorded in 
military 
engagements. 
Case fatality 
rates often 
10–15%.

(continued)
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Table 15.1  (continued)

Years
Reported 
region Description Deaths

1500s Europe, 
Americas

Smallpox. Smallpox was the leading 
cause of death in the sixteenth-
century Europe, with a case fatality 
rate of 30%. When introduced to 
the Americas, the highly 
susceptible population with no 
prior exposure to the disease 
suffered case fatality rates in the 
range 80–90%. A highly 
transmissible epidemic disease, 
smallpox continued to cause 
significant mortality well into the 
twentieth century, until 
immunisation programmes 
coordinated by the World Health 
Organization rendered smallpox 
extinct in the wild by 1979.

12–25 million 
deaths in 
Mexico alone 
(Acuna-Soto 
et al. 2002)a

1510 Almost all 
countries 
of the Old 
World

Influenza. Disease emerged in Asia 
and spread via trade routes to 
Europe and Africa. Generally 
accepted to be the first identified 
influenza pandemic. Described as a 
“precipitous illness with coughing 
and high fever”, and a “rheumatic 
affliction of the head … with 
constriction of heart and lungs” by 
medical chroniclers of the day 
(Morens et al. 2010).

Unknown

1557–1558 Europe Influenza. Chronicled as “quartan 
agues”, “hot agues” and “sweating 
fevers” in Britain, this likely 
pandemic came in two waves in 
1557 and 1558. Italian writers also 
refer to epidemics of “catarrhal 
symptoms” in the years 1557 and 
1558 (Creighton 1891).

Reported deaths 
in Rodwell: 20, 
76 and 124 
from 1556 to 
1558b

1580 Asia, Africa, 
whole of 
Europe, 
America

Influenza. Believed to have emerged 
in Asia and to have reached Europe 
through trade routes via Asia 
Minor and North Africa. It took six 
months to spread across the whole 
of Europe and went on to the 
Americas (Potter 2001).

8000 in Rome, 
many in 
Spanish cities

1635, 1656 Britain, 
Europe

Measles. Elevated infant and child 
mortality over various periods of 
approximately five months in 
England in 1635 and 1656 have 
been attributed to measles.

Unknown

(continued)
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Table 15.1  (continued)

Years
Reported 
region Description Deaths

1700s Americas, 
Europe, 
Africa

Yellow Fever. Multiple outbreaks of 
yellow fever afflicted the military 
campaigns of Europeans in the 
Americas in the eighteenth 
century. Epidemics in the USA, 
Guadeloupe, Cuba, Mexico, Peru, 
Africa and Spain (Nogueira 2009).

Potential deaths 
among armed 
forces of 
85,000—more 
in general 
population

1729–1730 
and 
1732–1733

Whole 
known 
world

Influenza. Emerged in Russia in 1729, 
before spreading to Europe. 
Within six months, it had engulfed 
Europe and continued to transmit 
to the Americas, Africa and 
throughout Asia over three years 
of waves of the disease (Ministry of 
Health 1920).

High—between 
0.5 and 3× 
normal in 
London

1761–1762 Americas, 
Europe

Influenza. The 1761–1762 pandemic’s 
origin is suspected to be the 
Americas, making it the first 
pandemic likely to have emerged 
in the New World. This was 
accompanied by greater study of 
the clinical manifestations of the 
disease. It was preceded by a 
significant equine influenza 
epidemic, although no causal link 
has been identified (Taubenberger 
and Morens 2009).

Substantially 
milder than 
1729–1733, 
with fewer 
deaths

1780–1782 China, 
India, 
Europe, 
Americas

Influenza. Likely to have originated 
in China. This outbreak was 
characterised by extremely high 
morbidity rates (Hays 1998): 
30,000 cases per day were 
reported in St. Petersburg (Kohn 
2007). This pandemic again 
coincided with outbreaks of 
equine, as well as canine and feline 
influenza (Taubenberger and 
Morens 2009).

Reports of 
increased death 
tolls among 
those with 
comorbiditiesc

1788–1790 Europe, 
North 
America

Influenza. Believed to have 
originated in Russia before being 
transmitted to Europe and the 
USA. Significant morbidity rates 
reported (Kohn 2007).

Low mortality

(continued)
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Table 15.1  (continued)

Years
Reported 
region Description Deaths

1800s Europe, 
Americas, 
Asia

Cholera. Cholera is a bacterial 
infection caused by strains of Vibrio 
cholerae. It is usually 
communicated via water or food 
contaminated with faecal matter 
containing the bacteria. Five 
cholera pandemics in India, Russia, 
the USA and throughout Europe 
caused mass morbidity and 
mortality in towns and cities. John 
Snow’s study of the water 
companies in London gave rise to 
the theory that cholera was being 
transmitted via contaminated 
water. This was one of the first 
such epidemiological investigations 
and gave rise to the sanitary 
reformation that radically reduced 
mortality in the late nineteenth 
and twentieth centuries.

50–100 million 
deaths

1830–1831, 
1832–1833

China, 
Russia, 
Europe

Influenza. Very high morbidity rates 
and rapid rate of transmission. 
Lower case fatality rates, rather 
like 1788 (Patterson 1985).

Thousands of 
deaths, mainly 
elderly

1889–1893 Global Influenza. Known as “Russian Flu”, this 
highly transmissible strain had been 
transmitted to all corners of the 
globe within four months. Median 
basic reproductive number (R0) 
estimated to be 2.1, similar to that 
seen in influenza pandemics of the 
twentieth century. Possibly an H2N2 
or H3N8 strain. This was the first 
pandemic to occur in the modern 
world, with roads, railways and 
modern ships connecting populations 
together (Valleron 2010).

