Decoding Gene Expression in 2D and 3D
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Abstract. Image-based sequencing of RNA molecules directly in tis-
sue samples provides a unique way of relating spatially varying gene
expression to tissue morphology. Despite the fact that tissue samples
are typically cut in micrometer thin sections, modern molecular detec-
tion methods result in signals so densely packed that optical “slicing”
by imaging at multiple focal planes becomes necessary to image all sig-
nals. Chromatic aberration, signal crosstalk and low signal to noise ratio
further complicates the analysis of multiple sequences in parallel. Here a
previous 2D analysis approach for image-based gene decoding was used
to show how signal count as well as signal precision is increased when
analyzing the data in 3D instead. We corrected the extracted signal mea-
surements for signal crosstalk, and improved the results of both 2D and
3D analysis. We applied our methodologies on a tissue sample imaged in
six fluorescent channels during five cycles and seven focal planes, result-
ing in 210 images. Our methods are able to detect more than 5000 sig-
nals representing 140 different expressed genes analyzed and decoded in
parallel.

Keywords: 2D and 3D signal detection - Microscopy based in situ
sequencing * Image processing & analysis -+ Crosstalk compensation

1 Introduction

Digital pathology is making its way into modern clinical diagnosis, increasing
the need for automated digital image analysis methods for fast and reproducible
quantification of tissue morphology [1]. In multi-cellular organisms, all cells have
the same genes, while at the same time different cell types have different func-
tions. The identity and function of a cell is defined by the gene expression (i.e.,
transcription). Thus, analysis of gene expression provides valuable information
on health and disease, e.g. by identifying different types of immune cells or
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metastatic tumor cells. Most existing approaches for analysis of gene expression
are based on bulk analysis of larger tissue samples, making it impossible to cor-
relate gene expression with individual cells. More recently, analysis of individual
cells has been made possible [2], but requires cells to be removed from the tissue
architecture, resulting in loss of spatial information.

Our previously published methods for image-based in situ sequencing of
expressed genes allow multiplexed gene expression profiling at cellular resolution
in intact tissue samples, and thus opens up for detailed large-scale comparison
of genotype and phenotype [3]; similar approaches have later been developed by
others [4,5]. Expressed genes are detected by molecular probes, locally amplified
by rolling circle amplification, and decoded by sequential staining and imaging
cycles. Each cycle targets the four letters of the genetic code with different fluo-
rescent colors (see Fig. 1). By controlled design of probes, such that each probe
contains a known “barcode” (i.e., sequence of nucleotide bases), it is known a
priori what sequences of signals to expect across fluorescent colors and sequenc-
ing cycles, and only the number of signals as well as their location are unknown.
Multiple molecular probes, targeting genes are typically used in parallel, and as
little as five cycles of decoding can detect as many as 4° = 1024 distinct barcodes
in the same tissue sample. By comparing the number of expected barcodes to

Sequencing cycles

Fig. 1. Amplified expressed genes (here enhanced for visualization purposes) in a tis-
sue sample imaged in five sequencing cycles. In each cycle, four different fluorescent
probes target each of the four letters of the genetic code. In this illustration, cyan=A,
orange=C, magenta=G, green=T. The sequence of colors in a given position reveals
the barcode of a unique expressed gene. (Color figure online)
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the number of unexpected barcodes (most likely originating from random noise
and autofluorescence), it is possible to evaluate precision as well as efficiency
(number of detected signals) of an image analysis approach.

Considering image size and richness of information, computerized image
processing provides tools for enabling spatially resolved information and quanti-
tative measurements. Tissue samples are typically cut in slices of a few microm-
eters prior to analysis, yet the data is typically collected by imaging the sample
at multiple focal planes, acquiring a stack of images representing a 3D volume.
An argument for this is that the different micrometer-sized signals often lie in
different focal planes, making it impossible to collect an image where all are
focused at once. Despite the data being 3D, all analysis approaches previously
described were based on 2D projections of such 3D volumes. This is true also
for our own previous approach [3,6] implemented in TissueMaps [7], a platform
for 2D giga-pixel image analysis and visualization built on free and open-source
software.

