
Managing Software Uninstall
with Negative Trust

Giuseppe Primiero and Jaap Boender(B)

Department of Computer Science, Middlesex University, London, UK
{G.Primiero,J.Boender}@mdx.ac.uk

Abstract. A problematic aspect of software management systems in
view of integrity preservation is the handling, approval, tracking and
eventual execution of change requests. In the context of the relation
between clients and repositories, trust can help identifying all packages
required by the intended installation. Negative trust, in turn, can be used
to approach the complementary problem induced by removing packages.
In this paper we offer a logic for negative trust which allows to iden-
tify admissible and no-longer admissible software packages in the cur-
rent installation profile in view of uninstall processes. We provide a sim-
ple working example and the system is formally verified using the Coq
theorem prover.

1 Introduction

Software management configuration is among the most pervasive problems in
modern personal computing, with complications caused by multiplication of
users, required support for several software versions releases, increasing cus-
tomization options and the need of coordination across distributed systems. One
specific aspect of configuration management activities is change management, i.e.
the handling, approval and tracking of change requests, with the aim of preserv-
ing the integrity of the system.

Consider the following example. A user interacts with a software package sys-
tem to install or remove applications. The set of packages installed on a machine
is called the installation profile of that machine. A valid installation profile is
one which meets all the dependencies and conflicts clauses of all the packages
installed and such that it satisfies sufficient dependencies for any desired pack-
age to be executed. Assume the current installation profile contains: two pack-
ages φ1, φ2 from the main repository; one package ψ1 from the free repository;
and one package ξ1 from the non-free repository. Assume moreover that ψ1

depends on φ1 and from φ2, while ξ1 depends on ψ1. Consider now the situation
where the user wishes to prevent installation of a given additional package ψn

from the free repository, while wishing to install a package ξ2 from the non-
free repository: which other packages is she safe in installing? and which ones
does she need to remove in order to avoid conflicts in the new installation?

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
J.-P. Steghöfer and B. Esfandiari (Eds.): IFIPTM 2017, IFIP AICT 505, pp. 79–93, 2017.
DOI: 10.1007/978-3-319-59171-1 7

80 G. Primiero and J. Boender

Determining these consistency relations between packages in a given installation
is essential for system stability, but also to prevent the possibility of security
threats in critical systems.

In [15], the problem of maintaining profile consistency and system integrity
in view of uninstall processes is presented in the following terms:

Definition 1 (Uninstall Problem). Given a new package φ to install, deter-
mine the minimal number of packages (possibly none) that must be removed from
the system in order to make φ installable.

This means identifying and removing all packages that are in conflict with the
intended installation and its dependencies. This version of the problem can be
complemented by that of identifying packages that depend on an undesired one.

In this context, trust can be used to characterize the relations between clients,
software packages (including their dependencies) and repositories during the
installation process. A software package in conflict with the current installation
profile can not be trusted under it and hence not installed; if already installed,
trust needs to be removed. Hence, dealing with such processes requires an explicit
treatment of negative trust. Here and in the following the term untrust is used as
neutral for ‘negative trust’ with respect to its derivatives mistrust and distrust :
the former expresses trust removal, the latter trust denial. It should be noted
that we refer to negative trust in the sense of being obtained through logical
negation, as opposed to other quantitative approaches, where negative numbers
are used. In [12] a natural deduction calculus is formulated which offers a proof-
theoretical semantics for both notions. On this basis, we adapt here the Uninstall
Problem from Definition 1 to the two semantics of untrust:

– A user identifies a package φ which generates conflict with a desired installa-
tion; to preserve profile consistency, φ is distrusted while the set of packages
not depending on φ remain installable;

– A user identifies a package φ to be installed but in conflict with the current
profile; to preserve profile consistency the packages ψi, . . . , ψn in the instal-
lation profile in conflict with φ are mistrusted.

The Uninstall Problem from Definition 1 can then be reformulated accord-
ingly in the two variants:

Definition 2 (Distrusted Uninstall Problem). Given a package φ that
should not be installed, determine which other packages can be installed (i.e.
that do not require φ).

In this case, we are obviously interested in determining the maximal set of
installable packages that do not conflict with φ.

Definition 3 (Mistrusted Uninstall Problem). Given a package φ that
should be installed, but which is in conflict with the current profile, determine
which packages need to be uninstalled in order for φ to become installable.

Managing Software Uninstall with Negative Trust 81

As in the approach from [15], we are interested here in determining the
minimal set of packages inconsistent with φ that have to be removed from the
installation profile.