One million. Case 
fatality rate 
estimated at 
0.1–0.28%

1918–1919 Global Influenza. The most severe known 
influenza pandemic and one of the 
most severe health crises in history, 
the 1918–1919 “Spanish Flu” 
pandemic spread across the world 
rapidly, with extremely high 
morbidity and mortality rates on 
all continents. H1N1 
strain (Taubenberger and 
Morens 2006).

40–50 million 
deaths 
worldwide; 
case fatality 
rate >2.5%d

(continued)
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Table 15.1  (continued)

Years
Reported 
region Description Deaths

1957–1958 Global Influenza. “Asian Flu” was a rapidly 
spreading H2N2 strain. It had high 
excess mortality rates in school-
aged children and young adults 
(Viboud 2016).

1–1.5 million; 
case fatality 
rate 
0.13–0.19%

1968 Global Influenza. “Hong Kong Flu” was an 
H3N2 strain, originating from 
China. It is likely to have emerged 
via antigenic shift of the H2N2 
1957 virus. Only two weeks passed 
between the first reported case 
and 500,000 cases being reported 
in Hong Kong. The first season had 
greater mortality in the USA, 
whereas the second season had 
greater impact in England (Viboud 
2005).

0.75–1 million; 
case fatality 
rate <0.1%

1979- Global HIV/AIDS. Originally identified by 
previously unseen cases of 
pneumocystis pneumonia and 
Kaposi sarcoma in US cities in 1981. 
HIV is a retrovirus transmitted via 
certain bodily fluids (blood, semen, 
breast milk, vaginal fluids). It 
attacks the immune system of the 
host, with AIDS rendering the host 
highly susceptible to death from 
infection or other complication.

35 million; 
another 37 
million 
currently living 
with HIV/AIDS

1977–1978 Global Influenza. 1977 “Russian Flu” was 
relatively mild in comparison to 
prior twentieth-century pandemics.

Very low

2009–2010 Global Influenza. 2009 Novel H1N1 “Swine 
Flu” was a highly transmissible, but 
ultimately low severity influenza 
pandemic. It originated via 
zoonosis in Mexico in April 2009 
and continued to transmit 
throughout summer, autumn and 
winter of 2009, before gradually 
declining (Dawood et al. 2012).

284,500, 
although some 
estimates are as 
low as 18,000 
or as high as 
579,000

aSome of these deaths will have been attributable to drought, or more likely the 
severe drought amplified the mortality effect of the smallpox epidemics in the 
sixteenth-century Mexico

bRodwell is a parish near Leeds in the North of England
cA comorbidity is an existing health problem or disease that occurs at the same time 

as the primary disease in a patient
dSome accounts suppose as many as 100 million deaths were caused by the 1918–1919 

pandemic. The case fatality rate was unprecedentedly high, more than ten times 
what had been seen in previous influenza pandemics

15  Pandemic Risk Modelling 
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15.2.1	 �Origins and Properties of Infectious Diseases 
with Pandemic Potential

Of all known communicable diseases, only some have the transmissibility char-
acteristics to reach pandemic scale. Generally, it is emerging or re-emerging 
diseases readily transmissible between humans that have the potential to cause 
pandemics. This is because there is little to no immunity in the world popula-
tion and because the disease will propagate through the population via usual 
human-to-human contact, respectively.

Zoonosis is a key biological mechanism by which novel infectious dis-
eases emerge. Taking the 2009 H1N1 pandemic as an example, the origin 
of this disease was a pig in Mexico. The novel virus emerged via the process 
of reassortment, where two different strains of influenza, one endemic in 
North American pigs and the other in Eurasian pigs, infected the same ani-
mal. The two viruses exchanged genetic material (RNA) to result in a new 
virus significantly different from its precursors. This antigenic shift means 
that the immune systems of humans and swine have never been exposed to 
this disease before and therefore do not possess the antibodies to halt infec-
tion. This coupled with the property that it was relatively readily transmis-
sible resulted in large swaths of the world population being infected (Smith 
et al. 2009). Table 15.2 displays the zoonotic origins, modes of transmis-
sion and further details of a group of diseases with the potential to cause 
pandemics.

Table 15.2  Transmission modes and zoonotic origins of infectious diseases

Mode of 
transmission Disease Pathogen

Human-to-
human

Animal-to-
human

Airborne 2009 H1N1 Influenza Virus Yes Pigs*
2005 H5N1 Influenza Virus Very limited Birds*
SARS Virus Yes Small 

mammals*
MERS-CoV Virus Limited Camels*
Measles Virus Yes No
Smallpox Virus Yes No
Tuberculosis 

(pulmonary)
Bacteria Yes No

Tuberculosis (bovine) Bacteria Yes Cattle
Blood and 

serum-borne
Hepatitis B Virus
Hepatitis C Virus Yes No
Ebola Virus Disease Virus Yes Bats, Primates
HIV/AIDS Virus Yes No

(continued )
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15.3	 �Infectious Disease Models

There exist a range of techniques for modelling infectious diseases. The choice 
of model depends on the type of disease, the use case and the time available. 
This text sticks to the main use cases of planning responses and interventions 
against a pandemic and estimating the overall impact of pandemics in a risk 
management context.

