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Amit Suveer1(B), Nataša Sladoje1,2, Joakim Lindblad1,2, Anca Dragomir3,
and Ida-Maria Sintorn1,4

1 Centre for Image Analysis, Uppsala University, Uppsala, Sweden
amit.suveer@it.uu.se

2 Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, Serbia
3 Department of Surgical Pathology, Uppsala University Hospital, Uppsala, Sweden

4 Vironova AB, Stockholm, Sweden

Abstract. Ultrastructural analysis of cilia cross-sectional images using
transmission electron microscopy (TEM) assists the pathologists to diag-
nose Primary Ciliary Dyskinesia, a genetic disease. The current diagnos-
tic procedure is manual and difficult because of poor signal-to-noise ratio
in TEM images. In this paper, we propose an automated multi-step reg-
istration approach to register many cilia cross-sectional instances. The
novelty of the work is in the utilization of customized weight masks
at each registration step to achieve good alignment of the specific cil-
ium regions. Registration is followed by super-resolution reconstruction
to enhance the substructural information. Landmarks matching based
evaluation of registration results in pixel alignment error of 2.35 ± 1.82
pixels, and the subjective analysis of super-resolution reconstructed cil-
ium shows a clear improvement in the visibility of the substructures such
as dynein arms, radial spokes, and central pair.

Keywords: Non-rigid registration · Transmission Electron Microscopy ·
Super-resolution · Cilia ultrastructures · Dynein arms · Radial spokes

1 Introduction

Transmission Electron Microscopy (TEM) can reveal information about very
fine structures (∼1 nm) in biological tissue sections. Pathologists analyze the
morphology of such ultrastructures to diagnose certain clinical conditions. One
such example is Primary Ciliary Dyskinesia (PCD). PCD is an autosomal reces-
sive genetic disease in which specialized cell structures, cilia, do not function
normally. Cilia are hair-like organelles protruding from cells, and dysfunctional
motile cilia results in serious problems, e.g. long term respiratory infection and
infertility in males and females. Therefore, pathologists analyze cilia substruc-
tures like dynein arms (DA), radial spokes, nexin links, and central pair, see
Fig. 1. Though the outer and inner dynein arms (ODA and IDA) are of particu-
lar interest for PCD diagnosis [18], defects in other substructures could also be
the result of the PCD condition and must not be ignored.
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Fig. 1. Example image of perpendicularly cut cilium and related terminology.

Fig. 2. Automated TEM imaging and analysis workflow. (The steps in focus in this
paper are highlighted.)

In current practice, a large number (≥50) of perfectly perpendicularly cut
cilia need to be detected in the sample and visually analyzed at high magnifica-
tion. The procedure is time consuming and therefore costly, it takes around two
hours for a proficient pathologist to perform analysis of a single case. The poor
signal-to-noise ratio (SNR) in the TEM images also makes image interpretation
difficult. The automation of processes at different levels of the diagnostic proce-
dure is hence highly desirable. The work-flow of a proposed automated approach
is illustrated in Fig. 2.

In this multiscale approach, we search for cilia-like objects at low-resolution,
on detecting a sufficient number of objects we acquire relatively high-resolution
images of specific regions and perform analysis to create super-resolution cilium.
The collage of high-resolution images along with the enhanced reconstructed
cilium is presented to a pathologist for final diagnosis. We have successfully
addressed the main challenge, cilia detection at low magnification [16]. We have
also presented preliminary results for super-resolution reconstruction of cilium
at mid magnification [10], using an automated approach.

Some work related to enhanced cilium reconstruction for PCD diagnosis
has previously been reported. It involves manual or user guided selection, seg-
mentation, and alignment of good cilia instances from digitized high-resolution
images [1,4,5]. As mentioned, these approaches are manual and don’t take local
deformations into account, unlike the one proposed in this work. In addition,
alternative automated approaches for PCD diagnosis involves enhancement of
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ODA by averaging a large number of outer microtubule doublets extracted from
many cilia instances [12], and classification of individual DA in cilia, based on
their lengths [13]. These approaches focus only on the analysis of DA, whereas
our technique performs automated enhancement of all the substructures which
could allow PCD diagnosis in a larger number of patients.

The method we proposed in [10] uses fuzzy object representation to create a
super-resolution reconstruction from a number of mid-magnification cilia cross-
sectional instances aligned using rigid registration. Registering many instances
improves the SNR, thus the DA appearance and super-resolution reconstruction
further boost the DA representation. It is observed that the quality of the super-
resolution image would benefit from an improved registration, which could allow
both global and local deformations.