In the present paper we provide a solution to these two problems in soft-
ware management through their formalization in a logic for negative trust. In
our model we use a trust function to allow access relations that presuppose con-
sistency; in the current interpretation, trust (and hence of consistency checks)
applies to software packages and conflicts are treated through negative trust.
Note that the kind of inconsistencies we consider are not just those induced by
technical requirements of the packages, but also by security issues. This formal
strategy can help in offering a computable approach to trust management and
in reducing risks related to installation profile inconsistency. The logic allows to
reason about statements of the form:

Installation profile Γ allows consistent installation of package φ and
prevents installation of conflicting package ψ.

This approach is in the first place novel from a conceptual point of view, because
software dependency satisfaction as trust management has not yet been largely
investigated. Secondly, it is novel from a technical point of view, as proof-
theoretic solutions and the possibility of implementation in theorem provers
for automatic inconsistency checking have been neglected so far. In compari-
son with existing approaches for the resolution of inconsistent installations, our
underlying logic allows a finer-grained approach than, for example, SAT-solvers.

The paper is structured as follows. In Sect. 2 we offer an overview of related
works in the area of computational trust and software management. In Sect. 3
we introduce the system (un)SecureND, which provides the formal machinery
for our analysis. In Sect. 4 the Distrusted Uninstall Problem is reformulated
within our logic and its solution illustrated. In Sect. 5 the same is done for the
Mistrusted Uninstall Problem. In Sect. 6 we present a simple scenario modelled
by example derivations showing both cases at work. We conclude with some
general remarks and a brief overview of future work.

2 Related Work

The present work sits at the intersection of the literature on software dependency
management and computational trust. In this section we briefly overview related
works in both areas and compare those to our approach and results.

In [5], we have offered a trust-based version of the optimization problem
from [15], known as the minimum install problem, determining the optimal way
to install a new package, where optimality is determined by an objective function
to minimize the amount of dependencies satisfied such that it results in a valid
installation profile. Trust is then used to guarantee that the minimal amount of
dependencies for each newly installed package is satisfied by transitively accessed
repositories. The complementary problem of maintaining profile consistency and

82 G. Primiero and J. Boender

system integrity in view of uninstall processes can be similarly developed by
applying the logic from [12] to the software management context.

In the context of software management, SAT solving appears as a promising
approach for the development of efficient methods of dependency graph resolu-
tion. SAT technology has been used in [9] to validate dependencies and check
installability of packages of specific Linux distribution. In Sect. 1 we have illus-
trated our current task as resolving two variants of the Uninstall Problem from
[15]. In that work the Opium package-management tool is introduced, also based
on pseudo-boolean solvers. Opium is complete with respect to solution finding
and can optimize a user-defined function, e.g. to prefer smaller packages over
larger ones. An implementation of Opium is available as the 0install solver.1 A
review of state-of-the-art package managers and their ability to keep up with
evolution and their dependency solving abilities is offered in [1], with a proposal
to treat dependency solving as a separate concern from other upgrade aspects.
The upgrade problem is also considered in [2] to justify the design of a modular
package manager. While we do not have an implementation of preferential set-
tings based on user-choices, our installation profiles are defined according to a
criterion of minimality for dependency satisfaction: this means that we construct
installation profiles according to an ordered criterion of dependency satisfaction
and package removal from a profile always proceeds to identify the minimal num-
ber of required packages. Also, in our approach we do not explicitly distinguish
cases of upgrade as separate from installation of new packages: this is clearly
a simplification, but the system can deal with upgrade with the more complex
tactic of removing older versions and installing newer ones. The solvability of
the decision problem related to software dependency management and its opti-
mization are also considered in [3]. In the present paper our aim is to start an
investigation in a proof-theoretical and trust-based approach to software depen-
dency management, which so far has been neglected. We also hope to facilitate
the introduction of automated theorem provers in the area, which can be ben-
eficial in the checking process of intended installations in order to anticipate
possible conflicts.

An associated but distinct issue is the co-installability problem: to quickly
identify the components that can or cannot be installed together. It is related
to boolean satisfiability and it is known to be algorithmically hard. It is shown
to be especially complex for cases that include optimization by user preferences,
where a combination of exact and approximate solving can help, [7]. In [16] a
formally certified semantic method preserving graph-theoretic transformations
is developed to associate to each concrete component repository a much smaller
one with a simpler structure. One aspect of co-installability is that of reciprocal
dependencies [4], which as mentioned more explicitly later is abstracted from
in the present formulation. The Mistrusted Uninstall Problem formulated below
replicates the intuition of the co-installability problem in the setting for external
packages (and their dependencies) which are in explicit conflict with currently

1 See http://0install.net/solver.html. An OCaml implementation is also available at
http://roscidus.com/blog/blog/2014/09/17/simplifying-the-solver-with-functors/.

http://0install.net/solver.html
http://roscidus.com/blog/blog/2014/09/17/simplifying-the-solver-with-functors/

Managing Software Uninstall with Negative Trust 83

installed ones (and those they depend on). As for the latter work and the work
presented in [1], our system enjoys a formal translation to a library for the Coq
theorem prover,2 with the aim of verifying its results. Our system seems also to
be the only one among those in the area of software management that relies on
the explicit formulation of a natural deduction calculus.