15.3.1	 �Modelling Infectious Disease Spread

The mathematical models used for pandemics in unconventional risk trans-
fer are based on the mathematical models for communicable diseases. The 
most commonly used models are called population (compartmental) mod-
els. Developments by WH Hamer, Sir Ronald Ross and Kermack and 
McKendrick between 1910 and 1930 resulted in the core mathematical 
models that continue to be used to understand and predict the transmission 
of infectious diseases today (Kermack and McKendrick 1927). These deter-
ministic dynamical models have been extended to stochastic variants for use 
under certain circumstances, and for modelling diseases with other modes of 
transmission than those originally studied, as well as for studying endemic 
and endemo-epidemic diseases. Age structure and spatial structure have been 
introduced as further features to the dynamical models. More detailed spatial 
structure between subpopulations, taking account of social groups and travel 
patterns, captures a subclass of pandemic models with increased spatial het-
erogeneity. Network models of infectious disease take advantage of modern 
computing power and increased amounts of readily available social network 
data to model transmission based on models of individual people’s contacts 
with others in their social groups. Agent-based models go one step further and 

Mode of 
transmission Disease Pathogen

Human-to-
human

Animal-to-
human

Vector-borne Malaria Parasite No Mosquitoes
Zika virus Virus No Mosquitoes
Plague Bacteria No Rat fleas

Water-borne Cholera Bacteria Yes No

Where the animal is marked with an asterisk (*), this indicates that the disease’s 
zoonotic origin was traced back to the same animal host. Note that where there is 
no observed recent animal-to-human transmission for some diseases, it remains 
likely that the disease’s earliest origins were via zoonosis. Smallpox’s mode of 
transmission is suspected to be airborne but was not fully confirmed before its 
extinction in 1979 (Milton 2012)

Table 15.2  (continued)
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explicitly model the interactions of individual hosts, vectors (if applicable) 
and pathogenic agents, thus removing some of the assumptions underlying 
the dynamical models and attempting to generate real-world epidemic behav-
iour directly from the interactions of the agents.5

By definition, pandemics occur only if the susceptible population is suf-
ficiently large that sustained transmission can occur over large swaths of the 
planet. For this to happen, there needs to be low residual immunity in the 
population: it is emerging or re-emerging pathogens that are likely to give rise 
to pandemics. Moreover, in an unconventional risk transfer context, the prin-
cipal use case is to model the risk of emergence of a novel pathogen capable of 
reaching pandemic scale, and subsequently the size, scale and impact of that 
pandemic. It is for this reason that industry focuses its attention on popula-
tion models with spatial heterogeneity: they are able to capture the large-scale 
behaviour of pandemics relevant to counterparties involved in risk transfer 
transactions.

15.3.2	 �Compartmental Models

Population (compartmental) models of infectious diseases break down the 
population into compartments that represent, over time, the populations of 
various distinct disease states. We have already encountered the term suscep-
tible, which is one such compartment that includes anybody who could be 
infected if they came into contact with an infectious host. Infective is another 
such compartment, which is populated by hosts capable of transmitting the 
disease to susceptible members of the population. To complete one of the most 
basic compartmental models of epidemic behaviour, the SIR (susceptible-
infective-recovered) model, we introduce a recovered compartment, which 
includes those removed from the susceptible population, as they are now 
immune to infection. The sum of the three compartments is the total size of 
the population (Fig. 15.4).

Fig. 15.4  A simple SIR model. Susceptible members of the population are infected at 
a rate corresponding to the force of infection, λ. Infective people recover at a rate γ 
corresponding to the rate of recovery

  D. Smith
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In the SIR model, the force of infection, λ, is modelled as the contact rate 
(number of contacts one person makes with other people per unit time) mul-
tiplied by the fraction of the population that is infective (Fig. 15.4). This cap-
tures the logical idea that susceptibles coming into contact with many people 
are increasingly likely to encounter an infective host as the number of total 
infectives rises. The rate of recovery, γ, is assumed to be constant in the usual 
formulation of the SIR model. These epidemiological parameters can be com-
bined to yield a powerful descriptor for the transmissibility of an infectious 
disease, which combines the population characteristics and behaviour with 
the communicability of the pathogen. This is the basic reproduction number, 
R0, which is the expected number of people an infective would infect in an 
otherwise fully susceptible population. For sustained transmission and an epi-
demic to occur, R0 in an SIR model and other similar models must be greater 
than one. There are various derived terms with their foundations in the basic 
reproduction number, such as effective R0 (R′ is a measure of reproduction 
number contingent on the existing immune fraction of the population) and 
Rt (a measure of reproduction number as an epidemic progresses over time). 
Table 15.3 provides R0 values for some key historical pandemics and other 
epidemic diseases.

The basic SIR model contains a set of assumptions that render it suitable for 
certain classes of disease model, but deserve closer scrutiny when considering 
real-world disease outbreaks. One such assumption is that, once exposed, an 
individual will immediately become infective. Often, there is a latent period 
where the levels of pathogen are building up in the host and during which 
the host is not yet infective. This is termed the exposed compartment, and its 
effects are demonstrated in Fig. 15.5. In both the SIR and SEIR deterministic 
models, for a disease with R0 > 1, the number of infectives (the effective case-

Table 15.3  Basic reproduction numbers of historical influenza pandemics and other 
epidemic diseases (Taubenberger and Morens 2006; Valleron 2010; Elderd et al. 2006)

Disease Basic reproduction number (R0)

Influenza 1889–1893 2.1
Influenza 1918–1919 1.5–2.5
Influenza 1957–1958 1.5–1.7
Influenza 1968 1.5–2.2
Influenza 2009 1.5–2.0
Smallpox 5–7
Measles 12–18
Poliomyelitis 5–7
HIVa 1.0–6.5

aHIV R0 estimated using a basic method and based on experience in Uganda from 
1996 to 2008

15  Pandemic Risk Modelling 
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load in these models) undergoes exponential growth until it reaches a peak, 
after which the number of susceptibles available to infect has significantly 
diminished, resulting in an inflection point where caseloads begin to fall.

