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Abstract. Detecting green thistles in yellow mature cereals seems an
easy task. In practice however, the two colors may be close and changing
over time and place. The total thistle area may be negligible, illumination
effects at low sun angles etc. may make a stable detection less easy.
This paper describes a method Weeddetect for detecting thistles in drone
images of fields with mature wheat. Preliminary experiments indicate a
classification accuracy of about 95%.

1 Introduction

Pesticide regulations and a relatively new EU directive [5] on integrated
pest management create strong incentives to limit herbicide applications. In
Denmark, several pesticide action plans have been launched since the late 1980 s
with the aim to reduce herbicide use [12]. One way to reduce the herbicide
use is to apply site-specific weed management, which is an option when weeds
are located in patches, rather than spread uniformly over the field. Site-specific
weed management can effectively reduce herbicide use, since herbicides are only
applied to parts of the field [2]. This requires reliable remote sensing and sprayers
with individual controllable boom sections or a series of controllable nozzles
that enable spatially variable applications of herbicides. Preliminary analyses
[14] indicate that the amount of herbicide use for pre-harvest thistle (Cirsium
arvense) control with glyphosate can be reduced by at least 60% and that a
reduction of 80% is within reach. The problem is to generate reliable and cost-
effective maps of the weed patches. One approach is to use user-friendly drones
equipped with RGB cameras as the basis for image analysis and mapping.

The use of drones as acquisition platform has the advantage of being cheap,
hence allowing the farmers to invest in the technology. Also, images of sufficiently
high resolution may be obtained from an altitude allowing a complete coverage
of a normal sized Danish field in one flight. Importantly, thistles shorter than
the cereals may not be visible when viewed obliquely from 2–3 m height, but is
clearly visible from above.

To differentiate between different types of weed in drone images, pure color
based analysis probably will be insufficient. Here low altitude (high resolution)
images allowing leaf shape analysis will be needed. However, since the dominat-
ing weed type is thistles, and since these may be detected from larger altitude
allowing mapping of a larger area, we will here use the terms weed and thistles
interchangeably and will not try to classify the detections into the different types
of weed.
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The objective of this paper is to demonstrate that single-image weed- (and
in particular thistle-) detection in drone images of cereal fields is possible. The
paper includes a short review of previous work, a description of the proposed
method, dubbed Weeddetect, results of preliminary experiments and suggestions
for further work.

2 Previous Work

The amount of previous work on color image processing is enormous. A few
relevant textbooks include [6,7,10]. Less work exist on drone image analysis of
field images. The most relevant contributions include [4,8,9,11,14]. The latter
is directly relevant for the present work. Here each image is split into 64 × 64
pixel patches, that are converted to a scalar value using the Excess green- pro-
jection [13] ExG = 2G−R−B. Then, the average of the 5% largest ExG-values
within the patch is computed and thresholded by a fixed parameter value learned
from a set of annotated images. It is shown [14] that this method may achieve
a classification accuracy above 95% on many images, but also that a number
of problems exist. Most importantly, optimal performance could not be reached
without adjusting the threshold parameter to each image capture campaign.
This is because of different crop and light conditions makes automatic usage
problematic. For some images, far too many or far too few patches were clas-
sified correctly as weed. To a large degree this seems to be caused by lack of
preprocessing, but also the ExG-projection and the usage of a fixed threshold
plays a role.

In [3] texture analysis was attempted in addition to color analysis. Texture
analysis may seem useful because cereals and the thistle leaves are different in
shape. However, texture based detection is inherently difficult no matter the
approach, because even for small sized image patches, the distribution of weed
features and cereal features mix. To obtain stable statistics, larger image patches
is required but here the fraction of visible weed may be very small. Experiments
[3] showed that detection was possible but unstable and less accurate compared
to the color-based procedure reviewed above. Also, texture analysis was far more
computationally demanding.

In the present work both pre- and post processing is addressed, but the
major contribution of this work is a procedure for robustly estimating an optimal
threshold for possibly unimodal distributions composed of a cereal and a weed
component. Also, a new projection vector, significantly outperforming previous
choices are presented.

