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Abstract. In this paper we propose a feasible method based on projec-
tions using a curvilinear search for solving optimization problems with
orthogonality constraints. Our algorithm computes the SVD decompo-
sition in each iteration in order to preserve feasibility. Additionally, we
present some convergence results. Finally, we perform numerical exper-
iments with simulated problems; and analyze the performance of the
proposed methods compared with state-of-the-art algorithms.
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1 Introduction

In this paper we consider the following optimization problem with orthogonality
constraints:

min
X∈Rn×p

F(X) s.t. X�X = Ip, (1)

where F : Rn×p → R is a differentiable function and Ip ∈ R
p×p represents the

identity matrix. The feasible set Stf(n, p) := {X ∈ R
n×p|X�X = I} is known

as the “Stiefel Manifold”. This manifold is simplified to the unit sphere when
p = 1 and in the case p = n is called “Orthogonal group”. The Stiefel manifold
can be seen as an embedded sub-manifold of R

n×p with dimension equals to
np − 1

2p(p + 1), see [1].
Problem (1) admits many applications such as, linear eigenvalue problem [14],

sparse principal component analysis [4], Kohn-Sham total energy minimization
[16], orthogonal procrustes problem [5], weighted orthogonal procrustes prob-
lem [6], nearest low-rank correlation matrix problem [7,12], joint diagonaliza-
tion (blind source separation) [8], among others. In addition, some problems
such as PCA, LDA, multidimensional scaling, orthogonal neighborhood preserv-
ing projection can be formulated as problem (1) [9].

On the other hand, the Stiefel manifold is a compact set, which ensures that
(1) has a global optimum at least. However, this manifold is not a convex set,
which transforms (1) in a hard optimization problem. For example, the quadratic
assignment problem (QAP) and the leakage interference minimization are NP-
hard [10].
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In this paper we propose a new method based on projections onto the Stiefel
manifold. In particular, we study two algorithms to solve problem (1). At each
iteration of the algorithms, we project the corresponding update onto the Stiefel
manifold using the singular value decomposition (SVD) which guarantees to
obtain a feasible sequence. Although, the SVD decomposition is computationally
expensive, this is less expensive than building a geodesic. In the literature, we
can find other feasible methods that solve problem (1), for example, the ones
based on retractions methods use projections that involve QR factorization, polar
decomposition, Gram-Schmidt process or SVD decomposition [1].

This paper is organized as follows. In Subsect. 2.1 we present some standard
notation and in Subsect. 2.2 we give the optimality conditions of the problem (1),
Subsect. 2.3 describes the proposed update scheme, where we present a linear
search monotone algorithm and a globally convergent non-monotone algorithm
for solving problem (1), Subsect. 2.4 shows different strategies to choose the step
size according to Armijo-Wolfe like condition, and a non-monotone search using
the Barzilai Borwein step size. Some theoretical results are presented in Sect. 3.
Section 4 is dedicated to numerical experiments in order to demonstrate the
efficiency and robustness of the proposed algorithms.

2 Algorithms

In the first two subsections, we introduce some standard notation and the opti-
mality conditions of problem (1) respectively. Next subsections are devoted to
introduce our proposed method.

2.1 Notation

We say that a matrix W ∈ R
n×n is skew-symmetric if W = −W�. The

trace of X is defined as the sum its diagonal elements, and we will denote by
Tr[X]. The Euclidean inner product of two matrices A,B ∈ R

m×n is defined
as 〈A,B〉 :=

∑
i,j Ai,jBi,j = Tr[A�B]. The Frobenius norm is defined using

the previous inner product, i.e., ||A||F =
√〈A,A〉. Let F : R

n×p → R be a
differentiable function, then the derivative of F with respect to X is denoted
as G := DF(X) := (∂F(X)

∂Xij
) and the derivative of the function F in X in the

direction Z is defined as:

DF(X)[Z] :=
∂F(X + tZ)

∂τ

∣
∣
∣
t=0

= lim
t→0

F(X + tZ) − F(X)
t

= 〈DF(X), Z〉. (2)