Similarly, the formulation of the rate of recovery implicitly assumes that 
recoveries are exponentially distributed, whereas in reality, other distributions 
(including those with low variance) of recovery times are typical. Various 
methods have been proposed and used in tackling this issue, including sepa-
rating the infective compartment into a sequence of sub-compartments, 
yielding gamma, normal and delta-distributed recovery times as the number 
of infective compartments is increased (Wearing et al. 2005).6

Another pair of assumptions is that the populations are effectively infi-
nite and the compartments are perfectly mixed. These assumptions may be 
reasonable approximations to the truth during the peak and late stages of a large 
epidemic or pandemic. However, consider the case of a novel pathogen. The 
basic deterministic SEIR model’s initial conditions are based on the concept of 

Fig. 15.5  Simple deterministic SIR and SEIR models for smallpox, displaying popula-
tions of each compartment relative to the total population. A total of 10−4 of the total 
population is infective at t = 0 in an otherwise fully susceptible population. In the SIR 
model (upper), there is no latent period: susceptibles move directly from susceptible to 
infective. The SEIR model (lower) incorporates this latent period and yields different 
dynamics closer to what is seen in smallpox and many other epidemics
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a well-mixed proportion of the population starting as infective, whereas in the 
real-world scenario, there is a single person (index case) that is infective. The 
subsequent course of the disease will depend on the behaviour of that person 
and the local characteristics of the population in that area. Thus, while the R0 
may be less than or greater than one when assuming the population is perfectly 
mixed, whether an epidemic will happen will be uncertain and dependent on a 
small number of human interactions during these early stages of an outbreak. 
Introducing demographic stochasticity to the model can improve the realism 
of this feature (Diekmann and Heesterbeek 2000). Figure 15.6 shows that a 
disease with a relatively high R0 of 2.1 may not achieve sustained transmission 
when starting from a single index case.

A disease transmitted by a living organism from one animal to another is 
known as vector-borne. Examples include malaria and Dengue, both of which 
are transmitted by mosquitos. Vector-borne diseases can be modelled using 
compartmental models. 

To relax another of the assumptions of these models and to improve real-
ism, spatial effects can be incorporated. Knowledge of long-range interactions 

Fig. 15.6  Results of the SIR model incorporating demographic stochasticity for a sin-
gle infective introduced to a community of 100 people. The R0 of this disease is 2.1, and 
the model was run for 500 simulations. The black line represents an example simulated 
scenario. The histogram shows that even outbreaks with R0 much larger than unity can 
peter out if a critical mass of infectives is not reached

15  Pandemic Risk Modelling 
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(e.g. between cities or countries) and short-range interactions (e.g. between 
households) can be incorporated into the deterministic and stochastic formu-
lations of the compartmental models via metapopulation modelling, where 
the population is modelled as consisting of a set of well-mixed homogeneous 
patches which are coupled together. Such models can range from the rela-
tively simple where the coupling is homogeneous and requires only minor 
extensions to the compartmental models described above, to the complex. 
Heterogeneous coupling and network models of detailed population dynam-
ics such as commuting and travel patterns can be taken into account in such 
models. Such additional complexity is accompanied by a need to infer addi-
tional parameters, which can be done to varying degrees of success depending 
on the complexity of the model and the availability of data globally (Ball et al. 
1997; Colizza and Vespignani 2008). The contact features of metapopulation 
and network models are described schematically in Fig. 15.7.

15.3.3	 �Agent-Based Models

The inclusion of networks of subpopulation connectedness into pandemic 
models can be taken to a more granular level by turning to agent-based models 
(ABMs). ABMs are simulation models that attempt to capture the real-world 

Heterogeneous

mixing between 
homogeneous 
subpopulations

Network model 
of individual 
human to 
human contacts

Fig. 15.7  A schematic of a metapopulation model and a network model of infectious 
disease spread. The metapopulation model has the assumption of homogeneous mix-
ing within each subpopulation alongside heterogeneous connectivity and interactions 
between subpopulations. A network model captures the contacts between individuals 
directly based on knowledge or assumptions of their contact network

  D. Smith



  479

interactions between a set of autonomous agents. Similar to network models, 
rather than the dynamics being specified from the top down as in compart-
mental models, the dynamics emerge from the bottom-up descriptions of the 
agents’ behaviours and their interactions. ABMs go beyond contact network 
models to incorporate local knowledge of demographic data, household data, 
healthcare system and infrastructure, details of the epidemiologic and evolu-
tionary characteristics of the pathogen, host–host and host–pathogen interac-
tions, and other real-world features (Sietttos and Russo 2013). Such models 
have been used in epidemic intervention planning, for example in the sugges-
tion to stockpile antiviral drugs in order to halt progress of the 2005 H5N1 
outbreak in South East Asia (Ferguson et al. 2005).

15.4	 �Inferring Key Epidemiological Model 
Parameters During a Pandemic

Having selected the appropriate model structure to capture the dynamics of 
disease spread, the next stage is to infer the model’s parameters. There are 
many techniques used to do this, so here we will just consider a selection and 
will focus on the transmissibility and the virulence.

One simple method to estimate the basic reproduction number in the 
early stages of an epidemic is to estimate it directly from contact tracing. The 
approach is simple: the epidemiologist will trace all the people the primary 
case has made contact with and count which of those became secondary cases. 
Repeating this and averaging over a sufficient number of primary cases yields 
an estimate of the R0 and the uncertainty around it.

Another approach is to find features in population-level data that permit 
direct estimation of the epidemiological model’s parameters. For example, by 
recasting the exponential growth phase (early stages) of the outbreak into a 
linear problem, it is possible to estimate the R0 simply by linear regression. An 
advantage of this approach is its simplicity, but a drawback is that it does not 
make much use of the caseload data available. A more sophisticated approach 
is to use a Bayesian approach to estimate the (posterior) parameters given 
the model structure and the data. The key advantages of this approach are 
that prior knowledge of the distributions of the transmission parameters can 
be incorporated, and that estimates of the uncertainty of the parameters are 
obtained directly from the model. It also makes full use of the observational 
data (Elderd et al. 2006). Disadvantages include computational complexity, 
choice of appropriate priors for each parameter and the more perplexing issue 
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that varying the model structure and rerunning the process may yield equally 
compelling explanations of the data and equally uncertain parameter esti-
mates (Babtie et al. 2014).