An essential characteristic of the method implemented in our system is that
integrity checking on installation profiles is guaranteed through an explicit for-
mulation of a trust access function on packages. The logic was first introduced
in [13] and extended to deal with negative trust in [12]. Recently, research has
started considering the advantages, implications and formal requirements needed
to deal with the various aspects of negated trust, and in particular the different
meanings that can be attached to mistrust and distrust, including the extension
and limits of their transitivity and propagation protocols [6,10,11,17]. Most cur-
rent research ignores the difference between the procedural semantics of these two
terms, possibly with the exception of [10], which presents mistrust as misplaced
trust, untrust as little trust and distrust as no trust. This approach abstracts,
though, from the reasons behind the attribution of these evaluations, in favour
of a purely quantitative approach. Propagation for negative (first-order) trust is
formulated in [8]. Our contribution relies on a strict distinction between distrust
and mistrust : the former is intended as trust denied to packages coming from
outside of the current installation profile in view of inconsistencies with currently
installed ones; the latter is understood as trust revoked to installed packages,
in view of desired new packages to be installed. These two cases have not been
in general treated separately. Our approach formalises them in the context of
uninstall operations, which as far as we are aware are entirely missing from
the literature. Moreover, treating (un)install operations in terms of (un)trust
allows us to integrate a consistency check performed over profiles that satisfy
dependencies for the packages involved.

3 (un)SecureND

(un)SecureND is a natural deduction calculus defining trust, mistrust and dis-
trust protocols introduced in [13] for the positive fragment and in [12] for the
negation complete extension. We offer here a slightly modified version adapted
for the software management problems at hand. In particular, the present version
introduces a strict partial ordering on formulas to express package dependency;
this is then lifted at the level of contexts to express rules for installation profile
construction and finally imported at the level of repositories where the asso-
ciated packages are located. In view of this order relation the system qualifies
as a substructural logic, in that Weakening is constrained by a trust function,
Contraction and especially Exchange by the order relation.

We start with introducing the language of our logic:

2 The repository is available at https://github.com/gprimiero/SecureNDC.

https://github.com/gprimiero/SecureNDC

84 G. Primiero and J. Boender

Definition 4 (Syntax of (un)SecureND)

S∼ := {A < B < . . .}
φS := aS | ¬φS

i | φS
i → φS

j | φS
i ∧ φS

j | φS
i ∨ φS

j | ⊥ | Read(φS) | Write(φS) | Trust(φS)
ΓS := φS

i | φS
i < φS

j | ΓS ; φS
j

3.1 Repositories, Packages and Dependencies

S∼ is the set of software repositories ordered by < in view of dependencies between
packages they contain, obtained below as lifting from package dependency. φS is
a meta-variable for formulae, expressing software packages and their logical com-
position inductively defined by connectives, including operations to read (query),
trust (consistency checking) and write (install). The language includes ⊥ to
express conflicts: we formulate ¬φA

i as an abbreviation for φA
i → ⊥. Packages

are typed by their origin in repositories: φS
i says that package φi can be retrieved

from repository S ∈ S. An installation profile ΓS is the list of all packages suffi-
cient to an access or execution operation; a profile is internally structured to reflect
the dependency of packages through the partial order < in S∼. We allow exten-
sion of profiles by packages that are not dependent on previous ones, denoted by
ΓS ;ΓS′

= {φS
i < . . . < φS

n ;φS′
n+1}. This construction allows us to consider instal-

lation profiles that have all the sufficient conditions for the valid execution of a
package, but can also be extended with additional packages. When such extension
comes from the same repository, we use a comma: ΓS , φS

i . The partial order allows
for branching in the hierarchy, so that e.g. φS

1 < φS
2 < φS

3 and φS
1 < φS

2 < φS
4 , i.e.

packages φS
3 , φS

4 have both dependencies on φS
2 and transitively on φS

1 , but φS
3 , φS

4

could have no dependencies on each other.

Definition 5 (Judgements). An (un)SecureND-judgement φA
i � ψB

j says that
a package ψj from repository B can be validly executed under a profile containing
package φi from repository A.

Definition 6 (Validity). An (un)SecureND-judgement � φA
i says that a pack-

age φi from repository A can be executed in any profile.

We now generalise the dependency relation between packages φA
i < ψB

j at the
level of repositories. A partial order relation < over S × S intuitively expresses
that dependencies are satisfied across repositories.

Definition 7. A < B iff ∃φA
i , ψB

j s.t. φA
i < ψB

j and ¬∃φA
k , ψB

l s.t. ψB
l < φA

k .

