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Abstract. The accuracy of the analyses for studying the three dimen-
sional trabecular bone microstructure rely on the quality of the segmen-
tation between trabecular bone and bone marrow. Such segmentation
is challenging for images from computed tomography modalities that
can be used in vivo due to their low contrast and resolution. For this
purpose, we propose in this paper a granulometry-based segmentation
method. In a first step, the trabecular thickness is estimated by using
the granulometry in gray scale, which is generated by applying the open-
ing morphological operation with ball-shaped structuring elements of
different diameters. This process mimics the traditional sphere-fitting
method used for estimating trabecular thickness in segmented images.
The residual obtained after computing the granulometry is compared
to the original gray scale value in order to obtain a measurement of
how likely a voxel belongs to trabecular bone. A threshold is applied to
obtain the final segmentation. Six histomorphometric parameters were
computed on 14 segmented bone specimens imaged with cone-beam com-
puted tomography (CBCT), considering micro-computed tomography
(micro-CT) as the ground truth. Otsu’s thresholding and Automated
Region Growing (ARG) segmentation methods were used for compar-
ison. For three parameters (Tb.N, Tb.Th and BV/TV), the proposed
segmentation algorithm yielded the highest correlations with micro-CT,
while for the remaining three (Tb.Nd, Tb.Tm and Tb.Sp), its perfor-
mance was comparable to ARG. The method also yielded the strongest
average correlation (0.89). When Tb.Th was computed directly from
the gray scale images, the correlation was superior to the binary-based
methods. The results suggest that the proposed algorithm can be used
for studying trabecular bone in vivo through CBCT.
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1 Introduction

The analysis of bone micro-architecture from 3D medical imaging techniques is
of medical interest due to the clinical importance of osteoporosis [7]. For this
purpose, high resolution peripheral quantitative computed tomography (HR-
pQCT), micro computed tomography (micro-CT), cone beam computed tomog-
raphy (CBCT), multi-slice computed tomography (MSCT), and magnetic reso-
nance imaging (MRI) have been considered [8,9,15,19]. Among these, micro-CT
is usually considered as the gold standard in preclinical studies thanks to its high
resolution and contrast. However, micro-CT cannot be used in clinical settings,
since it requires a high radiation dose [3]. For quantification, the computation
of histomorphometric parameters plays a very important role [1]. Usually, these
parameters are calculated from a binary image after segmenting trabecular bone
from the background (bone marrow). Thus, the choice of a segmentation method
may play an important role in structure measurements, but little attention is
generally given to this fact [10].

Due to the variability in medical imaging techniques, there is no segmen-
tation method that is ideal for all types of bone images. In histology images
from prepared specimens, with high contrast and extremely high resolution, a
simple thresholding is often sufficient for segmentation. In micro-CT, the res-
olution is usually high enough for such a simple approach. Unfortunately, for
imaging methods applicable in vivo, such as CBCT and HR-pQCT, segmenta-
tion methods are more prone to errors. The most common segmentation methods
for CT data are either based on adaptive or on double thresholding [2]. Simi-
larly, Engelke et al. [5] have used thresholding based on the neighboring pixels in
the micro-CT images of bone obtained through dual-energy CT. In our group,
Petersson et al. [14] evaluated bone microstructure from clinical CT using the
Automated Region Growing (ARG) algorithm [16].

CBCT is a 3D imaging modality that can be used in vivo, which might be
considered for diagnosing bone-related diseases. The wide accessibility of the
machines, the radiation dose, cost-effectiveness, and short scanning time, make
this scanners appealing for evaluating the trabecular bone structure in clinical
settings [17]. Still, trabecular bone characterization with CBCT has not yet been
properly investigated, in particular when it comes to the importance of the selec-
tion of the segmentation method. In this study, we propose a new segmentation
method based on granulometry, a concept from mathematical morphology that
allows us to estimate thickness at a local scale [12]. The method is tested on
CBCT data, using micro-CT images as a reference.