3 Weed Detection

Previous work [3,4] shows that simple approaches may work remarkably well.
However, too often such approaches fail due to lack of robustness. One practical
problem is that change of camera or use of auto-white balancing at image capture
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changes the color balance. This makes the images more grayish and reduces the
difference between yellow (cereals) and green (thistles). In general, the colors
change with the lighting conditions. For color based weed detection the more
saturated colors, the easier the detection will be. Another problem arises when
the angle between the sun and the horizon is below about 60◦. In this case,
because the view is approximately ortho, the image part opposite to the sun
azimuthal angle will show the illuminated side of the flora, while the image part
towards the sun will be darker. This effect clearly depend on the shape of the
crop leaves, the viewing direction etc. If not corrected for, too many thistles in
the affected image area will not be detected.

Depending on the resolution of the spraying equipment, the detections need
to be resampled. For an altitude of 50 m and using a standard commercial cam-
era with fixed standard optics, the pixels side length may correspond to a few
centimeters or less at ground. This resolution is far too high to be used for
sprayers. Typically, the controllable spraying resolution is about 3 m. The resam-
pling should be made accordingly taking altitude and effective focal length into
account. Finally, the farmer/user should be able to specify the trade off between
minimizing the risk of false positives (causing too much spraying) and false neg-
atives (causing too little spraying).

Previous attempts [3,4] within thistle detection have used a fixed threshold
to separate green from yellow. Despite all preprocessing such as color balancing,
such non-adaptive approach may not be sufficiently robust and an adaptive
procedure for threshold selection is needed.

3.1 Preprocessing

To remedy an undesirable color balance we follow the approach of Cheng et al.
[1]. However, instead of adjusting to a white-balance, i.e. the maximum vector
(1, 1, 1) we use the vector (1, 0.9, 0.7) reflecting that the images show yellow and
green colors and vey little blue. Colors in images obtained using auto white
balance are restored reasonably well (in the sense that the resulting color dis-
tribution becomes similar to what is seen at other image captures). To a large
extent, this procedure replaces a more tedious camera color calibration prior to
image capture.

To eliminate the effect of uneven illumination obtained when the angle
between the horizon and the sun is not large, we first transform the representa-
tion to HSV. Here, the effect is concentrated both in the saturation component
and the value component, whereas the hue component is hardly affected. The
shape and position of the effect depends on the crop type, the sun height and
azimutal position, the camera tilt, and would probably be difficult to estimate.
We choose to correct both saturation S and value V using a linear fit to each
image, i.e.:

S(x, y) −→ S̄

as + bsx + csy
S(x, y) and V (x, y) −→ V̄

av + bvx + cvy
V (x, y) (1)
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Fig. 1. (a) An original image with uneven illumination. (b) Compensated illumination.

Fig. 2. (a) Saturation boosting function. (b) Corrected and saturation-boosted image
(Color figure online)

where S̄ and V̄ are global averages of saturation and value, and where the denom-
inators show planar fits to the local averages of saturation and value. This simple
approach is robust to situations where spots (e.g. of flowers) make the local aver-
age deviate significantly from the fit. More complex models (than a planar fit)
have shown too sensitive to such cases. An example of a correction is shown in
Fig. 1.

To further ease the following separation of the green and the yellow, the
saturation values are nonlinearly increased. This is illustrated in Fig. 2. Low
values are left almost unchanged whereas medium and in particular large values
are increased towards the maximal value.

3.2 Detection

Based on a large number of annotated areas, the preprocessed images were exam-
ined and verified to split the color space linearly into two slightly overlapping
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subspaces. This is illustrated in Fig. 3(a) for a random subset of training points.
The best fitting plane separating the two populations had a unit surface normal
of (−0.609, 0.773,−0.178). The best separating plane vary from image to image
but all had approximately the same normal. Compared to [14] this vector is sig-
nificantly different from the normalized ExG-vector, putting much less weight
on the blue color component. By using the normal to the best separating plane
as projection vector, the following threshold estimation is eased.

Separation of the projected (smaller) yellow cereal values from the larger
green thistle values is difficult because the amount of the latter is usually only
a tiny fraction. Thus, for almost all images the distribution of projected values
is unimodal. Often a visual inspection will not reveal the thistle component.
Bimodality exceptionally shows up when large image areas are covered with
weeds, grass or trees.

