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Abstract. Telephone assisted guidance between dispatcher and
bystander providing cardiopulmonary resuscitation (CPR) can improve
the quality of the CPR provided to patients suffering from cardiac arrest.
Our research group has earlier proposed a system for communication and
feedback of the compression rate to the dispatcher through a smartphone
application. In this paper we have investigated the possibilities of pro-
viding the dispatcher with more information by also detecting the com-
pression depth. Our method involves detection of bystander‘s position
in the image frame and detection of compression depth by generating
Accumulative Difference Images (ADIs). The method shows promising
results and give reason to further develop a general and robust solution
to be embedded in the smartphone application.
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1 Introduction

In Europe there are 370,000–740,000 out-of-hospital cardiac arrests every year
with a survival rate as low as 7.6% [1]. Many are witnessed by a bystander and
the bystander might not be skilled in cardiopulmonary resuscitation (CPR), thus
there is a need for guided assistance to ensure the provision of quality CPR. The
importance of quality CPR has been confirmed in many publications [2–4].

Smartphone applications for communication with the emergency unit and
sending GPS location already exists in solution like Hjelp 113-GPS App by the
Norwegian air ambulance1. Our group (Engan et al.) has earlier proposed an
application for dispatcher communication which detects the compression rate [5].
Another important CPR quality metric is the compression depth which is crucial
for generating sufficient circulation [6], thus providing the dispatcher with depth
information can improve CPR quality and possibly save lives.

1 https://www.itunes.apple.com/no/app/hjelp-113-gps/id363739748?l=no\&mt=8.
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Previously an accelerometer has been used to estimate the compression
depth with the purpose of providing feedback in emergency or in training situa-
tions [7–9]. This requires the smartphone to be held in the hand of the bystander
or at the chest of the patient during CPR. Since it is very important to maintain
the phone connection between the bystander and the dispatcher we believe that
placing the smartphone next to the patient and using the camera to perform the
measurements would be more suited for emergency situations. This ensures that
the microphone and loud speaker is not covered and that the phone connection
is not interrupted by accidentally pressing a button. To our knowledge there has
been made no attempt to estimate the compression depth from a smartphone
camera with the attention to provide information to the dispatcher in an emer-
gency situation. In this paper we have investigated this problem and propose a
system that uses the front camera on a smartphone to estimate the compression
depth. Figure 1 gives an overview of the proposed system, using generated Accu-
mulative Difference Images (ADIs) [10] for motion segmentation to both detect
the bystander position in the frame and to estimate the compression depth.
These steps will be further explained in Sect. 3.

Fig. 1. Proposed system for detection of compression depth. Top: detecting bystander
and regions of interest (ROIs). Bottom: detection of compression depth. (Color figure
online)
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2 Modelling of Scene

Modelling of the scene is necessary in order to estimate both the bystander‘s
position in world coordinates and to compensate for the camera angle and posi-
tion relative to the bystander.

2.1 Image to World Coordinates

We can find a model for the connection between world coordinates and image
coordinates by calibration of the camera. By using camera coordinates for the
world points it is sufficient to use the internal camera matrix K. The radial
distortion must also be found and compensated for. Then we have
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where λ = zw, P0 a projection matrix, α and β the focal length of the camera and
x0 and y0 the principal point offset in pixels. The distance, zw, can be expressed
zw = zw0 + Δz where zw0 is the distance between shoulders and ground and Δz
is the compression depth in z-direction. A derivation of Eq. (1) for Δz << zw0

gives the two expressions, approximated to be linear:
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Figure 2 shows a model of the scene. Ellipsoid 1, 2 and 3 illustrates the shoul-
der positions of the bystander. For illustration purpose ellipsoid 2 and 3 are
scaled relative to ellipsoid 1 according to the camera enlargement model for
approaching objects. p.A, p.B, p.C and p.D are camera positions along the pos-
itive y-axis where position p.D defines the limit for camera positions where the
bystander‘s shoulders are visible in the camera‘s field of view (FOV) and is a
function of the distance between ground and shoulders along the z-axis given by
zw0
2 . L1 and L2 represents motion vectors for the observed object enlargement

in the image frame due to compression motions. The pink box is a zoomed in
area of C illustrating the observed motion band in different camera positions.