Image-based registration techniques are usually preferred over feature-based
techniques for TEM images, as feature extraction from noisy TEM images is
quite a challenging task [3,6]. In this paper, we propose a multi-step registration
approach which utilizes customized weight masks at each step, followed by super-
resolution reconstruction from a set of registered images in order to enhance the
appearance of cilia substructures. The first step is dedicated to aligning the
central pair using rigid registration, the second step focuses on coarse alignment
of the ring of the outer doublets using affine registration, and the final step is
dedicated to the fine alignments of substructures using non-rigid registration.
Utilizing optimized weight mask for each registration step is the novelty of this
work. Mask derivation is discussed in details in Sect. 3.3.

2 Methodology

2.1 Image Registration

We use standard multi-step registration strategy adapted to our application. In
each step, we performed pair-wise registration where one image acts as a static
image (Is) and the second image as a moving image (Im), and the goal is to
find the displacement field which defines the mapping between the co-ordinates
of the two images. Thus the registration of image-pair can be defined as energy
minimization problem to find the displacement field:

D = arg min
φ

Ereg(φ; Is, Im), (1)

where φ is current displacement field and D is the final displacement field.
Ereg(φ) is the energy function, which is defined as:

Ereg(φ, Is, Im) = −wNCC(Is, T (Im, φ)) + λregR(φ), (2)

where T (Im, φ) is the result of transformation of Im using the displacement field
φ, wNCC is weighted normalized cross-correlation used as similarity measure,
and R is regularization term with regularization parameter λreg. For non-rigid
registration (λreg > 0) and for the rigid and affine registrations (λreg = 0).
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The wNCC used in the registration and at later stage for choosing a set of
registered images for super-resolution reconstruction, is defined as:

wNCC(Is, Iv) =
∑

Wn · [Is − Isw] · [Iv − Ivw]
( ∑

Wn · [Is − Isw]2
∑

Wn · [Iv − Ivw]2
)0.5 , (3)

where Wn is a normalized weight mask such that
∑

Wn = 1. Isw and Ivw are
the weighted means of the static and variable image calculated using Wn as:

Isw =
∑

Wn · Is , Ivw =
∑

Wn · Iv and Wn(x, y) =
W (x, y)
∑

W
, (4)

where W is the user defined weight mask, and where (A · B) means point-wise
multiplication, and (

∑
A) means sum over all elements of A.

2.2 Multi-step Registration

Rigid Registration: The focus of the first step is on aligning the central pair.
The rotational symmetry of the ring of the outer doublets makes this task chal-
lenging, as there is a high possibility of getting stuck in local minima. Therefore,
we follow multi-position initialization, using 9 rotations of the moving image as
starting positions in the range [0–320◦] with a step size of 40◦, and selecting the
one with the best-achieved wNCC score. The weighting mask (Wrig) only covers
the central pair with high weights at the central region, as later described in
Sect. 3.3. The resulting transformation matrix is used as the initial transforma-
tion in the next registration step.

Affine Registration: The second step focuses on aligning the ring of the outer
doublets using affine transformation without affecting the alignment of the cen-
tral pair attained by rigid registration. This is achieved by using another exper-
imentally derived weight mask (Waff ), as later described in Sect. 3.3. The mask
covers all the rings but assigns relatively high weights to the central region in
comparison to the periphery. The resulting transformation matrix is used as the
initial transformation in the next registration step.

Non-rigid Registration: The final step focuses on the fine adjustments in
local regions. This step uses a free form deformation (FFD) model based on
B-splines [8,9] which is often used in medical image registration [15]. The FFD
model transforms an image based on the transformation of a grid placed over an
image where the grid nodes act as control points. A set of B-splines is used to
guide the transformation where each B-spline transformation is influenced by a
set of control points. Each individual control point is tuned iteratively to lead the
local transformation until convergence or a specified exit condition is reached.
The initial displacement field is generated from the affine transformation, and
the final displacement field is a combination of multiple transformed B-splines
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updated iteratively under the influence of their respective control points [13].
Let the image domain is Ω = {(m,n) | 0 ≤ m < M, 0 ≤ n < N} and Φ denotes
a [Pm × Pn] mesh of control points with constant uniform spacing of δ in x and
y-Cartesian direction. Let φi,j is the value of the control point located at (i, j),
with −1 ≤ i < Pm, −1 ≤ j < Pn and (Pm = M + 2, Pn = N + 2). Then the
approximate transformation using cubic B-splines function that represents the
local deformation can be defined as [7,9]:

Tlocal(m,n) =
3∑

r=0

3∑

s=0

Br(u)Bs(v)φ(i+r,j+s) . (5)

Here, i = �m/δ� − 1, j = �n/δ� − 1, u = (m/δ) − �m/δ� and v = (n/δ) − �n/δ�.
The functions Br and Bs are the cubic B-spline polynomials as defined in [7,9],
where 0 ≤ z < 1:

B0(z) = (1 − z)3/6 , B1(z) = (3z3 − 6z2 + 4)/6 ,

B2(z) = (−3z3 + 3z2 + 3z + 1)/6 , B3(z) = z3/6 .