As more genes are targeted in parallel, and the efficiency of the molecular
methods increases, the signals in the tissue samples become denser. This means
that a lot of information will be lost when relying on 2D projections for sig-
nal decoding. To avoid over-crowding, one has to limit the amplification step,
meaning that a more complete analysis of gene expression comes at the cost
of lower signal-to-noise ratios and signals close to the resolution limits of the
microscope. Images are shifted between imaging cycles due to the manual stain-
ing /washing procedures, and signals from different fluorophores may be shifted
due to chromatic aberration which further complicates the data analysis. Cor-
rection for chromatic aberrations has been suggested for similar methods by
others: Briefly, the methods of [4,5] first correct the effects of chromatic aberra-
tions, respectively, through deconvolution and morphological opening followed by
background subtraction. Then, the alignment is done on the maximum-intensity
projection (MIP) along the z-dimension and using brick-based algorithm and
cross-correlation of MIP along the c-dimension. Finally, the signal detection is
completed by a per-pixel base calling and barcoding evaluation for maxima above
a specified threshold value in a log-filtered version of the aligned images.

In this study, we approached the challenge of analyzing a full 3D data set with
four color channels and five sequencing cycles. We compared the output to our
previously published 2D approach [3,6] applied to the same dataset projected
to 2D. Finally, these results were improved using a post-processing crosstalk
compensation to better separate the different color channels, and thus, correct
some unexpected transcripts to expected barcodes. The methods were evaluated
by comparing the number of detected signals by each method as well as the ratio
of expected versus unexpected barcodes of targeted genes.

2 Image Acquisition

A total of 140 gene transcripts were targeted within a 10 pm thick tissue sample,
and subjected to five cycles of sequencing by ligation as previously described [3].
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Fig. 2. 3D visualizations of the image showing that more than one signal can appear
along the z-direction (blue azxis). The background images are the maximum-intensity
projection of the slices in the general stain channel. The left image shows an example
of the spatial distribution of the signals in the general stain. The right image shows
the spatial distribution of the individual signal detection separated channel-wise (one
per color). This illustrates the need for a detection in 3D since some signals are merged
during the projection. (Color figure online)

Images were acquired at seven different focal depths, 1.4 wm apart, to create a
3D image volume using an Axioplan II epifluorescence microscope with a numer-
ical aperture of 0.8 and a nominal magnification of 20.0 at 610 pm distance. In
each sequencing cycle, the four letters of the genetic code, A, C, G, and T,
were fluorescence stained with Cy5, Texas Red, Cy3, and Fluorescein respec-
tively. Furthermore, a general stain (AF750) marking all targets and a nuclear
stain (DAPI) were also added to visualize signal distribution and tissue mor-
phology, resulting in a total of six color channels. The resulting image volume
is 2048 x 2048 pixels, with a z-dimension of seven, a color dimension of six and
a time dimension (=sequencing cycles or t) of five, for a total of 210 images to
process. A cut out volume of 63 x 66 x 7 voxels from one color channel at one
time point is shown in Fig. 2, illustrating signal size, noise and resolution in dif-
ferent spatial dimensions. Note that signals located in the same (x,y) position,
but different z-positions will be merged when working with projected data in 2D.

3 Image Analysis

The global workflow aims to align and normalize the data prior to sequence
decoding, as illustrated in Fig. 3. The challenges lie in (i) image registration, com-
pensating for alignment shifts along the sequencing cycles and chromatic shift,
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Fig. 3. Workflow of the original 2D method and the proposed 3D approach. The signal
decoding relies on measuring the signal intensity at the same position for all fluorescent
channels at each sequencing step. Therefore, registration is needed, in the 2D case it
is a registration of the image data, while in 3D a registration of detected signals. Post-
processing including crosstalk compensation increase signal confidence, as defined by
the quality measurement.

