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Abstract. In this paper we show the advantage of modeling dependen-
cies in supervised classification. The dependencies among variables in
a multivariate data set can be linear or non linear. For this reason, it
is important to consider flexible tools for modeling such dependencies.
Copula functions are able to model different kinds of dependence struc-
tures. These copulas were studied and applied in classification of pixels.
The results show that the performance of classifiers is improved when
using copula functions.
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1 Introduction

Classification is an important task in Pattern Recognition. The goal in supervised
classification is to assign a new object to a category based on its features [1].
Applications in this subject use training data in order to model the distribution
of features for each class. In this work we propose the use of bivariate copula
functions in order to design a probabilistic model. The copula function allows
us to properly model dependencies, not necessarily linear dependencies, among
the object features.

By using copula theory, a joint distribution can be built with a copula func-
tion and, possibly, several different marginal distributions. Copula theory has
been used for modeling multivariate distributions in unsupervised learning prob-
lems [3,5,9,13] as well as in supervised classification [4,6,7,10,12,14,15]. For
instance, in [4], a challenging classification problem is solved by means of cop-
ula functions and vine graphical models. However, all marginal distributions are
modelled with gaussian distributions and the copula parameter is calculated by
inverting Kendall’s tau. In [10,15], simulated and real data are used to solve clas-
sification problems within the framework of copula theory. No graphical models
are employed and marginal distributions are based on parametric models. In this
paper, we employed flexible marginal distributions such as Gaussian kernels and
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the copula parameter is estimated by using the maximum likelihood method.
Moreover, the proposed classifier takes into account the most important depen-
dencies by means of a graphical model. The reader interested in applications of
copula theory in supervised classification is referred to [6,7,12,14].

The content of the paper is the following: Sect. 2 is a short introduction to
copula functions, Sect. 3 presents a copula based probabilistic model for classifi-
cation. Section 4 presents the experimental setting to classify an image database,
and Sect. 5 summarizes the results.

2 Copula Functions

The copula theory was introduced by [11] to separate the effect of dependence
from the effect of marginal distributions in a joint distribution. Although copula
functions can model linear and nonlinear dependencies, they have rarely been
used in supervised classification where nonlinear dependencies are common and
need to be represented.

Definition 1. A copula function is a joint distribution function of standard
uniform random variables. That is,

C(u1, . . . , ud) = Pr[U1 ≤ u1, . . . , Ud ≤ ud],

where Ui ∼ U(0, 1) for i = 1, . . . , d.

Due to the Sklar’s Theorem, any d-dimensional density f can be repres-
ented as

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd)) ·
d∏

i=1

fi(xi), (1)

where c is the density of the copula C, Fi(xi) is the marginal distribution function
of random variable xi, and fi(xi) is the marginal density of variable xi. Equa-
tion (1) shows that the dependence structure is modeled by the copula function.
This expression separates any joint density function into the product of copula
density and marginal densities. This is contrasted with the usual way to model
multivariate distributions, which suffers from the restriction that the marginal
distributions are usually of the same type. The separation between marginal
distributions and a dependence structure explains the modeling flexibility given
by copula functions.

In this paper we use two-dimensional parametric copula functions to model
the dependence structure of random variables associated by a joint distribu-
tion function. The densities of these copula functions are shown in Table 1. We
consider the Farlie-Gumbel-Morgenstern (FGM) copula function, elliptical copu-
las (Gaussian) and archimedean copulas (Independent, Ali-Mikhail-Haq (AMH),
Clayton, Frank, Gumbel). These copula functions have been chosen because
they cover a wide range of dependencies. For instance, the AMH, Clayton,
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Table 1. Bivariate copula densities.