The control points determine the degrees of freedom (DoF) and the amount
of non-rigid deformation, depending on the resolution of the control points grid.
A low-resolution grid performs coarse non-rigid alignment and on increasing the
grid resolution the alignment gets finer. However, many DoF come with a high
computational cost. To achieve a good balance, we employed a pyramidal multi-
resolution approach [9], where both the image and the control grid resolutions
are increased from coarse-to-fine at each level. Let the local transformation at
any pyramid level be denoted as T pl

local, then the final non-rigid registration
displacement field is defined as, D =

∑L
pl=1 T pl

local .

Regularization: In order to constrain the deformation to avoid unrealistic
transformations, a 2D bending energy of a thin-plate of metal [17] is used as
penalty term to regularize the deformation [14] is defined as:

R(φ) =
1

|Ω|
�
Ω

[(
∂2φ

∂x2

)2

+ 2
(

∂2φ

∂x∂y

)2

+
(

∂2φ

∂y2

)2
]

dxdy , (6)

The amount of penalty is controlled by regularization parameter λreg as stated
in Eq. (2). The larger the regularization parameter λreg > 0, the smoother the
deformation field will be.

2.3 Super-Resolution Reconstruction

The set of registered cilia images is used to reconstruct a super-resolution (SR)
image. The approach is inspired by the work presented in [10], but with a slightly
adjusted regularization, based on experiences from [2]. To reduce disturbance
from possible misalignments, we exclude the 25% lowest scoring registered images
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based on their wNCC scores. We formulate the SR reconstruction as a regularized
energy minimization problem, where the reconstructed image h is estimated as:

h = arg min
u

Esr(u) . (7)

We utilize an energy function that includes the robust �1 norm to ensure noise
insensitive adherence to the observed images, in combination with a Huberized
TV-regularization which provides noise reduction while preserving edges. The
energy function is of the form

Esr(u) =
1
c

c∑

i=1

‖S(u) − T (Ii;Di)‖1 + λsrΦH(|∇(u)|) , (8)

where S(·) is a factor 2 subsampling operation, T (Ii;Di) is the i-th registered
observed image and Di is the displacement field estimated for I. ΦH(t) is the
Huber potential function

ΦH(t) =
{

t2

2ω , t ≤ ω
t − ω

2 , t > ω ,

and ∇ is the discrete image gradient. The two regularization parameters λsr and
ω are empirically tuned to λsr = 0.05, ω = 0.05. Equation (7) is minimized using
spectral projected gradient optimization, see [10] for details.

3 Experiments

The focus of the experiments is to derive the different optimized weight masks
suitable for each registration step and the evaluation of the accuracy of the
proposed registration technique. This approach is referred as the multiple-mask
strategy from here on.

3.1 Image Data and Ground Truth

All the experiments are performed on a dataset of 20 representative cilia
instance image patches chosen from a total of 30, which were detected using
the automated detection technique presented in [11]. Each image patch is of size
128 × 128 pixels, extracted from a 2048 × 2048 pixels image, acquired at mid-
magnification using the MiniTEM1 system. To evaluate registration algorithm
performance, 20 landmarks were placed for each cilium instance by author IMS
at the approximate centre of the microtubuli of the central pair (2) and the outer
doublets (18). An example of a cilium image patch and corresponding marked
landmarks is shown in Fig. 3.

1 Vironova AB, Stockholm, Sweden.
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Fig. 3. (a) Cilium instance, (b) landmarks manually placed on (a).

3.2 Average Pixel Alignment Error (PAE)

The registration accuracy is measured as the pixel alignment error defined as
the average Euclidean distance between the landmarks from the reference image
to its closest landmark in the registered image. Let Lref and Lreg be the set of
20 landmarks in the reference and the registered images, then the PAE for that
image-pair is:

PAE =
1

NL

∑

p∈Lref

min
q∈Lreg

d(p, q), (9)

where d(·) is the Euclidean distance and NL is the number of landmarks con-
sidered while computing the PAE. For the central pair NL = 2, for outer rings
NL = 18, and for all rings NL = 20.