2 Segmentation Using Granulometries

In [12], we showed that granulometry in binary mathematical morphology is
equivalent to the sphere-fitting method proposed in [6] for computing trabecular
bone thickness. Such equivalence allowed us to create a method for estimating
trabecular thickness on gray scale image data by replacing binary with gray
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scale mathematical morphology. In this paper, we show that the method can
be adapted to generate the segmentation of the image that can be used for
extracting additional histomorphometric parameters.

The theory of granulometries was originally introduced by Matheron [11] to
compute size distributions of grains in digital images. Intuitively, granulometry
is analog to sieving the image with filters that emulate sieves of different hole
sizes, where the size of a grain is determined by the minimum size of the hole
that sifts the grain. A detailed mathematical description is found in [12].

The main procedure for computing trabecular thickness in gray scale is as
follows. First, a granulometry is generated by applying the opening operation of
mathematical morphology to the image with spherical structuring elements of
different sizes E1, E2, ..., En. The openings are given by:

Oi = I ◦ Ei = (I � Ei) ⊕ Ei, (1)

where I is the image, � and ⊕ are the erosion and dilation morphological oper-
ations respectively. The thickness at a specific location x is related to the scale
where the maximum change between consecutive openings is attained:

Th(x) = 2 arg max
t

(Ot(x) − Ot−1(x)). (2)

This procedure can be applied using binary or gray scale mathematical mor-
phology. In [12], we discussed implementation issues that have to be considered
for accurate estimation of thickness.

In an ideal noiseless scenario, using structuring elements Ei of sizes larger
than the thickest trabecula will not have any effect on the results. Indeed, open-
ing a noiseless image with a big enough structuring element will result in an
image where all voxels have an intensity value of zero. However, this is not the
case for noisy images. Thus, for efficiency purposes, it is necessary to stop the
computation of openings at a scale larger than the thickest expected trabecula
in the image. In the experiments on CBCT, considering that the thickest tra-
becula is expected to be of around 1 mm, we stopped the computations at scale
10, which corresponds to 1.5 mm.

The main effect of the opening operation on the image is that the gray
scale dynamic range of values is reduced. Thus, the main hypothesis of our
segmentation method is that after the final opening with En, the gray scale at
trabecular bone is largely reduced compared to that reduction at bone marrow.
The pipeline of the method is shown in Fig. 1.

The difference between the original and the last opening operation (cf.
Fig. 1C) is higher in trabecular bone than in marrow. Since the contrast to
noise ratio of this image is enhanced, a threshold can be used to get a final
segmentation (cf. Fig. 1D). Thus the segmented image is computed as:

S = T (I − (I ◦ En)) � I, Th), (3)

where I is the CBCT 3D image, S is the segmented image, En is the largest
structuring element used for computing thickness, � is the Hadamard division
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Fig. 1. Segmentation steps for the proposed method. A: original image, B: output of
the last opening operation (residual), C: percentage of local gray scale reduction, D:
final result after thresholding.

and T performs the threshold with Th. Although Th can be estimated adaptively
using Otsu’s threshold [13], we obtained good results with a fixed one (0.16) for
our CBCT data in the experiments of Sect. 4.

3 Experimental Evaluation

We have studied our proposed granulometry-based segmentation technique on
14 human radius specimens [7]. The samples were donated for medical research
in accordance with the ethical recommendations at the University of California,
San Francisco. The specimens are almost cubic with a side of 12 to 15 mm and all
include slabs of cortical bone, facilitating orientation. Two imaging techniques
have been used in this study (Fig. 2):

– CBCT 3D images were acquired using the NewTom 5G (QR Verona, Verona,
Italy) using a peak tube voltage of 110 kV, a tube current of 4.2–4.6 mA,
and a field of view of 60 mm. After initial reconstruction with an isotropic
resolution of 125 µm, the image was resampled by the scanner software to an
isotropic voxel size of 75 µm.

– Micro-CT data were acquired with the Skyscan 1176 (Bruker micro-CT,
Kontich Belgium) with a tube voltage of 65 kV, a tube current of 385µA
and an isotropic resolution of 8.67µm.