The position of the ellipsoid marked as 1 illustrates the bystanders starting
position, and 2 illustrates the new position if the compression motion is strictly
in z-direction and the compression depth, Δz, is 50 mm. The enlargement for
approaching objects for different zw0 is found from Eqs. (2) and (3) and is illus-
trated by using a 45 mm approaching object in Fig. 3. Since our method for
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Fig. 2. Model of scene. Ellipsoid in position 1,2, and 3 illustrates the shoulder positions
when compressing 50 mm. L1 and L2 illustrates the blind spot problem as a consequence
of the different motions. p.A, p.B, p.C and p.D shows the possible camera positions
for detections. The pink box shows the observed motion bands in the camera positions
p.A, p.B and p.C. (Color figure online)

Fig. 3. Enlargement model for moving objects. The x-axis shows the observed size of
the 45 mm square object in pixels and the y-axis show the distance between the object
and the camera. Enlargement in % for object approaching 50 mm at 800 and 600 mm
are marked.
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detecting motion only captures changes in the contour of the bystander, a move-
ment from shoulder position 1 to 2 and a camera positioned where L1 meets
the ground floor line, would be represented by the same values for xc and yc.
Thus, we would not be able to detect the change in the generated ADI and this
position is further referred to as the blind spot and must be taken into account.

As shown in Fig. 2 a camera positioned where L1 meets the ground line is
not possible since the camera would be placed underneath the patients shoulder.
Camera positions p.A, p.B and p.C should therefore have no problem avoiding
the blind spot problem. Positions where y-value > p.C needs to be avoided since
the bystander‘s shoulders no longer is guaranteed to be a part of the image frame.
If the compression motion was strictly in z-direction the detected motion band
should increase for each displacement along positive y-axis. This is not the case
and it turns out that a compression motion will vary but are typically slightly
positive along the y-axis, illustrated by the red ellipsoid at position 3 where
line L2 indicates an approximation to a typical motion vector. This causes the
blind spot line to move to the other side of the indicated camera positions p.A,
p.B and p.C. As a consequence, the detected motion band will shrink instead of
increase as the camera is placed further along the positive y-axis. Since the y-
value for L2 > p.D, the blind spot is not a problem, this is also true for a smaller
bystander with zw0 < 800. Equation (1) and (2), as well as Fig. 3 shows that the
linear model will change with zw0, which is bystander and patient dependent
(length of arms, size of torso).

2.2 Camera Angle Model

The camera angle problem is illustrated in the zoomed in area of circle C in Fig. 2
(pink box). Although the distance from the camera to the shoulders changes
relatively little between positions p.A, p.B and p.C, the displacements causes
big variations in observed motion band. Since the compression movements will
have small variations, the compensating model for displacement in y-direction
is estimated by observing detected motion bands in given positions and at given
compression depths. As the red, green and blue line in the pink box shows,
this reduction of detected motion band is approximately linear which was also
the case when studying the different detection results. The compensating model
for the displacement in y-direction in the area between position p.A and p.C is
estimated to be:

angcorr = 1 + 0.0026(actpos − p.A) (4)

where angcorr is the compensating factor for displacement along positive y-axis
and actpos is the calculated position on the y-axis based on image to world
conversion from Eq. (2). The model implies that a displacement from position
p.A to p.C would mean a 26 % decrease in detected motion band. If the camera
is positioned closer to the patient than position p.A the observed motion band
would increase and the model would scale down the detections. This will not be
an issue here since the optimal position p.A is next to the patient.
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3 Proposed System

In Fig. 1 the system for detection of compression depth are shown step by step.
The figure is divided into two main sections; detection of bystander and regions
of interest (ROIs) (top), and detection of compression depth (bottom). ADIs
[10] are used to carry out both sections. ADI is a well known method for motion
segmentation and has earlier been used in many applications such as object
tracking [11], vehicle surveillance systems [12] and smoke detection [13].