3.3 Weight Masks

Each weight mask is tuned for two parameters, the size, and the weight distrib-
ution. We evaluate weight masks with sizes ranging from those covering only the
central pair up to those completely covering the outer ring. For weight distrib-
ution, uniform distribution and variations of the Hann window are tested. H1
denotes the Hann window defined by a radial profile h(r) = 0.5(1 + cos( πr

Rsz
)),

where r is the radial distance from the center of the mask, and Rsz is the total
radius of the mask, and H2, H3, and H4 denote the windows defined by (h(r))2,
(h(r))3, and (h(r))4, respectively.

Figure 4 shows the coverage of circular mask of radius 1 r and the correspond-
ing weights over cilium regions for different distributions. For the non-rigid reg-
istration, only the uniform distribution is considered while performing size opti-
mization, as all regions in the cilium are equally important. The approximate
radius (r) of cilium, which is the distance from the cilium centre to the plasma
membrane is considered as 55 pixels. This is chosen based on the observations
from 30 initially detected cilia instances.

Table 1 shows the PAEcl for the central landmarks, measuring the perfor-
mance of weight masks tested for the rigid registration (Wrig) step, in the size
range [0.4 r–0.7 r]. The performance for (H2, 0.6r) clearly indicates that to achieve
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Fig. 4. Illustration of weight mask size extent and distributions (mask size = 1 r)

Table 1. PAEcl for Wrig

0.4 r 0.5 r 0.6 r 0.7 r

Uniform 3.2(1.5) 5.1(2.4) 4.2(2.3) 4.5(2.3)

H1 3.2(2.0) 2.7(1.4) 3.1(1.5) 3.6(1.8)

H2 5.3(3.1) 3.1(1.9) 2.6(1.5) 2.8(1.4)

H3 5.6(2.9) 5.2(3.2) 2.7(1.6) 2.6(1.5)

H4 5.4(2.8) 5.1(3.1) 3.6(2.4) 2.7(1.6)

Table 2. PAEol for Waff

0.8 r 0.9 r 1.0 r

Uniform 3.65(1.86) 4.08(2.79) 4.14(2.63)

H1 5.30(3.55) 4.32(3.05) 3.27(1.75)

H2 6.54(3.68) 5.86(3.74) 5.15(3.64)

H3 7.20(3.61) 6.70(3.65) 6.15(3.69)

H4 7.18(3.68) 7.20(3.67) 6.69(3.65)

Table 3. PAE for Wnrr

0.90 r 1.00 r 1.1 r

PAEcl 2.83(1.72) 2.79(1.84) 2.89(1.63)

PAEol 2.34(1.74) 2.31(1.81) 2.44(1.80)

PAEal 2.39(1.74) 2.35(1.82) 2.48(1.78)

Table 4. Weight masks details

Rigid Affine Non-rigid

Radius 0.6 r 1.0 r 1.0 r

Mask size 66 × 66 110 × 110 110 × 110

Distribution H2 H1 Uniform

a good alignment of the central pair, high weight must be given to the central
region. Table 2 shows the PAEol for the outer landmarks, measuring the perfor-
mance of weight masks tested for the affine registration (Waff ) step, in the size
range [0.8 r–1 r]. The performance for (H1, 1 r) indicates that to achieve good
alignment of the outer rings without disturbing the central ring alignment, a
good balance of weight is important for the central and the outer regions with
high weight at the central region to compensate for the 9 outer doublets. Table 3
shows the PAEcl, PAEol and PAEal for the central, outer and all landmarks
respectively, measuring the performance of weight masks tested for the non-rigid
registration (Wnrr) step, in the size range [0.9 r–1.1 r]. The performance for (Uni-
form, 1 r) indicates that to achieve good local-alignment, especially for the outer
rings, we should not consider the plasma membrane as it could mislead the outer
region registration. Table 4 summarizes our recommendation for suitable masks
at each registration step, and Fig. 5 illustrates the extent and weight distribution
of the recommended masks.
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Fig. 5. Recommended weight masks (a) Wrig, (b) Waff , (c) Wnrr.

3.4 Algorithm

The algorithm takes an image-pair and multiple weight masks (Wrig, Waff and
Wnrr) as input. In the rigid registration step, input images are pre-processed
with a Gaussian filter and downsampled to half of the original size. In the affine
registration step also images are pre-processed using Gaussian smoothing fil-
ter, but registration is performed on the original image sizes. In the non-rigid
registration step a three level resolution pyramid is used. At the highest level,
images are smoothened with a Gaussian filter and resized to half of the original
image size, and coarse non-rigid registration is performed using a low resolu-
tion grid. The generated displacement field is further refined at the middle level,
where images are smoothened with Gaussian filter and processed at their orig-
inal sizes. The grid resolution used is twice that of the previous level. At the
lowest pyramid level registration is performed on the original images and a grid
resolution is set close to the original image size. The resulting displacement field
defines the mapping between the image-pair and when applied on the moving
image results in the registered image Ir.