The parameters were measured and calculated using MATLAB (MathWorks,
Natick, MA). The code was developed in-house and calculated on a personal
computer (PC) with Intel Core i7 (Intel Santa Clara, CA) at 2.60 GHz, 32 GB
random access memory (RAM) and 64-bit operating system. We have compared
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Fig. 2. 3D view (a) MicroCT and (b) CBCT.

our algorithm with the Automatic Region Growing (ARG) algorithm [16] and
Otsu’s threshold [13], in the following referred to as Otsu.

Segmenting micro-CT data is not an issue thanks to its high resolution and
contrast. Thus, in general, all segmentation methods perform well for micro-CT,
including a basic thresholding. In this study, the micro-CT data were segmented
with Otsu in order to avoid the use of parameters. We have studied six histomor-
phometric parameters: trabecular node density (Tb.Nd), trabecular termini den-
sity (Tb.Tm), trabecular separation (Tb.Sp), trabecular number (Tb.N), trabec-
ular thickness (Tb.Th), and bone volume over total volume (BV/TV). The details
of these parameters are given in [1]. These parameters were computed in 3D.

4 Results

Figure 3 shows qualitative results in the form of selected slices from CBCT.
Judging from these images, Otsu and ARG segmentation algorithms give visually
similar results. It is observed that granulometry-based segmentation gives results
that are visually similar to those of ARG. In order to assess these differences, we
measured the pairwise spatial overlap using the Dice coefficients [4]. The Dice
coefficients between Otsu - ARG, Otsu - Granulometry and ARG - Granulometry
are 0.9784, 0.8793 and 0.8763 respectively, which confirms the visual assessment.

Table 1 shows the value of the mean and standard deviation of the histomor-
phometric parameters extracted from the binary images obtained from different
segmentation techniques. This table also includes the Tb.Th computed in gray
scale as we proposed in [12]. As shown, both BV/TV and Tb.Th were overesti-
mated by approximately 4 times. However, Tb.Sp and Tb.N were underestimated
by a small amount. On the other hand, Tb.Nd and Tb.Tm were highly underes-
timated. We think this finding can be explained by spurious branches generated
by the used skeletonization algorithm [18] on the micro-CT data. Moreover, these
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Original Original Otsu ARG Proposed
Micro-CT CBCT

Fig. 3. Visual Segmentation Results using Otsu, ARG and Granulometry (proposed)
for some selected slices.

parameters reflect the connectivity/topology of the network. The estimation of
Tb.Th in gray scale is largely overestimated in this dataset.

In order to assess the performance of the proposed method, we computed
the Pearson correlation coefficient of different parameters in Table 2, considering
micro-CT images segmented with Otsu as our reference model.

Table 2 also reports the 95% confidence intervals for these differences. If a
confidence interval does not include zero, the corresponding difference is sta-
tistically significant. As shown, for four parameters (Tb.Nd, Tb.N, Tb.Th and
BV/TV), the proposed method reached larger correlations than 0.90, whereas
Tb.Tm and Tb.Sp have correlations of 0.80 and 0.75, respectively. For three
parameters (Tb.Nd, Tb.Tm and Tb.Sp), the strongest correlations with micro-
CT images were found with ARG, and for three parameters with the new method
(Tb.N, Tb.Th and BV/TV). As a way to compare the global performance of the
methods, we computed the mean of the correlation coefficients. On average, our
proposed granulometry-based segmentation yielded a correlation of 0.89 with
micro-CT, which is stronger than for Otsu and ARG. Notice that the correla-
tion between Tb.Th from micro-CT and Tb.Th in gray scale is the strongest.
The reason of this is that this measurement is not affected by the segmentation
algorithm and could be more appropriate for estimations in vivo. Unfortunately,
except for Tb.Th, methods for estimating other parameters in gray scale are not
currently available.
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Table 1. Mean (± standard deviation) of different trabecular bone parameters.