3.1 Detection of Bystander by Motion Segmentation

In the following let f indicate an N ×K video frame where N is number of rows
and K is number of columns, and f(r, c, k) corresponds to row, r, and column, c,
in frame number k.

From experiments we found that using three subsequent frames from the
middle section of the sequences were enough to generate an ADI that revealed
the position of the bystander. Spatial de-noising is done by Gaussian smoothing
and the images are corrected for lens distortion [14] prior to ADI generation. The
ADI is initialized by generating a N × K sized frame of zeros. Furthermore first
of the three frames, k0, is the reference frame and the ADI, A(r, c), is found as:

Ak(r, c) =

{
Ak−1(r, c) + 1 if |f(r, c, k0) − f(r, c, k0 + i)| > T

Ak−1(r, c) otherwise
(5)

where T is a threshold value and i is an index for the subsequent frames. The
resulting ADI used in detection of bystander will then consist of values from
0 to 2.

The generated absolute ADI is further correlated with templates to find the
position of the bystander. This is illustrated in 1.B and 1. C in Fig. 1. The tem-
plates used are scaled and resized versions of a template of a person‘s head and
shoulder contour created from an example sequence. To avoid higher correla-
tion caused by thicker lines when the scale factor is above 1, a morphological
skeletonization or thinning [15] of the scaled template is performed. The tem-
plate position of the best match indicates the position of the bystander.

3.2 Position Compensation

In the detection of compression depth the information of the motion band in the
shoulder areas are used. The desired camera position is when the bystander is
centred in the image frame and the camera is placed close to the patient’s arm. If
the camera is positioned elsewhere compensation is needed. When compensating
for position the bystander‘s shoulder points has to be detected. By starting in
the first column, c0, in the template match square marked Tsize in Fig. 1(1C),
the columns for the detection center points are found as follows:

c1 = c0 + (
1
6

· K1), c2 = c0 + (
5
6

· K1) (6)
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where K1 indicates the number of columns (width) of the matched template.
Further the row number where the motion band starts is found by:

ri = min
r

(A(r, ci) � 1) (7)

where i = 1, 2 indicates the two ROIs and r the row elements in the column ci.
Together with c1 and c2 these rows define the detection center points p1(c1, r1)
and p2(c2, r2). The points are marked with a red circle in Fig. 1(1C). p1(c1, r1)
and p2(c2, r2) are then converted from image to world coordinates, w1(x, y)
and w2(x, y) by solving Eqs. (2) and (3) for w1(x, y) and w2(x, y). The actual
distance, dact,i, between the bystander and the camera is found by:

dact,i =
√

wi(x)2 + wi(y)2 + z2w0 (8)

for i = 1, 2 which represents the two detections points and zw0 is illustrated in
Fig. 2. The scaling factors for actual distance, distcorr, for each detection point
is found by:

distcorr,i =
dact,i

zw0
(9)

Further the compensating factor, angcorr, for the camera angle is found by
using the model given in Eq. (4). The same compensating factor is used for
both p1(c1, r1) and p2(c2, r2) since these points lie approximately on the same
horizontal line in the image frame.

3.3 Detection of Compression Depth

For the dispatcher-bystander communication to be efficient, the dispatcher
should guide one problem at a time, thus the compression rate should first be
guided to the desired range (100–120 cpm). Detection of compression rate is
described in [5]. Knowing that the compression rate is in the desired range also
makes the compression motion more predictable and furthermore the compres-
sion depth estimation less complicated.

The steps in detection of compression depth are shown in Fig. 1(2) and the
compression depth is estimated every half second. Consider a videostream with
30 fps, providing 30

2 = 15 non-overlapping video frames in each compression
depth estimation, I(r, c, ls), where l is the estimation number and s is a index
for image number in this estimation. First, the images are spatially de-noised
by Gaussian smoothing and corrected for lens distortion. Furthermore I(r, c, l1)
is used as the reference frame and the other 14 frames to generate an ADI as
shown in Eq. (5) and in Fig. 1(2A). For each new estimation the ADI is first set
to zero before generating the ADI for the next estimation.