Copula Description

Independent c(u1, u2) = 1

AMH c(u1, u2; θ) =
1 + θ(u1 + u2 + u1u2 − 2) − θ2(u1 + u2 − u1u2 − 1)

(1 − θ(1 − u1)(1 − u2))
3

Clayton c(u1, u2; θ) =

(1 + θ) (u1u2)
−θ−1 (u−θ

1 + u−θ
2 − 1

)−2−1/θ

FGM c(u1, u2; θ) = 1 + θ(1 − 2u1)(1 − 2u2)

Frank c(u1, u2; θ) =
−θ(e−θ − 1)e−θ(u1+u2)

((e−θu1 − 1)(e−θu2 − 1) + (e−θ − 1))2

Gaussian c(u1, u2; θ) =
(
1 − θ2

)−1/2
exp

(
− (x2

1 + x2
2 − 2θx1x2)

2(1 − θ2)
+

(x2
1 + x2

2)

2

)

where x1 = Φ−1(u1) and x2 = Φ−1(u2)

Gumbel c(u1, u2; θ) =
C(u1, u2)

u1u2

(ũ1ũ2)
θ−1

(
ũθ
1 + ũθ

2

)2−1/θ

(
(ũθ

1 + ũθ
2)

1/θ + θ − 1
)

where ũ1 = −ln(u1) and ũ2 = −ln(u2)

FGM, Frank and Gaussian copula functions can model negative and positive
dependences between the marginals. One exception is the Gumbel copula, which
does not model negative dependence. The AMH and FGM copula functions are
adequate for marginals with modest dependence. When dependence is strong
between extremes values, the Clayton and Gumbel copula functions can model
left and right tail association respectively. The Frank copula is appropriate for
data that exhibit weak dependence between extreme values and strong depen-
dence between centered values, while the Gaussian copula is adequate for data
that exhibit weak dependence between centered values and strong dependence
between extreme values. In general, when the Gaussian copula is used with stan-
dard Gaussian marginals, then the joint probabilistic model is equivalent to a
multivariate normal distribution.

The dependence parameter θ of a bivariate copula function can be estimated
using the maximum likelihood method (ML). To do so, the one-dimensional
log-likelihood function

� (θ; {(u1i, u2i)}n
i=1) =

n∑

i=1

log (c(u1i, u2i; θ)) , (2)

is maximized. Assuming the marginal distributions are known, the pseudo copula
observations {(u1i, u2i)}n

i=1 in Eq. (2) are obtained by using the marginal distrib-
ution functions of variables X1 and X2. Once the maximum likelihood estimator
of θ has been found, it is represented by the notation θ̂. It has been shown in
[16] that the ML estimator θ̂ has better properties than other estimators.
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3 The Probabilistic Model for Classification

The proposed classifier explicitly considers dependencies among variables. The
dependence structure for the design of the probabilistic classifier is based on
a chain graphical model. Such model, for a d-dimensional continuous random
vector X, represents a probabilistic model with the following density:

fchain(x) = f (xα1)
d∏

i=2

f
(
xαi

|xα(i−1)

)
, (3)

where α = (α1, . . . , αd) is a permutation of the integers between 1 and d. Figure 1
shows an example of a chain graphical model for a three dimensional vector.
Notice that a permutation could not be unique, in the sense that different per-
mutations could yield the same density values in (3).

Fig. 1. Joint distribution over three variables represented by a chain graphical model.

In practice the permutation α is unknown and the chain graphical model
must be learnt from data. A way of choosing the permutation α is based on the
Kullback-Leibler divergence (DKL). This divergence is an information measure
between two distributions. It is always non-negative for any two distributions,
and is zero if and only if the distributions are identical. Hence, the Kullback-
Leibler divergence can be interpreted as a measure of the dissimilarity between
two distributions. Then, the goal is to choose a permutation α that minimizes
the Kullback-Leibler divergence between the true distribution f(x) of the data
set and the distribution associated to a chain model, fchain(x). For instance, the
Kullback-Leibler divergence between joint densities f and fchain for a continuous
random vector X = (X1,X2,X3) is given by:

DKL (f ||fchain) = Ef

[
log

f(x)
fchain(x)

]

= −H(X) +
∫

log (f (xα1) f (xα2 |xα1) f (xα3 |xα2)) fdx. (4)

The first term in Eq. (4), H(X), is the entropy of the joint distribution f(x)
and does not depend on the permutation α. By using copula theory and Eq. (1),
the second term can be decomposed into the product of marginal distributions
and bivariate copula functions.
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DKL (f ||fchain) = −H(X) +
d∑

i=1

H(Xi)