Machine/ Tb.Nd Tb.Tm Tb.Sp Tb.N Tb.Th BV/TV

Segmentation (mm−3) (mm−3) (mm) (mm−1) (mm)

CBCT/ARG 1.77±0.27 1.75±0.18 0.54±0.04 1.03±0.07 0.40±0.03 0.37±0.05

CBCT/ Otsu 2.66±0.65 1.68±0.42 0.46±0.09 1.31±0.21 0.25±0.02 0.24±0.04

CBCT/Granulometry 1.84±0.27 1.82±0.27 0.53±0.05 1.01±0.07 0.45±0.04 0.46±0.09

CBCT/No segmentation - - - - 0.82±0.25 -

Micro-CT/Otsu 58.5±15.6 86.3±21.9 0.68±0.10 1.37±0.18 0.13±0.01 0.10±0.02

Table 2. Pearson correlation coefficient between parameters computed on CBCT using
micro-CT data segmented with Otsu as a reference. The 95% confidence limits are indi-
cated in parenthesis. The strongest correlation for each parameter is highlighted in bold.

Segmentation Tb.Nd Tb.Tm Tb.Sp Tb.N Tb.Th BV/TV Mean

Otsu 0.49 −0.07 0.59 0.29 0.89 0.59 0.45

(0.00,0.79) (−0.55,0.43) (0.13,0.83) (−0.24,0.68) (0.69,0.96) (0.13,0.84)

ARG 0.93 0.81 0.77 0.93 0.86 0.92 0.87

(0.81,0.97) (0.53,0.93) (0.45,0.91) (0.80,0.97) (0.64,0.95) (0.76,0.97)

Granulometry 0.91 0.80 0.75 0.97 0.91 0.94 0.89

(0.76,0.97) (0.49,0.92) (0.40,0.90) (0.90,0.98) (0.75,0.96) (0.83,0.97)

No segment - - - - 0.97 - -

(0.90,0.98)

5 Discussion

This paper has presented a method that uses the differences between the original
and the residual images after granulometry analysis to increase the contrast of
images acquired through CBCT. Such increase allowed us to use a threshold to
segment the images.

The accuracy of the method was tested by comparing histomorphometric
parameters computed in CBCT with respect to the ones obtained by micro-CT.
Although gross systematic errors of the measurements on CBCT were found,
the correlations were high for ARG and the proposed method. The proposed
method yielded slightly better correlations compared to ARG.

Notice that the large systematic errors are more related to the low resolution
and contrast of the CBCT images rather than to the segmentation algorithms.
There are two strategies for handling these large systematic errors: (a) correct
them using linear regression in order to give closer results to micro-CT or (b) use
them as surrogates of the parameters estimated from micro-CT. In both cases,
the measurements could be used for follow-up of treatments due to the strong
correlations with micro-CT.

It is important to point out that, unlike ARG, the proposed method also
estimates Tb.Th in gray scale. We found that such estimation of Tb.Th had the
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strongest correlation to micro-CT data, suggesting that it is advantageous to
compute histomorphometric parameters that do not require segmentation.

The method is especially useful for images acquired with modalities that can
be used in vivo, such as CBCT, MSCT and HR-pQCT, where noise, resolu-
tion and contrast are relevant issues. Our ongoing research includes testing this
method in these modalities. While the method can also be applied to micro-
CT, the result is not different to the one from less elaborate strategies such as
Otsu, due to the high resolution and contrast of these images. Moreover, the
proposed method can be used for computing the Tb.Th in gray scale as well as
for performing the segmentation at the same time, something that is not possible
with ARG or Otsu. In this study, we used the skeletonization method proposed
in [18] for performing the analysis of segmented images both in micro-CT and
CBCT. We plan to test other skeletonization methods in order to assess the
sensitivity of the estimations of histomorphometric parameters with respect to
the skeletonization method.

To summarize, the results from this paper suggest that the combination of
CBCT and granulometry-based segmentation can be used for monitoring changes
in the microarchitecture of trabecular bone in a clinical environment. From the
results of this study, we argue that our granulometry-based technique seems
more promising than ARG for CBCT data. A limitation of the present study is
the low number of specimens available. In the future, we will apply the method
to larger CBCT materials as well as to HR-pQCT data.
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