2.2 Optimality Conditions

The Lagrangian function associated to the optimization problem (1) is given by:

L(X,Λ) = F(X) − 1
2
Tr[Λ(X�X − Ip) ], (3)
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where Ip is the identity matrix and Λ is the Lagrange multipliers matrix, which is
symmetric due to the matrix X�X is also symmetric. The Lagrangian function
leads to the first order optimality conditions for problem (1):

G − XΛ = 0 (4a)
X�X − Ip = 0. (4b)

Lemma 1 (cf. Wen and Yin [15]). Suppose that X is a local minimizer of
problem (1). Then X satisfies the first order optimality conditions (4a) and
(4b) with the associated Lagrangian multiplier Λ = G�X. Defining ∇F(X) :=
G − XG�X and A := GX� − XG�. Then ∇F(X) = AX. Moreover, ∇F = 0
if and only if A = 0.

Proof. See [15].

The Lemma 1 establishes an equivalence to the (4a) and (4b) conditions, i.e.,
if X ∈ Stf(n, p) satisfies that ∇F(X) = 0 then X also satisfies (4a) and (4b), so
we can use this result as a stopping criterion for our algorithms.

2.3 Update Schemes

In this subsection we present a linear combination based algorithm. As the new
iterated of our proposals does not necessarily belong to the Stiefel Manifold, we
use a projection operator, in order to force the feasibility of the new iterated.
Specifically, we use the classical projection operator which is defined as π(X) :=
arg minQ∈Stf(n,p) ||X−Q||2F , it is known that the solution of this problem is given
by π(X) = UIn,pV

� where X = UΣV � is the SVD decomposition of X, for
details of the demonstration of this result see [11].

In our updating formula, we use the previous result for obtaining a new point
that satisfies the constraints of the problem (1). For example, if Yk(τ) is obtained
from our proposal, i.e., the linear combination scheme, then the new test point is:

Xk+1 := Zk(τ) := π(Yk(τ)). (5)

In the next subsections we explain in more detail our updating formula Yk(τ).

A Scheme Based on a Linear Combination. Our proposal uses the follow-
ing update formula:

Y CL
k (τ) := Xk − τ (λBkL + μCkR ), (6)

where Gk = DF(Xk), Bk = GkL� − LG�
k , Ck = GkR� − RG�

k , L,R ∈ R
n×p, τ

is the step size and (λ, μ) are any two scalars satisfying:

λ||Bk||2F + μ||Ck||2F > 0.

The following lemma shows that the curve Y CL
k (·) defined by Eq. (6) is a descent

curve at τ = 0.
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Lemma 2. Let Y CL
k (τ) be defined by Eq. (6), then Y CL

k (τ) is a descent curve
at τ = 0, i.e.,

DF(Xk)[Ẏ CL
k (0)] = −λ

2
||Bk||2F − μ

2
||Ck||2F < 0. (7)

Proof. The proof is straightforward, and it can be obtained by using trace prop-
erties and using Eq. (2).

Remark 1. Note that in the updating formula (6), we can select any matrix L or
R, in particular one can use matrices L, R with random entries. The parameters
(λ, μ) can appropriately selected, for example, we can choose both positive. This
ensures that the method will descent and may eventually converge to a local
minimum. In our implementation, we select L = Xk, R = Xk−1 and (λ, μ) =
(2/3, 1/3).

2.4 Strategies to Select the Step Size

From now on, Yk(τ) represents our proposal, i.e., the based on the linear com-
bination method.

A Descent Condition. In our method, we will choose the biggest step size τ
that satisfies the following condition:

F(Zk(τ)) ≤ F(Xk) + στTr[G�
k Ẏk(0)], (8)

with 0 < σ < 1.
Note that Eq. (8) is not exactly the classic “Armijo condition”, since we use

Ẏk(0) instead of Żk(0). However, if we only use the condition (8) for computing
the step size, it ensures the descent of the objective function as long as the
directional derivative Tr[DF(Xk)�Ẏk(0)] is negative. In this work, we also study
the behavior of our algorithms calculating the step size as satisfying (8).