By the first clause in Definition 7, A < B means that some package in A satisfies
a dependency for a package in B. By the second clause in Definition 7, our order
relation abstracts from the issue of reciprocal dependencies. As noted in [4], two
packages that mutually depend on each other will either be installed together,
or not installed at all. They can therefore be considered as a single package for
dependency resolution purposes. Rules from Fig. 1 define installation profiles con-
struction from packages dependencies. Here we use the extra-theoretical typing

Managing Software Uninstall with Negative Trust 85

Empty Profile{} : profile
� φA

i
Package Insertion

φA
i :profile

ΓA, φA
i : profile ΓA, φA

i � ψB
j

Dependency Insertion
ΓA, φA

i < ψB
j :profile

ΓA : profile � ψB
j

Profile Extension
ΓA; ψB

j :profile

Fig. 1. The system (un)SecureND: profile construction rules

declaration :profile to state that a formal expression can be considered a valid
installation profile. By Empty Profile, an installation profile can be empty (base
case); by Package Insertion, the elements in an installation profile are packages;
by Dependency Insertion, a profile can be extended by satisfied dependencies;
by Profile Extension, if a package can be validly executed in an empty profile, it
can be added to an existing profile. Notice that unnecessary packages from any
repository can still be added: this is possible for packages without dependencies
through the Profile Extension rule, but more in general by an application of the
Weakening Rule (see Fig. 4). The result of such a profile extension is denoted
by ΓA;φB and ΓA;ΓB . It is worth noting that Weakening will preserve profile
consistency as it requires additionally an instance of the trust rule (see Fig. 3).

3.2 Rules for Package Execution

The operational rules in Fig. 2 formulate compositionality of package execution.
A judgement of the form ΓA � φB says that package φ from repository B is
executable without errors within an installation profile with packages coming
from repository A.

The rule Atom establishes valid package execution within the same instal-
lation profile and across repositories with satisfied dependencies. In the present
version we assume A < B. ⊥ says that if a profile is inconsistent, any package
whatsoever can be executed. ∧-I allows composition of packages from distinct
profiles; by ∧-E, each composing package can be obtained from the combined
profiles (with I = {A,B}). ∨-I says that a combined profile can access any pack-
age from each of the composing profiles; by the elimination ∨-E, each package
consistently inferred by each individual profile can also be executed under the
extended profile. →-Introduction expresses inference of a package from a com-
bined profile as inference between packages (Deduction Theorem); its elimination
→-E allows to recover such inference as profile extension (Modus Ponens).

86 G. Primiero and J. Boender

ΓA; ΓB : profile
Atom, for any ψB

i ∈ ΓB

ΓA; ΓB � ψB
i

ΓA � ⊥ ⊥
ΓA � φB

ΓA � φA
i ΓB � φB

j ∧-I
ΓA; ΓB � φA

i ∧ φB
j

ΓA; ΓB � φA
i ∧ φB

j ∧-E
ΓA; ΓB � φI

i/j

ΓA; ΓB � φI
i/j ∨-I

ΓA; ΓB � φA
i ∨ φB

j

ΓA; ΓB � φA
i ∨ φB

j φ
I∈{A,B}
i/j � ψC

k

∨-E
ΓA; ΓB � ψC

k

ΓA; φB
i � φC

j →-I
ΓA � φB

i → φC
j

ΓA � φB
i → φC

j ΓA � φB
i →-E

ΓA; φB
i � φC

j

Fig. 2. The system (un)SecureND: operational rules

3.3 Access Rules

In Fig. 3 we present the access rules. These allow a user’s installation profile to act
on packages available from a distinct repository. In particular, we formulate a rule
to query a package from a repository (read) and one to install a package within
a profile (write). A third rule is formulated to guarantee that only packages
consistent with the installation profile can be installed (trust).

read says that from any consistent profile ΓA a package φB
i can be read

provided its dependencies are satisfied (if any). trust works as an elimination
rule for read: it says that if a package φB

i can be read and it preserves profile
consistency, then it can be trusted. write works as an elimination rule for trust: it
says that a readable and trustable package can be installed. exec says that every
package that is safely installed in a consistent profile can be executed in it. The
Introduction rule for distrust DTrust-I expresses the principle that a package
φB
i non-consistent with its installation profile can be negated to be trustworthy;

the corresponding elimination DTrust-E uses →-introduction to induce write
of any package consistent with the conflict resolution. The Introduction rule
for mistrust MTrust-I says that trust is removed for local packages conflicting
with an intended installation (a queried package); the corresponding MTrust-E
allows to trust any package which is consistent with the conflict resolution by
removal of the mistrusted package in the installation profile. This holds for any
required dependency in other repositories, as expressed by the side condition that
requires checking for any C < B. By the latter set of rules, distrust is a flag for
preventing installation of conflicting external packages, while mistrust is a flag
for facilitating removal of conflicting packages present in the installation profile.
Notice that both untrust functions are triggered by the querying operation on a
repository, hence conflicts are highlighted before installation.