It should be noted that estimates of R0 may be very different for the contact 
tracing approach when compared to the population-based approaches, even 
when ensuring contact assumptions are the same at individual and population 
levels. Therefore, great care must be taken when making modelled projections 
about future caseloads using R0 inferred from contact tracing (Keeling and 
Grenfell 2000; Breban et al. 2007).

Techniques for estimating the virulence of a disease are based on statisti-
cal approaches for parameter estimation. The virulence is the severity of the 
disease in an infected host. It is a means of quantifying the pathogenicity 
in the host. In a mortality context, the case fatality rate is the most com-
mon measure of virulence: this is the probability that a particular host dies 
after being infected by the disease. Other quantities, such as expected time 
until death from infection and lethal dose, are measures of virulence that 
focus on the mortality impact of the disease (Day 2002). DALYs and disease 
state-specific morbidity rates are used in the context of infectious disease 
morbidity.

Estimating a crude case fatality rate can be done as simply as dividing the 
total number of deaths in the population by the number of cases. However, 
this approach can be confounded by the fact that most epidemics will have 
a significant proportion of cases where the outcome is unknown at the point 
in time of estimation, particularly during the early stages of an emerging 
infectious disease. Methods have been developed to counteract this issue that 
make use of data on survival times for diagnosed patients (Ghani et al. 2005). 
Furthermore, for many diseases, there is incomplete caseload data because 
of unreported or asymptomatic cases. Other methods for reducing biases in 
case fatality rate estimation have been developed and can be employed in risk 
modelling (Lipsitch et al. 2015).

The same pathogen may have different virulence in different hosts. 
Sometimes, this difference is marked. For example, seasonal flu tends to be 
more virulent in young children and the elderly, whereas the 1918–1919 
pandemic flu had noticeably higher mortality in the young adult population 
(Taubenberger and Morens 2006). The reason for this elevated mortality 
has been investigated in animal models in the lab. The conclusion of this 
study was that individuals who had been exposed to influenza once prior 
to 1918 were rendered vulnerable to experiencing a pathological immune 
response when infected with the 1918 H1N1 strain. The 2009 H1N1 pan-
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demic had a different age mortality distribution again, with age-specific 
case fatality rates in teenagers and young adults significantly higher than 
in seasonal flu, whereas they were much lower in over 65s (Fig. 15.8). One 
possible explanation for this is that of residual immunity: those over-65s 
had some degree of immunity conferred from exposure to an H1N1 virus 
during childhood (Lemaitre and Carrat 2010). From these examples, it is 
clear that not just the age of the host is relevant: prior experience of previous 
strains will impact the virulence of future strains within the cohorts exposed 
to them. Sometimes these effects may reduce virulence, whereas in others, 
they may increase it.

It is also important to note that the prior health status of the individual 
plays an important role in the severity of a case. By studying bone fragments of 
victims of the Black Death, it has been shown that a disproportionate number 
of victims were malnourished or already suffering from prior health deficits 
(DeWitte 2014). More recent evidence from the 1918 and 2009 pandemics 
indicates that wealth and health, in particular the presence of comorbidities, 
is highly influential in determining the outcome of pandemic influenza cases. 
The case fatality rate in the lowest socioeconomic segment in the USA in 
1918 was three times that of the highest (Sydenstricker 1931). In the 2009 
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Fig. 15.8  Annualised age-specific mortality rates for deaths attributed to influenza or 
pneumonia per 100,000 cases in the USA for 1911–1917 and 1918. Notice the peak in 
mortality rates among young adults. Source: CDC (Taubenberger and Morens 2006)
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pandemic, over 70% of deaths had an underlying risk factor for severe influ-
enza (Peabody et al. 2010).

15.5	 �Medical Interventions and Public 
Health Countermeasures

As knowledge and understanding of epidemic transmission and virulence 
have increased, methods have been devised to combat them. Prior to the 
modern epidemiological theory, major progress had already been made. The 
canonical example is Edward Jenner’s development of the smallpox vaccine, 
so-named because it was derived from the related disease, cowpox (“vacca” 
is the Latin for cow). This development and subsequent developments of 
other vaccines using the same fundamental immunological principles has 
perhaps saved (or extended) more lives than any other single medical inno-
vation in history. Vaccines remain the most powerful tool used by public 
health practitioners to protect populations against transmission of epidemic 
diseases.

One caveat of the use of vaccination is that, by definition, a vaccine will not 
be available for an emerging infectious disease. Some prior biological mate-
rial from the pathogen or a close relative (e.g. deactivated virus particles) is 
required to develop a vaccine, and these either will not exist or will not be 
known at the early stages of an outbreak. Recent experience from the 2009 
H1N1 pandemic indicates that a time period of 5–6 months is required from 
first isolation of the novel virus to availability of the first batches of influenza 
vaccine (World Health Organization 2009). During this interval, depending 
on the transmissibility, a large fraction of the world population may have 
already been infected. For other emerging infectious diseases, this interval 
may be much longer. There remains no vaccine for HIV even 18 years after 
the first vaccine trials began (Koff 2014).