Nonmonotone Search with Barzilai Borwein Step Size. It is known that
the Barzilai-Borwein (BB) step size, see [2], can sometimes improve the perfor-
mance of linear search algorithms such as the steepest descent method without
adding too much computational cost. This technique considers the classic steep-
est descent method and proposes to use any of the following step sizes:

αBB1
k =

||Sk||2F
Tr[S�

k Rk]
and αBB2

k =
Tr[S�

k Rk]
||Rk||2F

. (9)

where Sk = Xk+1 − Xk, Rk = DF(Xk+1) − DF(Xk) and the matrix B(α) =
(αI)−1, is considered an approximation of the Hessian of the objective function.
For more details see [2,13].

Since the quantities αBB1
k , αBB2

k could be negatives, the absolute value of
these step sizes is usually considered. On the other hand, the BB-steps do not
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necessarily guarantee the descent of the objective function at each iteration, this
may imply that the method does not converge. In order to solve this problematic,
we use a technique that guarantees global convergence, see Refs. [3,13] for details.
In particular, we use a non-monotone line search algorithm, see [17], combined
with the BB-step in order to select the step size, see Algorithm 1.

Algorithm 1 . Non-monotone linear search algorithm for solve optimization
problems on Stiefel manifold
Require: X0 ∈ Stf(n, p), τ > 0, 0 < τm � τM , σ, ε, η, δ ∈ (0, 1), X−1 = X0, C0 =

F(X0), Q0 = 1, k = 0.
Ensure: X∗ a local minimizer.
1: while ||∇F(Xk)||F > ε do
2: while F(Zk(τ)) ≥ Ck + στDF(Xk)[Ẏk(0)] do
3: τ = δτ ,
4: end while
5: Xk+1 = Zk(τ) := π(Yk(τ)), with Yk(τ) using (6).
6: Calculate Qk+1 = ηQk + 1 and Ck+1 = (ηQkCk + F(Xk+1))/Qk+1.
7: Choose τ = |αBB1

k | or well τ = |αBB2
k |, where αBB1

k and αBB2
k are defined as in

(9).
8: Set, τ = max(min(τ, τM ), τm).
9: k = k + 1.

10: end while
11: X∗ = Xk.

Note that when η = 0, Algorithm 1 is reduced to a monotonous algorithm
which generates points satisfying the descent condition (8).

3 Theoretical Results

In this section we prove some convergence results of our Algorithm 1 when it’s
use with η = 0.

Lemma 3. Let {Xk} be an infinite sequence generated by Algorithm1. Then
{F(Xk)} is a convergent sequence. Moreover any accumulation point X∗ of {Xk}
is feasible, i.e., X�

∗ X∗ = I.

Proof. By construction of the Algorithm 1 we have,

F(Xk+1) ≤ F(Xk) + στkTr[G�
k Ẏk(0)], ∀k (10)

or equivalently,

F(Xk) − F(Xk+1) ≥ −στkTr[G�
k Ẏk(0)], ∀k

> 0 (due Yk(τ) is a descent curve at τ = 0 ),
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so, {F(Xk)} is a monotonically decreasing sequence. Now, since Stiefel manifold
is a compact set and F is a continuous function, we obtain that F has maximum
and minimum on Stf(n,p). Therefore, {F(Xk)} is bounded, and then {F(Xk)}
is a convergent sequence.

On the other hand, let {Xk}k∈K be a convergent subsequence of {Xk} and
suppose that this subsequence converges to X∗, that is limk∈K Xk = X∗, since
Xk is a feasible point for all k ∈ K and Stf(n,p) is a compact set, then we have
X∗ ∈ Stf(n,p), i.e.,

X�
∗ X∗ = I,

therefore every accumulation point is feasible.

Theorem 1. Let {Xk} be an infinite sequence generated by Algorithm1. Then
any accumulation point X∗ of {Xk} satisfies the the first order optimality con-
ditions.

The proof of Theorem 1 is obtained by following the ideas of the demonstration
of Theorem 4.3.1 in [1] except for slight adaptations.