(ii) signal detection and normalization, and (iii) signal decoding. The signal-to-
noise ratio (SNR) in the images is limited by the trade off between exposure time
during image acquisition and bleaching of the stains. The longer the exposure
time, the higher the SNR, but at the same time there is an increased risk of
bleaching signals in neighboring focal planes. In order to detect as many true
signals as possible, we have decided to have a more inclusive approach for signal
detection. Following signal decoding noise and true signals were discriminated
using a quality measurement as described in Sect. 3.3.

3.1 2D Approach

For the 2D approach, we used our previously published method [3,6], imple-
mented in the TissueMaps workflow [7]. TissueMaps is built on free and open
source tools, and the analysis workflow makes use of the CellProfiler software
[8]. The 2D analysis started with the MIP of the image stack (reducing the z-
dimension to one). Following the MIP, for each cycle (t), each image channel (I,
¢ representing either the general stain or one of the four letters of the genetic
code) was first enhanced by a top-hat transformation (Fi.) with a structuring
element (B) consisting of a disc with radius 10 pixels:

Ftc:(Itc_ItcOB)7 (1)

where o is a morphological opening. Individual signals were then defined by a
labeled mask (L) in the general stain channel (D) of the first sequencing cycle
(t = 1), by a fixed intensity threshold, low enough to detect the signals after the
top-hat (here, equal to 0.5). Finally, clustered signals were separated by shape-
based watershed segmentation, i.e., a watershed applied on the negated distance
transform, since signals are relatively circular [9]. Filtered images (Fj.) from the
same sequencing cycle were thereafter registered (R;. = registered(F;.)) towards
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the general stain using a rigid-body transformation (preserving the distance
between every pair of points), from the “MultiStackReg” plugin for Fiji [10]. We
applied the final mask representing the signals (L) on Ry, so that Ly is the set
of pixels representing signal s in L. Finally, the intensity (Ss:.) for each signal
(s) in each channel (¢) and time step (t) is defined in the 2D method as the
maximum fluorescence intensity:

Sste = ;I}éaL}f (RtC)p (2)
We specifically extracted its (z,y) location as well as the intensity of this location
in each of the five color channels (general stain and four letters of the genetic

code), and five time steps in order to later decode and evaluate the signal as
described in Sect. 3.3.

3.2 3D Approach

In the 3D approach, signals were separately detected in all color channels at
all time steps using a local thresholding approach referred to as Per Object
Ellipsefit (POE) [11]. The POE method computes local adaptive thresholds for
each individual object (signal) where the threshold values are set to optimize the
ellipse (ellipsoid in 3D) fit. This is done by creating a component tree [12] and
traversing the pixels in order of decreasing intensities. Ellipsoid fit is defined by
computing the moment matrix M for each object, extracting the axes from the
eigenvalues of M, and computing the ratio between the actual object volume and
an ideal ellipsoid with the dimensions given by these axes. The search for the
best ellipsoid fit is done within given ranges for object volume (36-96 voxels),
major and minor axis length (3-8 pixels), and value of the ellipsoid fit (>0.5).

Following signal detection, 3D spatial coordinates of detected signals were
aligned and grouped. Within each time step (sequencing cycle) the color channels
representing A, C, G, and T were affinely registered to the general stain of that
same time step, using Iterative Closest Point (ICP) [13], followed by a spline
based ICP version [14,15], with a grid of 6 x 6 x 5 control points, that further
corrects any chromatic aberration. Once the channels were aligned within each
cycle, the general stain of each cycle was aligned with the general stain of the
first cycle, used as a reference, utilizing rigid ICP registration. The associated
channels of the time step were aligned using the same transformation.