Using the simple SEIR formulation, modelling the impact of vaccinations 
can simply be done by including a rate at which people transition from suscep-
tible to a fifth compartment, “vaccinated”. This can be done in conjunction 
with all the other features that can be introduced to compartmental models, 
including age, demographic and spatial effects. Using ABMs, it is possible to 
go a step further and include more detail about the strategy for vaccination 
and the likely uptake in different individuals. One current application of such 
modelling is a Dengue vaccine that has recently been licenced for use in six 
countries. The clinical trials of the vaccine demonstrated its ability to success-
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fully confer immunity to those who had already been infected by Dengue; 
however, for people with no prior exposure to Dengue the vaccine increases 
risk of a more severe Dengue infection in future. Advanced modelling of the 
age groups vaccinated and the local transmission intensity suggests that vac-
cination of selected subgroups according to age and level of local transmis-
sion can have significantly superior outcomes versus traditional vaccination 
approaches (Ferguson et al. 2016).

Pharmaceutical countermeasures beyond vaccines fall into categories used 
to combat the infection, thus reducing the effective case fatality rate in treated 
patients. Antibiotics are an example of such an approach, where a patient 
suffering a bacterial infection may be treated with a high degree of efficacy 
(depending on the specific pathogen). Antibiotics can also be valuable in 
reducing mortality in pandemics where the pathogen is a virus. While the 
antibiotic does not directly have any impact on viral load, in historical pan-
demics such as 1918, very large numbers of deaths have been attributed to 
secondary bacterial infections, such as bacterial pneumonia (Morens et  al. 
2008). Modelling the effect of antibiotics over the course of such a pandemic 
can be done as follows: (i) assess antibiotic efficacy against secondary bacterial 
infections in the infected individual, yielding proportion of mortality reduced 
per secondary infection; (ii) multiply this by the proportion of secondary 
infections that occur; (iii) compare against the baseline of the primary infec-
tion case fatality rate. Reconstructions of the 1918 pandemic scenario assum-
ing the ability to treat secondary bacterial infections have shown that use of 
antibiotics may have been able to reduce mortality by 60% (RMS 2012).

To treat non-bacterial primary infections, drugs such as antivirals, anti-
fungals and antiparasitics may be used. Antivirals work by directly attack-
ing viruses. Examples of antivirals used against influenza include oseltamivir 
and zanamivir, both of which inhibit reproduction of the virus in the host 
cell. These drugs and others have been stockpiled in response to emerging 
influenza pandemics because research at the time indicated they would help 
to reduce transmission and case fatality rates associated with the pandemic 
(Ferguson 2005). While the strategies remain reasonable in theory, the effi-
cacy of these drugs in reducing influenza transmission and virulence has been 
called into question after more extensive study of their effectiveness (Jefferson 
et al. 2014).

The final intervention at our disposal is supportive care. This involves the 
stabilisation of the patient, treatment of dehydration via provision of fluids, 
monitoring and maintaining oxygen levels and blood pressure and treating 
secondary infections as they occur. Cholera is an example of a disease where, 
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when used appropriately, supportive care should reduce the case fatality rate 
to below 1% (Wong 2015). When supportive care is inadequately adminis-
tered, case fatality rates are much higher, for example up to 12% in a com-
munity in Kenya in a recent epidemic (Loharikar et al. 2013). Modelling the 
impact of supportive care involves assessing the joint distribution of efficacy 
of supportive care against each pandemic pathogen with the availability of 
and access to supportive care in the region in question.

Non-pharmaceutical countermeasures, such as isolation, quarantine, cur-
fews and school closures can be useful tools to combat the spread of infectious 
diseases. Isolation is at its most useful when a disease becomes communicable 
after the onset of symptoms. One example of such a disease is Ebola virus, 
where effective isolation of suspected and known cases has been shown to 
reduce transmissibility significantly and can be incorporated into epidemic 
models (Shan et al. 2015). In examples such as influenza, however, such strat-
egies do not work because onset of symptoms is some time after the infec-
tive period has begun. Non-pharmaceutical countermeasures used to reduce 
influenza spread are therefore focused on reducing contact rates and improv-
ing public practices around personal hygiene in the context of the pandemic. 
Evidence from some epidemiological and a number of modelling studies sug-
gests that school closures may be an effective tool in reducing the peak load on 
hospitals and health infrastructure during a flu pandemic and may buy time 
to roll out the vaccine (Earn et al. 2012; Jackson et al. 2014).

15.6	 �Probabilistic Models

This section provides a review of how the epidemiological models described 
under “Modelling infectious disease spread” have been adapted to the use case 
of modelling the probability distribution of cases, morbidity and deaths over 
a future short- to medium-term time horizon. Borrowing from catastrophe 
modelling, this problem is broken down into two components:

•	 Frequency—how many pandemics will occur in the time period; and
•	 Severity—how many cases and deaths and how much morbidity these pan-

demics may cause.

First, we consider the earlier pandemic risk models used in the life insur-
ance industry. The first pandemic risk models used in a risk transfer context 
did not include treatment of the way infectious diseases transmit through the 
population. The first such model involved in an excess mortality transaction 
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was a statistical model designed to capture the mortality risk associated with 
influenza. This was an actuarial model that drew from analysis of the rel-
atively small number of influenza pandemics for which we have mortality 
data.7 In the years 1918–1919, 1957–1958 and 1968, the three historical 
pandemics were included in the model. An additional scenario was incorpo-
rated, which was a version of the 1918–1919 pandemic with an adjustment 
based on assumptions about the change in the world population and health 
environment between 1918 and the vintage of the model. From these four 
data points, a heavy-tailed probability distribution was fit to form the severity 
distribution. Some further epidemiological information on seasonality was 
included to complete the severity component. The frequency distribution 
was based on the assumption that future flu pandemic prevalence would be 
similar to the past and draws from the literature of known and suspected flu 
pandemics through the ages (Bagus 2008).