4 Numerical Experiments

In this section we analyze the performance of our method by solving several sim-
ulated experiments with the format of the problem (1), for different objective
functions and different sizes of problems. We also make comparisons between
some state of the art methods and our proposal, in order to measure the perfor-
mance and efficiency of our algorithms.

4.1 Implementation Details

All our experiments were performed using Matlab R2013a on an Intel processor
i3-380M, 2.53 GHz CPU with 500 Gb HD and 8 Gb of Ram. For the different
parameters of our two algorithms, we use the following values: initial step size
τ = 1e−2, σ = 1e−4, η = 0.85, δ = 0.1. Moreover, as the convergence of the
first-order methods (methods using the first derivative of the objective function)
can be very slow we will use several stop criteria:

||∇F(Xk)||F < ε, and (tolxk < xtol ∧ tolfk < ftol), (11)

and a maximum of K iterations, where

tolxk :=
||Xk+1 − Xk||F√

n
, and tolfk :=

F(Xk) − F(Xk+1)
|F(Xk)| + 1

.

In the experiments, we used the following default values: xtol = 1e−6, ftol =
1e−12, T = 5 and ε = 1e−4.

In all experiments presented in the following subsections we use the following
notation:
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– Nfe: The number of evaluations of the objective function.
– Nitr : The number of iterations performed by the algorithm to convergence.
– Time: The time (in seconds) used by the algorithm to converge.
– NrmG : The gradient norm of the Lagrangian function with respect to primal

variables evaluated at the estimated “optimal”.
– Fval : Evaluation of the objective function at the estimated “optimal”.
– Feasi : Corresponds to the following error ||X̂�X̂ − Ip||F , where X̂ denotes

the “optimal” estimated by the algorithm.

In addition, we denote by the Steepest Descent Steep-Dest, the Trust-
Region method Trust-Reg and the Conjugate Gradient method Conj-Grad from
“manopt” toolbox1, and PGST the algorithm presented in [6]. On the other
hand, Linear-Co denote our Algorithm 1.

4.2 Weighted Orthogonal Procrustes Problem (WOPP)

Let X ∈ R
m×n, A ∈ R

p×m, B ∈ R
p×q and C ∈ R

n×q. The Weighted Orthog-
onal Procrustes Problem (WOPP) consists in solving the following constrained
optimization problem:

min
X∈Rm×n

1
2 ||AXC − B||2F (12)

s. t. X�X = In.

When C is the identity matrix with appropriate dimensions, this problem is
known as Unbalanced Orthogonal Procrustes Problem (UOPP), for more details
see [1].

Experiments with WOPP Problems. The problems in this subsection were
taken from [18]. In particular, we considered n = q, p = m, A = PSR� and
C = QΛQ�, where P,Q and R are orthogonal matrices generated randomly with
Q ∈ R

n×n, R,P ∈ R
m×m, Λ ∈ R

n×n is a diagonal matrix with entries generated
from a uniform distribution in the range [12 , 2] and S is a diagonal matrix defined
for each type of problem, see below for details. As a starting point X0 ∈ R

m×n,
we generated random matrices on the Stiefel manifold. When not specified, the
entries of the matrix were generated using a standard Gaussian distribution.

For comparison purposes, we created problems with a known solution Q∗ ∈
R

m×n randomly selected on the Stiefel manifold. Then, we built the matrix B
as B = AQ∗C. Finally, for the different tested problems the diagonal matrix S
is described below.

Problem 1: The diagonal elements of S were generated by a normal distribution
in the interval [10,12].

1 The tool-box manopt is available in http://www.manopt.org/.

http://www.manopt.org/
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Problem 2: The diagonal of S is given by Sii = i+ 2ri, where ri was a random
number uniformly distributed in the interval [0, 1].

For each experiment, a total of 300 WOOP’s problems were built with the
matrix S generated according to problems Problem 1 and Problem 2 respec-
tively. The maximum number of iterations, for all methods, was K = 8000.