Due to digitization effects and noise, slight shifts in the detected signals,
for different color channels and time steps, remain also after the registration.
Detected signals closer to each other than 3.4 pixels were merged together as
one spot. As (z,y) location of a merged signal s we use the centroid of the
corresponding cluster of (registered) signals. The intensity values of all merged
signals were extracted from the smoothed (gaussian filter with o = 0.5) and
dilated (ball-shaped structural element with five pixels diameter) original images,
utilizing the inverse of the respective registration transformations.
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Intensity measures were normalized separately for each channel (¢) and time
(t), such that signals with a brightness equal to the mode of the respective image
volume gets the value zero, and the mean detected signal intensity is mapped to
the value one:

Rsic — mode(Ry.)
~ (0% Ruse) — mode(Rie)”

where Sy is the intensity of signal s in channel ¢ and time ¢ for the 3D method,
and N is the total number of detected signals.

Due to the inclusive intensity threshold used for the signal detection, artifacts
from random background noise may have been detected as well. After normal-
ization, a quality check based on the general stain was applied to reduce such
noise. We require that the general stain channel (D), for each cycle (¢), presents
each signal detected (s), so that the following condition holds for all cycles:

Sstc =

3)

Sstc|c:D

>0.1 (4)

maXce({A,c,q,T} Sste

This step reduces the number of signals by approximately 2%.

3.3 Sequence Decoding and Quality Measurement

We measured the respective quality value for the 2D and 3D methods to evaluate
the consistency of the signals detected. For each sequencing cycle, every location
containing a signal is assigned the base, A, C, G or T, decided on the highest
image intensity (following top-hat (2D) or normalization according to Eq.(3)
(3D)). Autofluorescence may result in false signals that have a high intensity
across all sequencing cycles, but always display the same color (that is, always
appear in the same color channel). Such signals will appear as “homopolymers”,
e.g. barcodes consisting of a single letter, such as ‘AAAAA’ or ‘GGGGG’. No
such signals were included in the expected barcodes, and they are removed from
our set of detected signals, reducing the number of signals by 0.6%.

To evaluate the signals detected, a quality Q4 of a signal s, in the cycle ¢

was defined as:
maX.c(A,0,G,T} Sste

Qst =

()
Ece{A,aG,T} Sste
The quality score of the full sequence Qs of signal s is further defined by the
quality of its “weakest” cycle:

Qs =

_ ' . 6
e 5in Qst (6)

SNy}

The quality score ranges from N% (i.e., all signals equal) to 1 (all non-max signals
equal to 0). /
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3.4 Crosstalk Compensation

Intensity values detected from each of the five sequencing cycles were crosstalk
compensated in order to color-correct the intensities and determine the real dye
concentration present in each signal. The sequencing cycles can not be assumed
to be independent from each other, but the sequencing process and the image
acquisition is affected by several kinds of cycle-dependent noise (e.g., focus,
imperfect image registration, chromatic aberration, photobleaching, and other
experimental conditions), meaning that the crosstalk between channels may vary
cycle to cycle. Therefore a separate crosstalk compensation matrix for each of
the sequencing cycles was estimated. Each crosstalk matrix X; was estimated as
in Sect. 2.2.6 of Li and Speed [16], inverted and multiplied by the matrix of the
intensities of all signals s of cycle ¢, producing crosstalk compensated intensity
values:

XstA SstA
Xsto _1 | Sste

=X 7
XstG ¢ SstG ( )
XstT SstT

We measured a new quality value for the methods by replacing the intensity Ss.
in Eq.5 by the compensated intensity value Xg;..

3.5 Validation Approach

The only “ground truth” available for this type of image data is the a priori
knowledge of the barcodes of the probes applied to the tissue section. In this
particular experiment, 140 different probes were applied. The barcode length
is five letters, meaning that our decoding approach may find 4° = 1024 dif-
ferent codes, but only 140 out of these codes are to be expected (TP), and it
can be assumed that any other code found is noise due to poor signal detec-
tion/decoding and is considered as unexpected (FP). There are of course also
other sources of error, such as actual errors in the probes, but these will affect the
2D and 3D approach equally. Using the quality measure described in Sect. 3.3
an acceptance threshold can be set to balance the signal count vs. the signal
precision (TP/(TP+FP)).