−
∫

log
(
c
(
uα1 , uα2 ; θ̂α1,α2

))
fdx

−
∫

log
(
c
(
uα2 , uα3 ; θ̂α2,α3

))
fdx. (5)

The second term of Eq. (5), the sum of marginal entropies, also does
not depend on the permutation α. Therefore, minimizing Eq. (5) is equiva-
lent to maximize the sum of the last two terms. Once a sample of size n is
obtained from the joint density f , the last two terms can be approximated by a
Monte Carlo approach:

∫
log

(
c
(
uα1 , uα2 ; θ̂α1,α2

))
fdx ≈ 1

n

n∑

i=1

log
(
c
(
u1i, u2i; θ̂α1,α2

))
. (6)

Through Eq. (6), the DKL is minimized by maximizing the sum of the log-
likelihood for the copula parameters. It is worth to noting that the log-likelihood
allows us to estimate the copula parameter and to select the appropriate per-
mutation α. Finally, by means of copula theory, a chain graphical model for a
three dimensional vector has the density

fchain(x) = f (xα1) f (xα2) f (xα3) c (uα1 , uα2) c (uα2 , uα3) (7)

3.1 The Probabilistic Classifier

Here, we present the incorporation of bivariate copula functions and a chain
graphical model in order to design a probabilistic classifier.

The Bayes’ theorem states the following:

P (K = k|X = x) =
P (X = x|K = k) × P (K = k)

P (X = x)
, (8)

where P (K = k|X = x) is the posterior probability, P (X = x|K = k) is the
likelihood function, P (K = k) is the prior probability and P (X = x) is the data
probability.

Equation (8) has been used as a tool in supervised classification. A proba-
bilistic classifier can be designed comparing the posterior probability that an
object belongs to the class K given its features X. The object is then assigned
to the class with the highest posterior probability. For practical reasons, the
data probability P (X) does not need to be evaluated for comparing posterior
probabilities. Furthermore, the prior probability P (K) can be substituted by a
uniform distribution if the user does not have an informative distribution.

The joint density in Eq. (7) can be used for modeling the likelihood function
in Eq. (8). In this case, the Bayes’ theorem can be written as:

P (K = k|x) =

∏2
j=1 c(Fαj

, Fα(j+1) |k; θ̂αj ,α(j+1)) · ∏3
i=1 fi(xi|k) · P (K = k)

f(x1, x2, x3)
(9)
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where Fi are the marginal distribution functions and fi are the marginal densities
for each feature. The function c is a bivariate copula density taken from Table 1.
As can be seen in Eq. (9), each class determines a likelihood function.

4 Experiments

We use Eq. (9) and copula functions from Table 1 in order to classify pixels
of 50 test images. Hence, we prove seven probabilistic classifiers. The image
database was used in [2] and is available online [8]. This image database provides
information about two classes: the foreground and the background. The training
data and the test data are contained in the labelling-lasso files [8], whereas
the correct classification is contained in the segmentation files. Figure 2 shows
the description of one image from the database. Although the database is used
for segmentation purposes, the aim of this work is to model dependencies in
supervised classification. Only color features are considered for classifying pixels.

(a) (b) (c) (d) (e)

Fig. 2. (a) The color image. (b) The labelling-lasso image with the training data for
background (dark gray), for foreground (white) and the test data (gray). (c) The correct
classification with foreground (white) and background (black). (d) Classification made
by independence. (e) Classification made by Frank Copula.

Three evaluation measures are used in this work: accuracy, sensitivity and
specificity. These measures are described in Fig. 3. The sensitivity and specificity
measures explain the percentage of well classified pixels for each class, foreground
and background, respectively. We define the positive class as the foreground and
the negative class as the background.

4.1 Numerical Results

In Table 2 we summarize the measure values reached by the classifiers according
to the copula function used to model the dependencies.