The results of the previous experiments are presented in Tables 1 and 2. We
denote by Error to the standard error with respect to the global solution Q∗, i.e.,
||X̂ −Q∗||F where X̂ is the optimum estimated by the algorithms. Furthermore,
min, mean, max denote the minimum, maximum and average obtained by each
algorithm in the 300 runs.

According to Table 1 for well-conditioned problems, i.e., Problem 1, all the
algorithms present similar results. Note that PGST obtained a lower number
of iterations. In general, all the methods presented a similar performance for
this type of problems. On the other hand, for ill-conditioned problems, i.e.,
Problem 2, we observe that all the method arrived to the solution Q∗, according
to NrmG, Fval and Error measures. Moreover, our Linear-Co procedure
obtained similar results compared with the PGST algorithm when n < m, and
when m = n Linear-Co method achieved better results that the PGST, see
Table 2.

Table 1. Performance of the methods for well conditioned WOPP problems
(Problem 1)

Method Problem 1 with m = 500 and n = 70

Nitr Nfe Time NrmG Fval Error

Linear-Co Min 48 49 2.60 1.33e−05 7.13e−13 1.44e−07

Mean 59.7 60.7 3.72 6.10e−05 3.63e−11 1.27e−06

Max 71 72 5.06 9.95e−05 1.34e−10 2.92e−06

PGST Min 36 35 1.87 9.63e−06 7.96e−13 1.75e−07

Mean 41.6 40.0 2.37 7.85e−05 3.68e−11 1.12e−06

Max 49 42 3.22 2.23e−04 1.35e−10 2.98e−06

Method Problem 1 with m = 200 and n = 200

Nitr Nfe Time NrmG Fval Error

Linear-Co Min 46 47 1.77 1.35e−05 9.35e−14 4.51e−08

Mean 53.0 54.1 2.64 6.16e−05 1.08e−11 6.40e−07

Max 63 65 3.81 9.97e−05 3.94e−11 1.58e−06

PGST Min 33 36 1.86 1.64e−04 2.25e−11 5.48e−07

Mean 38.2 42.0 2.75 6.56e−04 9.62e−10 5.95e−06

Max 43 45 3.73 9.99e−04 3.83e−09 1.55e−05
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Table 2. Performance of the methods for ill-conditioned WOPP problems
(Problem 2)

Method Problem 2 with m = 300 and n = 20

Nitr Nfe Time NrmG Fval Error

Linear-Co Min 2078 2133 16.36 5.20e−04 4.17e−09 2.38e−05

Mean 4732.2 4861.3 40.25 1.01e−02 9.57e−02 8.04e−02

Max 8000 8229 72.37 3.40e−01 9.91e−01 4.89e−01

PGST Min 3118 2080 18.15 6.52e−05 1.59e−13 1.46e−07

Mean 6373.1 4142.3 37.38 4.67e−01 8.66e−02 8.14e−02

Max 8000 8478 53.75 2.62e+01 1.22 4.96e−01

Method Problem 2 with m = 150 and n = 150

Nitr Nfe Time NrmG Fval Error

Linear-Co Min 576 775 13.48 1.20e−04 6.74e−11 2.66e−06

Mean 1164.1 1210.6 20.80 1.30e−03 1.06e−08 3.71e−05

Max 1881 1945 33.56 1.29e−02 2.56e−07 2.53e−04

PGST Min 1125 962 27.16 1.67e−04 3.66e−12 6.59e−08

Mean 2039.6 1921.1 50.62 8.52e−04 5.50e−09 2.85e−05

Max 3521 3558 116.36 1.00e−03 1.98e−08 8.50e−05

5 Conclusions

In this paper we proposed a feasible method for solving optimization problems
with orthogonality constraints. This method is very general and was based on
a linear combination of descent directions and using the same manifold frame-
work. We are currently exploring several variants of this procedure. In order to
preserve feasibility, our proposal requires to project onto the Stiefel manifold. In
particular, we used the SVD decomposition in each iteration. In this work, we
also presented some convergence results. Finally, in numerical experiments, the
proposed algorithms obtained a competitive performance compared with some
state of the art algorithms.
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