Managing Software Uninstall with Negative Trust 87

read
ΓA � Read(φB

i)

ΓA � Read(φB
i) ΓA; φB

i : profile
trust

ΓA � Trust(φB
i)

ΓA � Read(φB
i) ΓA � Trust(φB

i)
write

ΓA � Write(φB
i)

ΓA � Write(φB
i)

exec
ΓA � φB

i

ΓA � Read(φB
i) → ⊥

DTrust-I
ΓA � ¬Trust(φB

i)

ΓA � ¬Trust(φB
i) ΓA � ¬Trust(φB

i) → ψC
j

DTrust-E
ΓA � Write(ψC

j)

ΓA � Read(ψB
i) → ⊥ ΓA \ {φA

j } : profile
MTrust-I

ΓA \ {φA
j }; ψB

i � ¬Trust(φA
j)

ΓA \ {φA
j }; ψB

i � ¬Trust(φA
j) ΓC ; ψB

i : profile
MTrust-E, ∀C < B

ΓA \ {φA
j }; ΓC � Trust(ψB

i)

Fig. 3. The system (un)SecureND: access rules

3.4 Structural Rules

Structural rules hold with restrictions for (un)SecureND, see Fig. 4. As a result
the system qualifies as substructural, see e.g. [14].

Weakening is constrained by an instance of trust: it says that a valid instal-
lation of φA

i is preserved under a profile extension in view of a trusted package
φB
j , i.e. one whose profile extension is provably consistent.

Contraction is constrained by preservation of package ordering: it says that
a valid installation of φA

k is preserved when removing an instance of identical
packages φA

i ;φB
i , provided one preserves the package from the higher repository

in the order dependency, so as to guarantee any further dependency below.
Exchange is doubly constrained by order: it says that a valid installation of

φA
k is preserved under reorder of packages φi, φj , if those come from the same

repository A and if there is no involved dependency between them.
Finally, the Cut rule expresses valid package execution under profile exten-

sion: if a package φB
i is validly executed under profile ΓA and a profile ΓB

including φB
i allows execution of a package φB

j , then the extended profile ΓA;ΓB

allows execution of φB
j .

88 G. Primiero and J. Boender

ΓA � Write(φA
i) ΓA � Trust(φB

j)
Profile Weakening

ΓA; φB
j � Write(φA

i)

ΓA, φA
i ; φB

i � Write(ψA
k) A < B

Profile Contraction
ΓA, φA

i � Write(ψA
k)

ΓA, φA
i , φA

j � Write(φA
k) φA

i ≮ φA
j

Profile Exchange
ΓA, φA

j , φA
i � Write(φA

k)

ΓA � φB
i ΓB , φB

i � φB
j

Profile Cut
ΓA; ΓB � φB

j

Fig. 4. The system (un)SecureND: structural rules

4 The Distrusted Uninstall Problem

Consider a profile ΓA = {φA
1 < . . . < φA

n } and a package φB
m which one wishes

not to install. This might be due to a security constraint, or an explicit conflict
in view of an installed package φA

i ∈ Γ , which one explicitly wants to preserve.
We call such a package φB

m distrusted. In the calculus, this corresponds to the
conclusion of the DTrust-I rule

ΓA � ¬Trust(φB
m)

The Distrusted Uninstall Problem is to determine which packages can be
installed in ΓA that do not depend on φB

m. Our formulation allows to express
this principle as the request to obtain the maximal set of formulas {ψN

i } from
any repository N ≥ B such that

ΓA � ¬Trust(φB
m) → {ψN

i }
By DTrust-E, this guarantees the right to install ψN

i . The first step consists
in transforming our problem in a formulation that removes the trust condition.

Lemma 1. ΓA � ¬Trust(φB
m) → ψN

i iff ΓA;¬φB
m � ψN

i .

Proof. For the left-to-right direction: By the assumption ΓA � ¬Trust(φB
m) and

consistency of negation, ΓA � Trust(¬φB
m); similarly, from the premise ΓA �

¬Trust(φB
m) → ψN

i and consistency of negation we get ΓA � Trust(¬φB
m) →

ψN
i . Now apply write to Trust(¬φB

m) and eliminate the function through exec;
by →-E we obtain ΓA;¬φB

m � ψN
i .

For the right-to-left direction: By the assumption ΓA;¬φB
m � ψN

i it holds
ΓA;¬φB

m : profile, which justifies ΓA � Read(¬φB
m) by read, ΓA � Trust(¬φB

m)
by the previous and trust and ΓA � ¬Trust(φB

m) by ¬-distribution. It fol-
lows ΓA;¬Trust(φB

m) � ψN
i by substitution from the assumption, and ΓA �

¬Trust(φB
m) → ψN

i is obtained by →-I.