A reasonable width for the ROIs is found to be MROI = 21 columns when
using image frame size of N × K = 480 × 640. The vertical motion band along
the head/arms is then avoided but we still use enough columns to get a good
average measurement of the motion band. An example is shown in Fig. 1(2B)
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where the ROIs is marked with red. Motion band vectors, mband,i, for motion
band size in columns, j, in the ROIs i = 1, 2 are found by:

mband,i(o) =
N∑

q=1

A(q, j) > 1 (10)

where o is a vector index for the columns used and q represents the row number.
Further the mean of these vectors are multiplied with their two compensating

factors - position in image frame and camera angle, providing the corrected pixel
size of the motion bands, mmean,i:

mmean,i =
1

MROI

MROI∑
o=1

mband,i(o) · distcorr,i · angcorr (11)

used to find the combined detected motion band, mtot, for this estimation, l:

mtot(l) =
1
2
(mmean,1 + mmean,2) (12)

The last step is to filter the detections with a 3 coefficient weighted FIR filter
to remove some of the noise caused by random movements from the bystander.
The filter is selected from experimenting with different filter order and coefficient
values to best suppress rapid changes without loosing important compression
depth change information. CDdet(l) represent the compression depth detection
for estimation l and are found by:

CDdet(l) = 0.3 · mtot(l) + 0.35 · mtot(l − 1) + 0.35 · mtot(l − 2) (13)

4 Experiments and Datasets

All compressions are performed on Resusci Anne QCPR2 by the same bystander
with zw0 = 800. Resusci Anne QCPR measures, among other things, the com-
pression depth with an accuracy of ±15 % and these data are used as reference
data in development and verification testing of the proposed system. The smart-
phone used for the recordings is a Xperia Z5 Compact (Sony, Japan).

The results are presented with Average error: μE = 1
L

∑L
l=1 |CDdet(l) −

CD true(l)| where L is number of estimations and CDtrue(l) is the reference
signal, and Performance, P , defined as percentage of the time where the
|CDdet(l) − CD true(l)| < 10 [mm]. According to the European Resuscitation
Council Guidelines 2015 [16] 50–60 mm is the appropriate compression depth.
A study of Stiell et al. [6] found that compression depth in the interval 40.3 to
55.3 mm provided maximum survival rate and the peak was found at 45.6 mm.
Thus, the limit for accepted detection depths when calculating the P is here
chosen to be ±10 mm.

2 http://www.laerdal.com/gb/ResusciAnne.

http://www.laerdal.com/gb/ResusciAnne
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Each test starts with a target compression depth of approximately 20 mm
and the target depth is gradually increased to 60 mm (maximum compression
depth on Resusci Anne QCPR doll) during the 80–90 s recordings. The compres-
sion rate is in the desired range (100–120 cpm) for all tests. The detection of the
bystander and the corresponding shoulder areas is performed once, and there-
after used throughout the sequence. Two different ways of finding the bystander’s
position are used; completely automatic using the method described in Sect. 3.1,
and manually by a visual inspection.

The camera is calibrated with the procedure described in [14], which is based
on [17,18]. The threshold used in generation of ADI is set to 50 and in the
preprocessing of the images a Gaussian filter mask of size N = 13 with σ = 3 is
used to reduce noise.

Modelling Experiment, Dataset 1
Equation (2) provides a theoretical conversion between pixels and mm. An exper-
iment has been carried out to design a model for this conversion since a person
performing compressions have larger movements than the actual compression
depth itself. Dataset 1, D1, consist of 6 recordings where the phone for each
recording is picked up and replaced at a point somewhere near the target of
the optimal phone placement. The linear regression model for converting motion
band in pixels to compression depth in mm is found to be:

CDconv(l) = 2.7285 · CDdet(l) − 13.9692 (14)

The data spread for D1 and the linear conversion model is shown in Fig. 4a.