If the cereal pixel projection values are modelled as i.i.d. random values, then
the central limit theorem suggests that the yellow cereal distribution component
should be Normal. Visually, this is confirmed. However, both the mean value and
the variance vary from image to image. Also for images with large amount of
green plants, the corresponding distribution component interferes with the right
part of the normal cereal distribution. This suggest an approach where first
the parameters of the Normal cereal distribution is estimated, then the weed
distribution is defined as the right residual, and the threshold is selected as the
one minimizing the sum of false positives and false negatives. This is illustrated
in Fig. 3(b). The procedure is fast because the binning of the histograms may be
chosen to limit the number of possible threshold values allowing an exhaustive
search.

Fig. 3. (a) Projection in red of cereal- and in green of thistle- RGB-values. The two
classes are almost linearly separable. (b) A typical distribution of projected values. The
black curve is the measured distribution. The red curve is the estimated cereal Normal
distribution. The curve in green and blue show the estimated left and right residual
weed distribution. The vertical cyan line marks the optimal threshold. (Color figure
online)
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Fig. 4. (a) Estimation based on the central area marked in magenta. Used when the
non-cereal distribution shown in red only affects the right tail of the distribution.
(b) Estimation based on the position of the left inflection point and the tangent here.
Used when the middle and right part of the distribution seriously deviates from a
normal distribution.

The challenge is to estimate the mean and variance of the (left) cereal dis-
tribution not knowing how severely the right part is corrupted by other compo-
nents. First, the contribution of the latter distribution component is assumed to
be minor. In this case, the mean is estimated from the central data around the
mode and with value larger than α (say 0.4) times the mode value. This support
area is illustrated in Fig. 4(a). If the mean deviates much from the mode, α is
increased and the mean reestimated. This procedure is iterated up to 3 times,
each time reducing the support area for the estimation. If the estimated value
still deviates significantly from the mode an alternative estimation is used (see
below).

As for the mean estimation, the variance is estimated by gradually reducing
the (central) support area around the mode up to 3 times. The estimation is
accepted if the absolute mean difference of the estimated Gaussian and the data
is below a threshold. One problem is that the accuracy of the estimated variance
is reduced when the tails of the distribution is discarded—The variance is sys-
tematically underestimated. It is easy to show that the variance compensation
factor will be:

γ(α) =
√

2π

∫ β

−β

t2e−t2/2dt

where β =
√−2 ln(α). Thus, γ is independent on the standard deviation of the

true distribution. Other expressions for the variance of asymmetric or one-sided
truncated normals may be found in [15]. The expression for γ has no closed form
solution, but is (for a limited number of values of α) estimated from simulations.
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If the estimation of either the mean value or the standard deviation fails,
an alternative estimation procedure is attempted. This is applied when a large
fraction of the (right part of the) normal cereal distribution is mixed with the
distributions of non-cereals. As illustrated in Fig. 4(b), here, only the left part of
the empirical distribution is used. After smoothing, the left inflection point I is
localized. From the value v(I) in this point and an estimate of the derivative d(I),
the variance, and then the mean value may easily be computed by σ̂ = v(I)/d(I)
and μ̂ = I + v(I)/d(I). Since the latter procedure is based on far fewer data,
it is invoked as a last resort. Preliminary experiments indicate a robust, but
not very accurate estimation. In the experiments reported later the alternative
estimation was not in use because all images (with ground truth) only showed
cereals and thistles.

3.3 Postprocessing

The result of the pixel-based classification is not appropriate for thistle mapping.
A large number of tiny (few pixels large) green areas often may be incorrectly
registered as thistles. Mostly, the tiny areas are caused by ground vegetation
(most often within the central image area). To eliminate the small detections
a morphological opening is applied. This significantly reduces the number of
segments even though the structure element is chosen small.

Finally, pixels based detection is not really of use for glyphosate spraying
because the image resolution is far higher than the resolution of the sprayer.
First, the image patch size in pixels corresponding to the desired resolution
in meters is computed. Then, to avoid aliasing and missing detections, a win-
dowed sum of pixel detections within the final resolution map is computed and a
final acceptance threshold T applied. This threshold is not determined based on
computer science or math, but on agricultural objectives. It specifies the farm-
ers’ trade-off between risking not to spray thistles versus unnecessary spraying.
Figure 5 shows an example of an original image, the pixel-based classification
and the final thistle map.

Fig. 5. (a) An original image. (b) Initial pixel based detection. (c) Final 1 m2-resolution
detection with thistles areas marked as white.