Managing Software Uninstall with Negative Trust 89

We can now reduce the latter to an operation on all packages coming from
the repository involved by the distrust operation:

Lemma 2. If ΓA;¬φB
m � ψN

i then ΓA;ΓB \ {φB
m} � ψN

i , for all consistent
profiles ΓB that include φB

m.

Proof. ΓA can be extended with every consistent package from B; by definition
ΓA;¬φB

m � ¬Trust(φB
m), hence by Weakening this is possible except for φB

m as
it does not satisfy trust.

The above corresponds to finding the maximal set of formulas in ΓB that
allows to execute ψN

i without requiring φB
m in the profile. To this aim, it is enough

to find all φB
l ≯ φB

m, i.e. the set of packages in B that have no dependencies
from φB

m.
What has been so far restricted to one repository, can now be generalised to

any repository that preserves the dependency condition:

Lemma 3. ΓA;φN
l � Write(ψN

i) iff (φN
l ≮ ξNm ≮ ψN

i) for any distrusted pack-
age ξNm and any repository N > A.

Proof. For the right-to-left direction. Assume the following: ΓA;φN
l �

Write(φN
i) and ΓA;φN

l � ¬Trust(φN
m). Then: if φN

l < φN
m, then ΓA;φN

l � φN
m

by Atom, contradicting the distrust assumption; and if φN
m < φN

i then similarly
φN
m � φN

i and by Weakening it is possible to obtain ΓA;φN
l , φN

m � Write(φN
i),

again contradicting the distrust assumption.
For the left-to-right direction. Assume (φN

l ≮ φN
m ≮ φN

i) and ΓA;φN
l �

¬Trust(φN
m). Then: because φN

l ≮ φN
m, the second assumption above does not

require to remove φN
l as by Lemma 2; and because φN

m ≮ φN
i , installing the

latter does not require installing the former. Hence ΓA;φN
l � Write(φN

i) holds.

Finally, our main result is obtained:

Theorem 1 (Distrusted Uninstall). Given a package φB
m distrusted under

profile ΓA, a package ψN
i can be installed in ΓA iff φB

m ≮ ψN
i .

Proof. From Definition 2 and Lemma 3 by substitution.

This last result identifies distrusted packages as those that have at least a
dependency from one package conflicting with the current installation profile.

5 The Mistrusted Uninstall Problem

Consider a profile ΓA = {φA
1 < . . . < φA

n } and a package φB
m which one wishes to

install in it: in the calculus, this corresponds to the conclusion of an instance of
the Write rule, ΓA � Write(φB

m). Assume that φB
m is in conflict with the given

profile
ΓA � Read(φB

m) → ⊥

90 G. Primiero and J. Boender

The Mistrusted Uninstall Problem is to determine the set ΦA = {φA
i ∈ ΓA |

φA
i → ¬φB

m} which should be removed when installing φB
m. We will call any such

package φA
i a mistrusted package. Hence the problem is to identify the minimal

set of formulas ΦA such that for each φA
i ∈ ΦA

ΓA \ ΦA;φB
m � ¬Trust(φA

i)

and by MTrust-E, given any other set of formulas ΓC required by φB
m, it

allows
ΓA \ ΦA;ΓC � Trust(φB

m)

We start by identifying the minimal subset of packages from the current
installation profile that satisfies the conflict:

Lemma 4. If ΓA � Read(φB
m) → ⊥, then ∃ΦA ⊆ ΓA such that ΦA = {φA

i < . . .
< φA

n } � Read(φB
m) → ⊥.

Proof. ∀φA
i , φA

j ∈ ΓA, if φA
i � Read(φB

m) → ⊥ and φA
i < φA

j , then φA
j �

Read(φB
m) → ⊥. And ∀φA

h < φA
i , φA

h � Read(φB
m). Hence it suffices to iden-

tify the maximal φA
i in conflict with φB

m and to include it in ΦA together with
all packages in ΓA that depend on it. We will call ΦA a maximally mistrusted
set.

Lemma 5. Consider a maximally mistrusted ΦA ⊆ ΓA such that ΦA �
Read(φB

m) → ⊥ as of Lemma 4. Then ∀φA
i ∈ ΦA, φA

i < Read(φB
m) → ⊥.

Proof. This holds by construction of ΦA in Lemma 4 and the Dependency Inser-
tion Rule.

Lemma 6. If φA
i � Read(φB

m) → ⊥, then φA
i ≮ φB

m.