This type of modelling falls short when trying to capture the range of plau-
sible future outcomes once a pandemic has already begun, for example in 
the 2009 H1N1 pandemic. In order to tackle this specific issue, modellers 
made use of epidemiological models of infectious disease. Consistent with 
this, the majority of pandemic models used now in the insurance industry are 
adapted from compartmental models and aim to quantify the distribution of 
morbidity and mortality rates future pandemics may wreak on a population 
(Fig. 15.9).
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Fig. 15.9  Example of a structure of a probabilistic pandemic model
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15.6.1	 �Frequency and Origin

As evident from Table 15.1, true pandemics are relatively rare events, even 
in the context of catastrophes. For this reason, there is no single generally 
accepted approach to model frequency of novel pandemic emergence. Models 
may draw on a combination of the historical record, the behaviour of hosts, 
the interactions between hosts, pathogens, vectors, and the environment, and 
the fundamental evolutionary processes that give rise to novel pathogens. 
Most models start with the historical record.

Owing to the relatively large number of influenza pandemics in the histori-
cal record, pandemic models are typically broken down into two or more sub-
models—one for influenza, and the other model(s) capturing other emerging 
or re-emerging infectious diseases. It can be seen that between 3 and 4 influ-
enza pandemics occurred per century within the timeframe of the historical 
record. This provides a top-down view of the frequency of the outcome of 
myriad random processes. A frequency model based on the assumption that 
flu pandemics are independent events with a rate of between 3 and 4 per 
century has been used as a starting point for modelling (Bagus 2008; RMS 
2012; AIR 2015). Beyond independence, this includes the tacit assumption 
that the behaviour of the world’s population has not changed significantly 
over time and that the probabilities associated with the underlying processes 
leading up to a novel influenza strain. Moreover, while the historical record 
goes back centuries, the rare nature of pandemic disease means there are not 
many events from which to infer a frequency distribution.

Further sources of information can be used to establish a frequency dis-
tribution for pandemic influenza, and the same principles can be extended 
to other pandemic-capable diseases too. This begins with understanding the 
evolutionary processes behind zoonosis. The process of genetic reassortment 
underpinning pandemic flu zoonosis may occur only when a single animal 
is infected with two strains of influenza. Therefore, data on the zoonotic res-
ervoir of the disease can be useful in estimating future pandemic frequency. 
Influenza viruses circulate among animal, notably avian and swine popula-
tions. Where swine or poultry is kept in closely confined conditions and where 
viral strains that may be common in animal populations in other regions are 
introduced to a new region, the chance of reassortment is increased. Close 
human contact with animals, for example, sleeping in close proximity or fre-
quent manual handling can increase the chance of a novel pathogen being 
transmitted to humans. We can, therefore, use proxies derived from these 
principles to gain insight on the probability of reassortment occurring and 

  D. Smith



  487

its transmission to humans. Extensive mapping  projects are conducted by 
the Food and Agriculture Organization of the United Nations and are used 
in modelling frequency and location of origin of novel animal pathogens and 
zoonoses (Robinson et al. 2014).

15.6.2	 �Transmissibility and Virulence

The transmissibility and virulence parameters in an emerging pandemic 
can be estimated using the methods described in the section “Inferring key 
epidemiological model parameters during a pandemic”. In the case of a 
probabilistic model, realistic distributions of transmissibility and virulence 
need to be parameterised for each disease class covered by the model. These 
distributions can then be sampled to generate the events of the probabilistic 
event set.

To parameterise the event set’s transmissibility distribution, it is typi-
cal to fit a long-tailed parametric distribution to the historical R0 estimates 
from prior epidemics and pandemics. Expert epidemiological judgement is 
required to ensure that the tail of this distribution is reasonable (Sullivan 
2010). Unabated case fatality and morbidity rates would also be derived by 
inferring the appropriate distribution from prior data on infectious disease 
virulence.

Some probabilistic pandemic models incorporate a degree of negative 
correlation between transmissibility and virulence on the grounds that 
highly virulent diseases are more debilitating and therefore readily self-
limit (Woo 2015). The argument is that this self-limiting behaviour means 
such diseases would be under negative selective pressure and are therefore 
less common. While this argument has been criticised for assuming group 
selection,8 further evolutionary arguments and simulations suggest that an 
intermediate level of virulence is preferred (Lenski and May 1994). This is 
captured in the models by sampling from a joint distribution of transmis-
sibility and virulence.

Estimates of the other factors influencing the post-intervention transmis-
sibility and virulence of the disease are based on assessment of experience 
in prior pandemics, published countermeasure efficacy where available, and 
stated best (and actual) practices of government agencies and NGOs in coun-
tering infectious disease. These are likely to be simple distributions and are 
open to be adjusted and stress-tested by the end user in some probabilistic 
pandemic modelling software packages (RMS 2014).
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15.6.2.1  �Infectious Disease Modelling in Comparison 
to Catastrophe Modelling

Scenario-based and probabilistic models for pandemics are similar in struc-
ture to natural catastrophe models for geophysical hazards. Table 15.4 shows 
a comparison of the main elements of these models used in the insurance 
industry. A key difference between most natural catastrophe events and pan-
demics is the timeframe over which they develop. Many natural catastrophes, 
in terms of physical hazard, are over within hours, days or weeks of the first 
damage. However, even pandemics with a short caseload doubling time can 
go on for many months, even years.9 This results in a further type of scenario 
modelling for pandemics—emerging event modelling.