420 S.I. Olsen et al.

4 Experimental Results

To measure the performance of the system, dubbed Weeddetect, 97 field images of
mature wheat and 101 field images of mature barley was taken from altitudes of
20, 30 and 50 m. Based on a previous program called ThistleTool [14] a number
of image patches were extracted. All patches showed a field area of 3 × 3 m
(corresponding to side lengths of 450, 300 and 180 pixels). Approximately half
the patches showed crop, the remaining thistles. For each patch the position of
the central 1×1 m sub-patch, used for performance measurement, was recorded.
The patches were presented to an agricultural expert and classified as showing
either weed or only crop. This forms the basic ground truth. See Table 1 for
details.

In Fig. 6 two patches classified as crop and two patches classified as weed
are shown. Two of the patches are easy to classify (expert or not), while the
remaining two less clearly belong to either of the classes. Even for an expert
in agriculture there is a significant amount of patches where the ground truth
classification is debatable. In addition to the data specified above, the extracted
patches for the 19 images of Wheat observed using an altitude of 50 m was reclas-
sified 3 times by the same expert from agriculture. For the first reclassification
the expert was told to be as liberal in his classification into weed as for the basic
classification. For the second and third reclassification he was told to classify

Table 1. Amount of data used for testing including the manual classification of the
automatically extracted image patches

Type Height Images Patches Weed Crop

Wheat 50 19 950 475 475

Wheat 30 39 1574 599 975

Wheat 20 39 1638 663 975

Barley 50 18 900 450 450

Barley 30 38 1900 950 950

Barley 20 45 2103 978 1125

Fig. 6. The leftmost two images patches are classified as crop where the rightmost
two are classified as weed. The classification of the middle two patches is debatable.
The central area used for performance evaluation is indicated by the small magenta
markers. (Color figure online)
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Table 2. Patch classification distribution for initial classification and 3 reclassifications
of the image patches extracted from the images of Wheat from 50 m altitude.

Classification Weed Crop

Basic Liberal 481 419

Liberal 2 494 406

Slightly Conservative 317 583

Conservative 320 580

Table 3. Performance on two types of crop and three altitudes. The columns marked
Within sample mark the raw results. The columns marked Estimated total show the
performance after normalization with the true amount of weed seen in the images.

Crop Height Estimated total Within sample

TPR SPC ACC TPR SPC ACC

Wheat 20 .954 .956 .955 .984 .890 .933

Wheat 30 .992 .929 .943 .997 .948 .912

Wheat 50 .938 .965 .960 .990 .866 .928

Barley 20 .871 .890 .878 .923 .787 .888

Barley 30 .920 .855 .888 .942 .777 .874

Barley 50 .887 .945 .914 .920 .919 .920

slightly conservative and conservative. In Table 2 below the distribution of the
initial and the three reclassifications are shown. These data serves as supplemen-
tary ground truth used to evaluate the sensitivity of Weeddetect as a function of
ground truth bias.

Next, Weeddetect was applied to all images for a number of different values
of the final threshold value T and the final binary classification (with 1 m resolu-
tion) was compared to the ground truth. For each altitude, crop type and value
of T , the true positive rate (TPR) or sensitivity, and the true negative rate or
specificity (SPC), as well as the accuracy (ACC) was computed. In Table 3, these
measurements are marked as Within sample. Because the fraction of classified
weed patches is far larger than observed in general, an estimate of the perfor-
mance on the total image area is made. These measures marked Estimated total
more correctly shows the capability of the approach.

Although the results for the different altitudes were slightly different (30 m
giving the best results for Wheat and 50 m for Barley), the ranking was con-
stant as a functions of the threshold T . Thus to summarize data, the TPR and
SPC were averaged across altitude. Figure 7 shows the ROC-curves for Weed and
Barley as functions of the threshold parameter T . The figure shows that Weed-
detect performs well on Wheat where high values of both TPR and SPC can be
achieved simultaneously. For Barley, the performance is significantly worse. This
is in agreement with agricultural experience.
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Fig. 7. ROC-curves for “Estimated total” measures for Weeddetect. The left curve is
for Wheat and the right for Barley. It is clearly more difficult to obtain ideal results
for Barley. The curves are obtained by averaging across altitude.