Proof. Starting from φA
i � Read(φB

m) → ⊥ we apply D-Trust-I, ¬-distribution,
write and exec to obtain φA

i � ¬φB
m, from which we obtain φA

i < ¬φB
m from

Dependency Insertion and φA
i ≮ φB

m by contrapposition.

Theorem 2 (Mistrusted Uninstall). Given a package φB
m to be installed

under profile ΓA, a package φA
i is mistrusted in ΓA iff for all ΓA ⊆ {φA

i < φA
j }

1. ΓA � φA
j → ¬φB

m,
2. φA

j < Read(φB
m) → ⊥ and

3. φA
i ≮ φB

m.

Proof. The first condition is required by Lemma 5 to include all the dependencies
in the maximally mistrusted set. The second condition holds from Lemma 6.
Finally, the third condition holds by contradiction: if φA

i < φB
m, then φA

i � φB
m

by Dependency Insertion; it follows by Weakening that φA
i ;φB

m : profile and
hence φB � Trust(φA

i).

This last result identifies packages to be removed as those that are in max-
imally mistrusted set and do not satisfy any dependency for the package to be
installed under the current profile.

Managing Software Uninstall with Negative Trust 91

6 An Example

Consider the simple scenario presented in Sect. 1 where a user has the following
installation profile:

Γm−f−nf

⎧
⎨

⎩

Γmain = {φm
1 , φm

2 }
Γ free = {ψf

1 }
Γnonfree = {ξnf1 }

⎫
⎬

⎭

with the following dependencies

Γm−f−nf

⎧
⎨

⎩

φm
1 < ψf

1

φm
2 < ψf

1

ψf
1 < ξnf1

⎫
⎬

⎭

Assume the user distrusts a package ψf
n, e.g. because it is considered harmful or

unsecure. The Distrusted Uninstall Problem asks which packages can be further
installed in Γm−f−nf without installing ψf

n. Consider now a package ψf
2 ≯ ψf

n,
then the following derivation holds:

D
Γm−f−nf � ¬Trust(ψf

n)
D’

Γm−f−nf � Read(ψf
2) ψf

n ≮ ψf
2

Γm−f−nf � Write(ψf
2)

In other words, flagging ψf
n as distrustful does not impede the installation of a

package ψf
2 if the latter does not depend on the former.

Assume moreover that the user wishes to install an additional package ξnf2 >

φm
1 , but such that φm

2 � Read(ξnf2) → ⊥: in other words, ξnf2 depends on φm
1 ,

but is in conflict with φm
2 (which is possible, given the latter does not depend

on φm
1). Then assuming a package ψf

2 replacing the functionalities of φm
2 , the

following derivation holds:

φm
2 � Read(ξnf2) → ⊥ φm

2 < ψf
1

Γm−f−nf \ {φm
2 < ψf

1 }; ξnf2 � ¬Trust(φm
2 < ψf

1) ψf
2 ; ξnf2 : profile

Γm−f−nf \ {φm
2 < ψf

1 }; ξnf2 � Write(ψf
2)

In other words the installation of ξnf2 requires removing φm
2 < ψf

1 and it is
compatible with the installation of ψf

2 .

7 Conclusions

In this paper we have formulated two variants to the Uninstall Problem. Each
relies on a different semantic qualification of untrusted packages required to be

92 G. Primiero and J. Boender

removed or prevented from installation in a given installation profile, in order to
preserve consistency.

Our approach is grounded on the logic (un)SecureND, including an explicit
trust function on formulas to guarantee consistency check at each retrieval step
(after a read function), before installation rights are granted for a package (by a
write function). The fragment of the language presented in this paper allows to
express negation over trust as a dis-installation requirement. Different pairs of
introduction/elimination rules determine the selection of one of two resolution
strategies: one flags a package external to the installation profile as distrusted
and hence as not installable; the other identifies already installed packages to
be removed. The selection takes care of identifying and removing all required
dependencies. We have illustrated the working protocol through an easy example.
As already mentioned, validation of the system is obtained by implementation of
the (un)SecureND calculus as a large inductive type in the Coq proof assistant.
The development is available at https://github.com/gprimiero/SecureNDC.

A characteristic of the logic (un)SecureND is its substructural nature, which
in future work can be exploited to investigate cases of strengthened and lim-
ited resource redundancy for fault tolerance and source shuffling for security.
Other applications of negative trust can be investigated to distinguish between
malevolent and simply unsuccessful sources.