Fig. 4. (a): The spread of D1 and the connection between detected motion band in
pixels and the actual compression depth at that time. Linear regression model is shown
in purple. Different colors correspond to different recordings. (b): Scene for recording
D2. The triangular system of black X‘s marks the phone position for each recording.
(Color figure online)

Verification Test, Dataset 2
Dataset 2, D2, consists of 9 recordings, each with the phone placed at a different
position marked with black X in Fig. 4b. If we define the desired position as
(0, p) where p represent position p.A in Fig. 2, these positions corresponds to (–



62 Ø. Meinich-Bache et al.

100, p), (–50, p), (0, p), (50, p), (100, p), (–50, p+50), (0, p+50), (50, p+50) and
(0, p+100). The values of the coordinates are given in millimetres. As shown on
the smartphone in the figure, the (0, p+100) position is close to the limit of where
the shoulders are included in the image frame, and is therefore the furthest
distance from the bystander used in the recordings of D2. The y-coordinates
chosen for D2 positions corresponds to position p.A, p.B and p.C in Fig. 2.

5 Results and Discussion

Table 1 shows the result from the proposed system, where the model found from
D1 is tested on D2. The results from automatic detection of bystander shows poor
results for position 2 and partly for position 1. By manually choosing the ROIs
we get better results for position 1–4, but poorer results for position 5–9. The
standard deviation given in parenthesis reveals little or no significant difference
between the two methods for each position. Figure 5 also shows the results for
each of the 9 positions in D2 arranged in the triangular form for the positions
as in Fig. 4b. The reference data are shown in blue, the automatic bystander
detection results in orange and when the bystander is manual detected in red.
It can clearly be seen that the detection points chosen in automatic detection
of bystander’s shoulder points for position 2 provides poor detection results.

Fig. 5. Results for verification test, arranged in the same triangular form as seen in
Fig. 4b. Blue graphs represent the reference data, orange the results with automatic
detection of bystanders shoulders and red with manual detection of bystanders shoul-
ders. The x-axis shows the estimation number (estimation each 0.5 s) and the y-axis
shows the depth in millimetres. (Color figure online)
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Table 1. Detection result for verification test performed on D2. Results are given
as Average error, μE , with σ given in parentheses and Performance, P . Columns to
the left, automatic detection of bystander‘s shoulder points. To the right, manually
detection of bystander‘s shoulder points.

Auto. detect. of bystander Man. detect. of bystander

Position μE (mm) P (%) μE (mm) P (%)

1 7.4 (3.8) 77.6 2.6 (3.3) 96.2

2 15.4 (4.1) 1.9 2.8 (3.7) 95.6

3 6.4 (3.1) 90.1 2.8 (3.1) 97.4

4 5.0 (7.5) 90.3 4.2 (6.0) 92.9

5 2.5 (3.4) 96.4 3.8 (5.0) 94.0

6 4.1 (3.5) 94.5 5.7 (3.4) 92.4

7 4.3 (7.3) 83.9 8.6 (6.6) 64.0

8 4.9 (7.6) 91.7 5.1 (5.0) 96.2

9 4.3 (5.0) 92.7 6.4 (3.7) 81.2

Mean 6.1 79.9 4.7 90.0

σ 3.8 29.8 2.0 10.9

The overall results indicates that as a consequence of determining the ROIs only
once we might not have found suiting ROIs for the whole sequence, and that the
detection results depend largely on the detection points chosen.

6 Conclusion and Future Work

The proposed system shows promising results for detection of compression depth
by the use of a smartphone camera under the circumstances investigated in this
paper. Although all tests are performed by only a single bystander with known
distance between ground and shoulders, the model could be adapted for different
distances.

In future work we will test the system for different bystander with known
size/arm-length, as well as estimating the distance to the bystander when the
distance is unknown. The latter is expected to be challenging since a small
bystander would be similar to a big bystander further away.

Since the system is planned to be a part of an existing application for dis-
patcher feedback [5], the user could possibly type in some user information
(height weight, age) when downloading and installing the app. This information
would not only be useful for estimating distance, but would also be information
relevant for the dispatcher. The system must also be able to track the bystander
and to update the ROIs every 5 s or so during detection. Templates used to
detect the bystander can here be developed from previous analysed ADIs. It
could also be useful to use more of the information in the detected motion band
when deciding the compression depth.
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