Also shown in Fig. 7 is the line TPR = 1 – FPR corresponding to simulta-
neously minimal values of false positives and false negatives. This trade-off has
been chosen by experts in agriculture to represent the ideal case. The two types
of crop clearly require different threshold values to obtain this trade-off. In the
following we therefore fix the threshold parameter values to 0.060 for Barley and
to 0.015 for Wheat. Important to notice is that this choice does not necessarily
correspond to the threshold values for which ACC is maximized. Table 3 show
the detailed performance measures for the chosen threshold values. For the cho-
sen values of the threshold T for the two types of crop (but otherwise fixed and
identical parameter settings), the accuracy does not change significantly across
altitudes, but differs significantly between Wheat and Barley.

Compared with the previous approach ThistleTool [14], Table 4 shows the
over-all performance when averaging over altitude. The table shows that for
Wheat, the TPR is slightly better and SPC is slightly worse for Weeddetect.
For Barley, the TPR is slightly better for Weeddetect while at the same time
being significantly better in specificity. Important here is that the numbers for

Table 4. Comparison of Weeddetect and ThistleTool using Within sample measures
and averaging across altitude. Notice that for ThistleTool threshold tuning to each field
was applied.

Method Crop TPR SPC ACC

Weeddetect Wheat .961 .950 .953

Barley .887 .945 .914

ThistleTool Wheat .940 .982 .963

Barley .872 .724 .823
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Table 5. Performance on 900 image patches of Wheat fields viewed from 50 m altitude.
The columns marked Within sample mark the raw results. The columns marked Esti-
mated total show the performance after normalization with the true amount of weed
seen in the images. The rows correspond to different ground truth definitions.

Ground truth Estimated total Within sample

TPR SPC ACC TPR SPC ACC

Basic liberal .938 .965 .960 .990 .866 .928

Liberal 2 .920 .972 .963 .986 .879 .935

Slightly conservative 1.000 .906 .915 1.000 .629 .753

Conservative 1.000 .912 .922 1.000 .641 .762

Weeddetect are obtained for a fixed set of parameters while for ThistleTool tuning
to each specific field was allowed. Thus, the preprocessing made in Weeddetect
seems to have eliminated the problems previously observed with ThistleTool.

Finally, still keeping all parameters fixed, including the threshold values for
the two types of crop, the performance on the three supplementary data sets
were measured. Table 5 below show, for comparison, in the first line the results
on the initial data set. In the next three lines the result obtained on the supple-
mentary data sets (see Table 2) are shown. Table 5 shows, that bias in the expert
classification of patches has a significant impact on the performance measures.
If the classification is more conservative (fewer patches are marked to show this-
tles) then it’s easy for Weeddetect to reach a perfect TPR. However, for such
classification more patches marked as crop will be detected as thistles and the
accuracy will be reduced. When the expert classifies patches more eagerly into
thistles the performance is better and more balanced although the TPR is lower.
The difference between the results using the two liberal classifications indicate
the ground truth accuracy here may be about 1%.

Weeddetect is currently implemented in Matlab and it takes about 8 s to
process one 3 K × 4 K image on a high-end laptop. If ported to say C++, analy-
sis of all images covering a field may be reduced to a few minutes facilitating
application in practice.

5 Conclusions

We have presented a fully automatic system Weeddetect for detecting weeds, in
particular thistles, in drone images of mature wheat. The system automatically
compensates for uneven illumination and unbalanced colors. The preliminary
experiments indicate that the system performs well on all altitudes from 20 to
50 m but that the performance depends on the type of crop. For Barley the user
specified threshold on the minimal necessary amount of detections within one
square meter should be increased significantly with respect to the parameter
value for Wheat. Although the method is developed for detecting thistles in
wheat it may be possible to apply it on other cereals such as Barley. In such
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cases it is likely that the threshold has to be tuned to obtain the desired tradeoff
between false positives and false negatives.

The experiments revealed that a slight bias in the expert classification of
ground truth, had a significant impact on the obtained results. This both point
at the difficulty of the problem, but also raises fundamental questions on how to
test systems when noise and bias in ground truth may be present.

In future work we plan to combine the detections obtained at single images
into one field map. Such map will be easy to geo-reference and convert to a
spraying-program. Also consistent detection in multiple images may be used to
increase the quality of the final map.
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