References

1. Abate, P., Di Cosmo, R., Treinen, R., Zacchiroli, S.: Dependency solving: a separate
concern in component evolution management. J. Syst. Softw. 85(10), 2228–2240
(2012)

2. Abate, P., DiCosmo, R., Treinen, R., Stefano Zacchiroli, M.P.M.: A modular pack-
age manager. In: Proceedings of the 14th International ACM Sigsoft Symposium
on Component Based Software Engineering, CBSE 2011, pp. 179–188. ACM, New
York (2011)

3. Le Berre, D., Parrain, A.: On SAT technologies for dependency management and
beyond. In: Thiel, S., Pohl, K. (eds.) Software Product Lines, 12th International
Conference, SPLC 2008, Limerick, Ireland, September 8–12, 2008, Proceedings.
Second Volume (Workshops). Lero Int. Science Centre, pp. 197–200. University of
Limerick, Ireland (2008)

4. Boender, J.: Formal verification of a theory of packages. ECEASST 48 (2011)
5. Boender, J., Primiero, G., Raimondi, F.: Minimizing transitive trust threats in

software management systems. In: Ghorbani, A.A., Torra, V., Hisil, H., Miri, A.,
Koltuksuz, A., Zhang, J., Sensoy, M., Garćıa-Alfaro, J., Zincir, I. (eds.) 13th Annual
Conference on Privacy, Security and Trust, PST 2015, Izmir, Turkey, 21–23 July,
2015, pp. 191–198. IEEE (2015)

6. Guha, R.V., Kumar, R., Raghavan, P., Tomkins, A.: Propagation of trust and
distrust. In: Proceedings of the 13th International Conference on World Wide Web,
WWW 2004, New York, NY, USA, 17–20 May, pp. 403–412 (2004)

7. Ignatiev, A., Janota, M., Marques-Silvam, J.: Towards efficient optimization in
package management systems. In: Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, pp. 745–755. ACM, New York (2014)

https://github.com/gprimiero/SecureNDC

Managing Software Uninstall with Negative Trust 93

8. Jøsang, A., Pope, S.: Semantic constraints for trust transitivity. In: Hartmann, S.,
Stumptner, M. (eds.) APCCM, vol. 43. CRPIT, pp. 59–68. Australian Computer
Society (2005)

9. Mancinelli, F., Boender, J., Di Cosmo, R., Vouillon, J., Durak, B., Leroy, X.,
Treinen, R.: Managing the complexity of large free and open source package-based
software distributions. In: 21st IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2006), 18–22 September, Tokyo, Japan, pp.
199–208. IEEE Computer Society (2006)

10. Marsh, S., Dibben, M.R.: Trust, untrust, distrust and mistrust – an exploration of
the dark(er) side. In: Herrmann, P., Issarny, V., Shiu, S. (eds.) iTrust 2005. LNCS,
vol. 3477, pp. 17–33. Springer, Heidelberg (2005). doi:10.1007/11429760 2

11. Harrison McKnight, D., Chervany, N.L.: Trust and distrust definitions: one bite at a
time. In: Falcone, R., Singh, M., Tan, Y.-H. (eds.) Trust in Cyber-societies. LNCS,
vol. 2246, pp. 27–54. Springer, Heidelberg (2001). doi:10.1007/3-540-45547-7 3

12. Primiero, G.: A calculus for distrust and mistrust. In: Habib, S.M.M., Vassileva,
J., Mauw, S., Mühlhäuser, M. (eds.) IFIPTM 2016. IAICT, vol. 473, pp. 183–190.
Springer, Cham (2016). doi:10.1007/978-3-319-41354-9 15

13. Primiero, G., Raimondi, F.: A typed natural deduction calculus to reason about
secure trust. In: Miri, A., Hengartner, U., Huang, N.-F., Jøsang, A., Garćıa-Alfaro,
J. (eds.) 2014 Twelfth Annual International Conference on Privacy, Security and
Trust, Toronto, ON, Canada, July 23–24, pp. 379–382. IEEE (2014)

14. Restall, G.: An Introduction to Substructural Logics. Routledge (2000)
15. Tucker, C., Shuffelton, D., Jhala, R., Lerner, S.: OPIUM: optimal package

install/uninstall manager. In: 29th International Conference on Software Engineer-
ing, ICSE 2007, pp. 178–188 (2007)

16. Vouillon, J., Di Cosmo, R.: On software component co-installability. ACM Trans.
Softw. Eng. Methodol. 22(4), 34:1–34:35 (2013)

17. Ziegler, C.-N., Lausen, G.: Propagation models for trust and distrust in social
networks. Inf. Syst. Front. 7(4–5), 337–358 (2005)

http://dx.doi.org/10.1007/11429760_2
http://dx.doi.org/10.1007/3-540-45547-7_3
http://dx.doi.org/10.1007/978-3-319-41354-9_15

	Managing Software Uninstall with Negative Trust
	1 Introduction
	2 Related Work
	3 (un)SecureND
	3.1 Repositories, Packages and Dependencies
	3.2 Rules for Package Execution
	3.3 Access Rules
	3.4 Structural Rules

	4 The Distrusted Uninstall Problem
	5 The Mistrusted Uninstall Problem
	6 An Example
	7 Conclusions
	References