The parameter details are shown in Table 5. Gσ and Gsz represents the sigma
value and the Gaussian filter size while, Isz and Grsz are the image size and
the grid size. Psp is the control point spacing and the regularization weight is
(λreg = 8e − 4). The values for Gσ and λreg were chosen based on experiments
on synthetic data for Gσ and on real data for λreg. The algorithm takes ≈60 s
per image-pair in MATLAB on a 2.3 GHz Intel Core i7 CPU.

Table 5. Registration algorithm parameter details

Rigid Affine Non-Rigid

PL = 1 PL = 2 PL = 3

Gσ 4.0 2.7 1.0 1.0 0

Gsz 11 × 11 11 × 11 7 × 7 7 × 7 -

Isz 64 × 64 128 × 128 64 × 64 128 × 128 128 × 128

Grsz - - 36 × 36 68 × 68 132 × 132

Psp - - [2,2] [2,2] [1,1]
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4 Results

In this section results for cilia registration using the proposed multiple-masks
strategy and super-resolution reconstruction are presented. We also presented
the cilia registration performance of two obvious approaches, first, registering
without using any mask, and second, registering using the uniform weight mask
with radius 1 r, which only covers the region within the plasma membrane of the
cilium. We referred to the former as no-mask and the later as a constant-masks
strategy. In Table 6, the mean of average pixel alignment error (PAE) calculated
using all the image-pairs is reported for before registration, and after registra-
tion using different weight mask(s) strategies. The registration performance is
computed separately for the central, outer and all landmarks. Results clearly
indicate that the central pair is best aligned using the multiple-masks, whereas
the alignment of the ring of the outer doublets is best for the constant-masks,
closely followed by the multiple-masks. The overall performance of the multiple-
masks is slightly better than the constant-masks. An example of the results for
each registration step using multiple-masks is shown in Fig. 6. Figure 7 shows
the SR images reconstructed using different weight masks strategies. Here, 15
cilia instances with the highest wNCC scores in the registration were used to
create the respective SR image.

Table 6. Mean PAE summary

Landmarks Before No-Mask Constant Multiple

Central 4.32(1.87) 3.29(2.03) 3.78(2.14) 2.79(1.84)

Outer 5.75(3.73) 4.98(3.73) 2.20(2.03) 2.30(1.80)

All 5.61(3.61) 4.81(3.63) 2.36(2.09) 2.35(1.82)

Fig. 6. Step-wise performance of registration using the multiple-masks approach. (a)
Relative position of landmarks in the static (+) and the moving (�) image before
registration, (b) after rigid registration, (c) after affine registration and (d) after non-
rigid registration. Landmarks are used for evaluation only.
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Fig. 7. SR cilia with (a) no-mask, (b) constant-masks, (c) multiple-masks.

5 Discussion and Conclusion

In this paper, we present a technique to enhance the cilia substructures by reg-
istering multiple instances of cilia cross-sections followed by SR reconstruction.
Cilium instance registration is achieved using a multi-step registration strategy
where we use different weight masks, with the aim to align different regions at
each registration step. Using the proposed multiple-masks results in a PAE of
2.35±1.82 for all the landmarks, which is better than using no-masks or constant-
masks, see Table 6 (All). The constant-masks, however, performed slightly better
for aligning the outer rings but failed for the central pair, see Table 6 (Outer and
Central). The subjective results of reconstructed SR cilium in Fig. 7c also support
our quantitative results where the central pair, radial spokes and dynein arms
have relatively better visibility than the other two results. As the constant-masks
performed better in aligning the outer doublets, the corresponding SR cilium in
Fig. 7b has good visibility of DA, but poor for radial spokes and the central
pair. The same is validated by our expert pathologist, author AD. With these
observations we propose to use either the multiple-masks or the constant-masks
depending of the requirements of the problem at hand.

Fig. 8. Exceptions in alignment, (a) stuck in local minima, (b) case of poor result from
multi-position initialization.
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Figure 8a shows a case when the algorithm achieves good alignment of the
central pair after the rigid registration step but fails to keep the alignment after
the affine registration step. Figure 8b shows the best multi-position initialization
which was achieved for a position that was unfavorable for the ring of the outer
doublets, making the total registration poor. To avoid disturbance from failure
cases, the SR reconstruction is only performed from well-registered instances.
Future work involves evaluation of the method on a larger dataset.
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