4 Results

4.1 Validation

Out of the 1024 possible barcodes, only 140 correspond to the barcodes of our
targeted gene transcripts. If decoded signals were completely random (and the
four homopolymers removed), a precision of 140/(1024—4) = 0.14 would be
expected. From Fig. 4, showing number of detected TP versus number of detected
FP depending on the quality threshold value, we can see that the new 3D app-
roach detects more signals than the 2D method with a higher ratio of TP over
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FP (respectively red curve and blue curve). The alignment method in the 2D
workflow produces part of the FP signals due to its difficulty to find control
points to define the transformation, especially in this noisy dataset. Moreover,
the MIP tends to overcrowd the working plane so that two signals may overlap
and corrupt the decoding process. The crosstalk compensation improves the 2D
workflow by correcting some of the unexpected barcodes and thus, improving
these results (blue dashed curve). On the other hand, the 3D approach is able to
extract more robust information through the z-dimension which helps for both
the registration process and for the spatial localization of the signal as they are
better separated. These better results are also improved through the crosstalk
compensation (red dashed curve). Consequently, assuming an acceptable ratio
of one FP for four TP, i.e. a precision of 0.8, then we obtained respectively 2641
and 2968 TP for the 2D and 3D method, which increase to 3622 and 4742 TP
with the crosstalk compensation (black square markers).
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Fig. 4. Comparison of the original 2D method and the proposed 3D approach by plot-
ting true positive signals (TP) against the false positive signals (FP) at various quality
threshold settings. The red and blue curves show the signals detected by the 3D and 2D
approaches respectively, before compensation for crosstalk. The dashed curves show the
results after the application of crosstalk compensation. Precision, i.e., TP/(TP+FP),
increases for both the 2D and the 3D approach when crosstalk compensation is applied
as shown by the black square markers for a precision of 0.8. (Color figure online)
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4.2 Visualisation

We confirmed the spatial localization of the transcripts detected by using the
TissueMaps platform. Currently, this platform allows the display of 54 different
symbols to localize the genes on a 2D image at different resolutions. We chose the
projected general stain image as background and displayed the 54 most common
barcodes (sum of the two methods) among the total 140 genes detected by our

methods (Fig. 5).
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Fig. 5. Visualization of the 54 most common transcripts among the total 140 expected
barcodes using the TissueMaps platform. The top image is the result of the 2D approach
while the middle visualization corresponds to the 3D method. The bottom bar plot
represents these 54 transcript counts for the 2D (in blue) and 3D (in red) methods.

(Color figure online)
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5 Discussions

Digital microscopes can capture 3D images of signals emitted by molecular detec-
tion probes by recording data at multiple focal planes of the imaged tissue sam-
ples. While the current 2D method of gene decoding, by applying a MIP, provides
an overview of the stack with a good SNR, it tends to overcrowd the signals and
lose some of the individuality. The 3D approach, presented in this study, ana-
lyzes the different slices of the tissue volume to detect more of separated signals.
The individual transcripts are in the same proportion (in respect to the total
number detected) and present the same global pattern in the tissue (Fig.5).

The advantages of the 3D method also come from the improvement and
use of new steps. The images were normalized based on their mode and mean,
and the segmentation was applied to each 3D volume (four channels X five
sequencing cycles) individually rather than on the general stain. This allows the
3D method to compensate the SNR channel-wise, similarly to the top-hat in the
2D approach, but also to have a better definition of the individuality in each
channel where signal overlap could occur in the general stain.

We also improved the general quality measurement and gene decoding by
incorporating crosstalk compensation. This allows us to correct some of the
unexpected barcodes based on the signal intensities (in each channel) and the
general tendency of the signals to switch from one base to another. For both
methods, the crosstalk compensation as a post-process converts around a thou-
sand of false positive signals into true positive signals (Fig.4) and increases the
precision of our results.
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to the development of TissueMaps, and the European Research council for funding via
ERC Consolidator grant 682810 to C. Wahlby.
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