To properly compare the performance of the probabilistic classifiers, we con-
ducted an ANOVA test for comparing the accuracy mean among the classifiers.
The test reports a statistical difference between Clayton, Frank, Gaussian and
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Truth

Positive Negative

Model
Positive tp fp

Negative fn tn

accuracy =
tp + tn

tp + fp + fn + tn

sensitivity =
tp

tp + fn

specificity =
tn

tn + fp

)b()a(

Fig. 3. (a) A confusion matrix for binary classification, where tp are true positive,
fp false positive, fn false negative, and tn true negative counts. (b) Definitions of
accuracy, sensitivity and specificity used in this work.

Table 2. Descriptive results for all evaluation measures. The results are presented in
percentages.

Copula Accuracy Sensitivity Specificity

Model Mean Std. dev. Mean Std. dev. Mean Std. dev.

Independent 79.4 10.8 77.3 16.6 81.3 13.6

AMH 82.9 9.5 80.7 15.9 84.7 11.9

Clayton 86.0 8.5 81.6 16.4 89.5 9.2

FGM 80.9 9.8 78.9 16.5 82.5 13.2

Frank 87.7 7.1 87.1 12.2 88.1 9.0

Gaussian 86.0 10.6 87.1 11.0 85.0 18.6

Gumbel 86.7 8.2 87.0 10.9 86.5 13.2

Gumbel copula functions with respect to the Independent copula (p-value <
0.05). The major difference of accuracy with respect to the independent copula
is given by the Frank copula.

4.2 Discussion

According to Table 2, the classifier based on the Frank copula shows the best
behavior for accuracy. For sensitivity, Frank and Gaussian copulas provide the
best results. The best mean specificity is reached by the classifier based on the
Clayton copula.

As can be seen, the average performance of a classifier is improved by the
incorporation of the copula functions. The lowest average performance corre-
sponds to the classifier that uses the independence assumption. Figure 4 shows
how the accuracy is increased when dependencies are taken into account by
the probabilistic classifier. The line of Fig. 4(a) represents the identity func-
tion, so the points above this line correspond to a better accuracy than the
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Fig. 4. (a) Scatterplot of the accuracy values between classifier based on independence
assumption (horizontal axis) and classifiers based on copula functions (vertical axis).
(b) The gain of accuracy by using copula functions.

(c)(a) (b)

Fig. 5. The first line shows the scatterplot among (a) red and green, (b) red and blue,
and (c) green and blue colors for the foreground class. The second line similarly shows
the scatterplots for the background class. (Color figure online)

accuracy achieved by the classifier based on the independent copula. To get a
better insight, Fig. 4(b) shows the difference in accuracy between using copula
functions respect to the naive classifier (independent copula).

Table 2 also shows information about the standard deviations for each evalu-
ation measure. For accuracy, the standard deviation indicates that using a Frank
copula in pixel classification is more consistent than the other classifiers.

Figure 2 shows the results of one of the 50 images mentioned before, once we
worked on them. In (d), we can see the resultant image when it is classified by
independence, (e) shows the same image classified by Frank copula. It is possible
to visually perceive the improvement that the use of Frank copula provides to
the classifier. For this image, the color data for each class is shown in Fig. 5. In
this case, it can be seen that the dependence structure does not correspond to
the dependence structure of a bivariate Gaussian distribution. According to the
numerical results, the copula Frank is the best model for this kind of dependence.
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5 Conclusions

In this paper we have compared the performance of several copula based proba-
bilistic classifiers. The results show that the dependence among features provides
important information for supervised classifying. For the images used in this
work, the Gumbel copula performs very well in most of the cases. One advan-
tage of using a chain graphical model consists in detecting the most important
dependencies among variables. This can be valuable for different applications
where associations among variables gives additional knowledge of the problem.
Though accuracy is increased by the classifiers based on copula functions, the
selection of the copula function has relevant consequences for the performance
of the classifier. For instance, in Fig. 4, a few classifiers do not improve the per-
formance achieved by the classifier based on the independent copula. It suggests
more experiments are needed in order to select the adequate copula function
for a given problem. Moreover, as future work, the classifier based on copula
functions must be proved in other datasets and compared with other classifiers
in order to achieve a better insight of its benefits and limitations.
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