Table 15.4  Comparison of the functional components of pandemic models versus nat-
ural catastrophe models

Natural hazard model Pandemic model

Historical 
reconstructions

Estimate the impact of an 
event with hazard 
equivalent to estimated 
hazard in the historical 
event on today’s built 
environment

Estimate the impact of a novel 
pathogen emerging with 
transmissibility and virulence 
characteristics similar to the 
historical event, but applied to 
today’s population and under 
modern world travel, medical 
and non-medical 
countermeasure assumptions

Stochastic 
scenarios

Generate an event with 
plausible physical 
characteristics and estimate 
impact on built 
environment

A novel emerging or re-emerging 
pathogen with plausible 
biological characteristics. 
Estimate its impact on 
population

Emerging event 
modelling

– A real-world emerging pathogen 
with uncertain characteristics 
and upon which 
epidemiological study is being 
carried out. Model its progress 
and estimate the impact on the 
population

Probabilistic 
model

Generate a suite of 
events—a stochastic event 
set—composed of a large 
set of stochastic scenarios, 
with statistical properties 
based on the modelled 
frequency and physical 
properties of those events

A set of stochastic scenarios based 
on the modelled frequency 
distribution and distributions of 
biological and medical 
characteristics associated with 
the type of pathogen
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An actual versus expected assessment of RMS’s model for the novel H1N1 
influenza pandemic provides anecdotal evidence that good performance can 
be achieved when applying probabilistic pandemic risk models to real-world 
emerging events (RMS 2010).

15.7	 �Applications

Epidemic and pandemic spread models have been used in a public health 
context for many years, both to explain the patterns seen in previous events 
and to make projections for events that are emerging. When a new pathogen 
exhibiting sustained transmission has been identified, models can be used 
to estimate the range or distribution of potential outcomes. This is relevant 
to public health practitioners or task forces focussed on reducing the scale 
and impact of the outbreak, as well as to governments and organisations 
exposed to the impacts of the outbreak. For example, the range of possible 
control effects of using various countermeasures can be assessed by model-
ling their impact on the simulated pandemic, yielding a distribution of the 
net impact of the intervention. Ring vaccination—vaccination of traceable 
direct and indirect contacts of infected persons—for Ebola virus was trialled 
during the latter stages of the 2014–2015 epidemic in Guinea. Results of 
the field trial indicated that a ring vaccination strategy using the candidate 
vaccine could be highly effective at reducing transmission of the disease 
(Henao-Restrepo et al. 2015). This theory was tested further via computer 
simulation of ring vaccination strategies, which supported this finding in 
the latter stages of an epidemic, but with the caveat that the same strategy 
could be substantially less effective during the early stages of an outbreak 
(Kucharski et al. 2016).

In an insurance risk transfer context, there are three main types of trans-
action that pandemic risk models support. The first is the excess mortal-
ity bond. The first such bond, Vita Capital Ltd was issued by Swiss Re in 
2003; it and some other insurers and reinsurers have actively participated 
in the issuance of excess mortality bonds since that time. These instru-
ments provide the sponsor a financial hedge against short-term (one- or 
two-year long) increases in mortality rates relative to the baseline mortality 
experienced in recent, normal times. Their purpose is to make a payout to 
life insurers and reinsurers in the event a qualifying excess mortality rate is 
achieved. The one to two calendar-year timeframe is particularly relevant 
for influenza pandemics, which are typically around that duration. These 
are parametric bonds, insofar as their payout structure is not based on an 
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indemnity loss to the sponsor. Instead, it is based on national statistics 
agency-provided mortality data for the population of the covered coun-
tries. Since 2003, excess mortality bonds with a cumulative face value of 
$3.4 billion have been issued.

Beyond mortality, a transaction has been devised to provide coverage 
against extreme increases in cost of healthcare for a health insurer. A large 
surge in demand and used of health services and pharmaceuticals could drive 
a major loss to a health insurer, so pandemic risk modelling contributed to 
quantifying and transferring that risk to the capital markets.

Further applications to risk transfer include the World Bank’s proposed 
Pandemic Emergency Facility, which provides early stage surge funding to 
finance the response against a novel infectious disease outbreak. This facility 
was proposed following the 2014–2015 Ebola virus disease epidemic. The 
principle is that a well-funded rapid response will halt some outbreaks much 
earlier than would otherwise be possible, thus saving orders of magnitude of 
lives and reducing the cost of the ultimate response.

15.8	 �Conclusion

This chapter has explored the nature of pandemic diseases, their history and 
the mathematical models that can be used to estimate their probability of 
emergence and future progress. Modelling of infectious diseases remains an 
active area of scientific research and plays an important role in maintaining 
public health and resilience to catastrophic mortality events. It also underpins 
appropriate management of excess mortality risk by life insurers and reinsur-
ers, including providing the means to quantify such risks for the purpose of 
risk transfer.

Beyond the pure mortality impact, the emergence of a highly transmis-
sible infectious disease could have a major impact on the global economy 
by way of less willingness to travel, reduced economic participation and 
confidence.

�Notes

	1.	 A virus, bacterium or parasite that can cause disease.
	2.	 DALYs: Disability-adjusted life years are measured as number of years of life 

lost caused by disability, ill-health or premature death.
	3.	 Mortality in this context is number of deaths per unit population by cause of 

death. Morbidity is the rate of disease in a population.

  D. Smith



  491

	4.	 The World Bank classifies economies on the basis of income, using the follow-
ing four categories: low, lower-middle, upper-middle and high income.

	5.	 A vector is any agent that carries and transmits a pathogen from one living 
organism to another.

	6.	 The gamma distribution is commonly used to model non-negative random 
variables. The Dirac delta distribution is a distribution with zero variance.

	7.	 Actuarial models are extrapolations of past data used for forecasting future 
outcomes.

	8.	 Group selection assumes natural selection will happen at the level of a group of 
organisms rather than at the level of an individual or gene. The units of selec-
tion remain an active area of research among evolutionary biologists.

	9.	 Doubling time is the time period required for the number of cases to double 
during the exponential growth phase of an epidemic.
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